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—————————————————————————– —————————————–
Abstract

The present work proposed an alternative approach to find the closed-form solutions of the non-
homogeneous Yakubovich matrix equation X −AXB = CY +R. Based on the derived closed-form
solution to the nonhomogeneous Yakubovich matrix equation, the solutions to the nonhomogeneous
Yakubovich quaternion j-conjugate matrix equation X − AX̂B = CY + R are obtained by the use
of the real representation of a quaternion matrix. The existing complex representation method
requires the coefficient matrix A to be a block diagonal matrix over complex field. In contrast in
this publication we allow a quaternion matrix of any dimension. As an application, eigenstructure
assignment problem for descriptor linear systems is considered.

Keywords: Closed-form solution; quaternion matrix equation; real representation

—————————————————————————– ————————————————–

1. Introduction

The generalized Sylvester matrix equation

AX − EXF = CY, (1.1)

is closely related with many problems in control theory, such as pole/eigenstructure assignment
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toral Science Foundation of China (No.244) .

†Corresponding author E-mail addresses: songcaiqin@gmail.com(C.Song), glchen@math.ecnu.edu.cn
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design [1-2], Luenberger-type observer design [3-5], robust fault detection [6-11] and so on.

Finding the complete parametric solutions of the matrix equation (1.1), i.e. parametric

solutions consisting of the maximum number of free parameters, allows for a robust control

system design for a larger class of design problems. The generalized Sylvester matrix equation

(1.1) is equivalent to the generalized Sylvester matrix equation

X − AXB = CY, (1.2)

with their coefficient matrices satisfying some relations. Due to the above mentioned appli-

cations, the generalized Sylvester matrix equation (1.1) and (1.2) has been studied by many

authors. Assuming F in matrix equation (1.1) is in Jordan form, Duan [12, 13] has obtained

a parametric solution of the generalized Sylvester matrix equation through the use of the

right coprime factorization of the input-state transfer function (sE −A)−1B . However, this

solution is not in a direct, explicit form but in a recursive form. In [14-16], an explicit,

analytical and complete solution to the matrix equation (1.2) is obtained. In [14], the ex-

plicit solution can be obtained by the use of the Kronecker map [52]. In [15], the proposed

solution is in a very compact form and can be immediately obtained with a series of matrices

Di, i = 0, 1, · · · , ω. Obviously, the following nonhomogeneous Yakubovich matrix equation

X − AXB = CY + R, (1.3)

where A ∈ Rn×n, B ∈ Rp×p and C ∈ Rn×r are the given real matrices, X ∈ Rn×p and

Y ∈ Rr×p are the matrices to be determined, is the generalized form of the matrix equation

(1.2).This nonhomogeneous Yakubovich matrix equation plays an important role in output

regulator design for time-invariant linear systems and eigenstructure assignment for matrix

second-order linear systems [17-20]. However, there is little in the literature considering such

type of matrix equation [21].

For two complex square matrices A and B, there exists a nonsingular complex matrix P

such that A = P−1BP [22]. Then A and B is called consimilarity. This is another type of

similarity in the field of linear algebra. The consimilarity theory of complex matrices plays

an important role in the research of modern quantum theory [23]. For this reason, the matrix

equation X − AXB = CY in complex field has been extended to complex conjugate matrix

equation X −AXB = CY by an application of the consimilarity concept [18]. Moreover, the

consimilarity of quaternion matrix is also defined in [24]. Similarly, the quaternion matrix
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equation X − AXB = CY has also been extended to the quaternion j-conjugate matrix

equation X − AX̂B = CY by an application of the consimilarity concept over quaternion

field [25]. Due to its compact notation, moderate computational requirements and avoidance

of singularities associated to 3 × 3 rotation matrices [26], these quaternion matrix equations

have been extensively used in computer graphics, vector-sensor processing, and aerospace

problems [27-30].

Let us point out that the least squares solution of the quaternion j-conjugate matrix

equation X − AX̂B = C (where X̂ denotes the j-conjugate of quaternion matrix X) with

the least squares norm [31] has been obtained by the use of the complex representation

of quaternion matrix, the Moore-Penrose generalized inverse and the Kronecker product.

Some necessary and sufficient conditions for the existence of the solution to the quaternion

matrix equations AXB + CY D = E, (AX, XC) = (B,D), AXB = C, have been proposed

and the solutions have been derived in the references [32-34]. The explicit solutions to the

quaternion j-conjugate matrix equation X − AX̂B = C and X − AX̂B = CY [25, 35, 36],

where the coefficient quaternion matrix A is a block diagonal form over complex field, have

been studied. The general solution, parameterize general solution and explicit solution to

some quaternion matrix equations are obtained in [37-41]. Some necessary and sufficient

conditions, the maximal and minimal ranks of the solutions are presented in these paper.

In this paper, we are concerned with the explicit solutions to two kinds of nonhomo-

geneous Yakubovich matrix equations, which are considered in real field and in quaternion

field. The class of matrix equations which are studied in the current paper include many

linear matrix equations as special cases, such as discrete Sylvester matrix equation, gener-

alized Sylvester matrix equation, discrete Lyapunov matrix equation, and so on [18-22, 31,

35-36 ]. The motivation for this paper comes from the references [15-18, 20, 21, 25, 35,

36, 39-46, 48-55]. This study mainly includes two parts. Firstly, we present an alternative

approach to obtain the explicit solution of the nonhomogeneous Yakubovich matrix equation

in real field. It is also shown that the explicit solution to the considered matrix equation

is expressed as the coefficient matrices A,B,C, the free parameter matrix Z and the coeffi-

cient matrix of polynomial matrix adj(I − sA). Secondly, based on the derived solutions to

the nonhomogeneous Yakubovich matrix equation in real field, the explicit solutions to the

j-conjugate matrix equation in quaternion field are discussed by means of real representation

of a quaternion matrix.
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The rest of this paper is organized as follows. In Section 2, the real matrix equation is

studied. First of all, a method is presented for obtaining the solution to the nonhomogeneous

Yakubovich matrix equation. Section 3 is devoted to introducing the real representation of a

quaternion matrix and studying the solution to the quaternion j-conjugate matrix equation.

In Section 4, some numerical examples and application examples are provided to show the

effectiveness of the obtained results. Finally, the paper is ended with a brief conclusion in

Section 5.

Throughout this paper, we use the following notations. Let R, C and Q = R
⊕

Ri
⊕

Rj
⊕

Rk

denote the real number field, the complex number field and the quaternion field, respectively,

where i2 = j2 = k2 = −1, ij = −ji = k. Rm×n(Cm×n or Qm×n) denotes the set of all m × n

matrices on R (C or Q). For any matrix A ∈ Cm×n, AT , A,AH , detA and adj(A) represent the

transpose, conjugate, conjugate transpose, determinant and adjoint of A, respectively. In ad-

dition, symbol Aσ is the real representation of a quaternion matrix A. A⊗B = (aijB) denotes

the Kronecker product of two matrices A and B. If A ∈ Qm×n, let A = A1 +A2i+A3j+A4k,

where At ∈ Rm×n, t = 1, · · · , 4, and define Â = A1 −A2i+A3j−A4k to be the j-conjugate of

the quaternion matrix A. For A ∈ Cm×n, vec(A) is defined as vec(A) = [aT
1 aT

2 · · · aT
n ]T ,

where ai(i = 1, 2, · · · , n) are some complex numbers. We denote the n × n identity matrix

by In. We also write it as I . Furthermore, let A ∈ Rn×n,B ∈ Rn×r, and C ∈ Rm×n, we have

the following notations associated with these matrices:

Ctrn(A,B) =
[

B AB · · · An−1B
]
, Obsk(A,C) =




C
CA
...

CAk−1


 ,

f(I,A)(s) = det(I − sA) = αnsn + αn−1s
n−1 + · · · + α1s + 1,

Sr(I, A) =




Ir α1Ir α2Ir · · · αn−1Ir

Ir α1Ir · · · αn−2Ir

· · · · · ·
Ir α1Ir

Ir




.

Thus, Ctrn(A,B) is the controllability matrix of the matrix pair (A,B), Obsk(A,C) is the

observability matrix of the matrix pair (A,C), Sr(I, A) is a symmetric operator matrix.
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2. Real matrix equation X − AXB = CY + R

In this section, we will propose an alternative approach to solve the nonhomogeneous

Yakubovich matrix equation (1.3). Before proceeding, we need the following lemma on the

matrix equation

X0 − AX0B = R, (2.1)

where A ∈ Rn×n, B ∈ Rp×p and R ∈ Rn×p are known matrices, and X0 is the matrix to be

determined.

Lemma 1 [47]. Given matrices A ∈ Rn×n, B ∈ Rp×p and R ∈ Rn×p, suppose that

{s|det(I − sA) = 0}∩λ(B) = ϕ, and let

f(I,A)(s) = det(I − sA) = αns
n + · · · + α1s + α0, α0 = 1,

and

adj(I − sA) =
n−1∑

i=0

Ris
i. (2.2)

Then the unique solution to the matrix equation (2.1) can be characterized by

X0 =

(
n−1∑

i=0

RiRBi

)
[
f(I,A)(B)

]−1
.

Theorem 1. Given matrices A ∈ Rn×n, B ∈ Rp×p, C ∈ Rn×r and R ∈ Rn×p, suppose that

{s|det(I −sA) = 0}∩λ(B) = ϕ, and (2.2) holds. Then all solutions to the nonhomogeneous

Yakubovich matrix equation (1.3) can be expressed as





X =
n−1∑

i=0

RiCZBi +

(
n−1∑

i=0

RiRBi

)
[
f(I,A)(B)

]−1
,

Y = Zf(I,A)(B),

(2.3)

where Z ∈ Rr×p is an arbitrary chosen free parameter matrix.

Proof. Regarding the solution of αi, i ∈ I[0, n], and Ri, i ∈ I[0, n − 1] in Lemma 1, the

so-called generalized Leverrier algorithm [45] can be stated as the following relation:

{
Ri = ARi−1 + αiI, R0 = I, i ∈ I[1, n].

αi = trace(ARi−1)
i

, i ∈ I[1, n].
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Suppose that a solution to the nonhomogeneous Yakubovich matrix equation (1.3) can

be expressed as X = T + X̃, Y = Ỹ with (X̃, Ỹ ) being a solution to matrix equation (1.2).

Then one has

(T + X̃) − A(T + X̃)B − CỸ − R = X̃ − AX̃B + T − ATB − CỸ − R = T − ATB − R.

Under this condition, when X0 = T is a solution to (2.1), X = T + X̃, Y = Ỹ is a solution

to (1.3). Combining this fact and Theorem 2 in [14], now we can obtain the solution to the

nonhomogeneous Yakubovich matrix equation (1.3).

Corollary 1.Given matrices A ∈ Rn×n, B ∈ Rp×p, C ∈ Rn×r and R ∈ Rn×p, suppose that

{s|det(I − sA) = 0}∩λ(B) = ϕ, and (2.2) holds, then the relation





X =

(
n−1∑

i=0

RiRBi

)
[
f(I,A)(B)

]−1
,

Y = 0,

(2.4)

is also a special solution to the matrix equation (1.3), where Z ∈ Rr×p is an arbitrary chosen

free parameter matrix.

Proof. If we let Z = 0 in relation (2.3), we can obtain the relation (2.4). This complete the

proof of this theorem.

Next we have the following equivalent forms of the solution in Theorem 1.

Theorem 2. Given matrices A ∈ Rn×n, B ∈ Rp×p, C ∈ Rn×r and R ∈ Rn×p, suppose that

{s|det(I −sA) = 0}∩λ(B) = ϕ, and (2.2) holds. Then all solutions to the nonhomogeneous

Yakubovich matrix equation (1.3) can be expressed as





Xf(I,A)(B) =
n−1∑

k=0

n−1∑

i=0

αkA
i−kCZBif(I,A)(B) +

n−1∑

k=0

n−1∑

i=0

αkA
i−kRBi,

Y = Zf(I,A)(B),

(2.5)

where Z ∈ Rr×p is an arbitrary chosen free parameter matrix.
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Proof. According to the relation (2.3), we have




R0 = In,
R1 = α1In + A,
R2 = α2In + α1A + A2,
· · ·
Rn−1 = αn−1In + αn−2A + · · · + An−1.

This relation can be compactly expressed as

Ri =
i∑

k=0

αkA
i−k, α0 = 1, i = 1, 2, · · · , n − 1.

Hence, we can obtain

n−1∑

i=0

RiCZBi =
n−1∑

i=0

i∑

k=0

αkA
i−kCZBi =

n−1∑

k=0

n−1∑

i=0

αkA
i−kCZBi,

and
n−1∑

i=0

RiRBi =
n−1∑

i=0

i∑

k=0

αkA
i−kRBi =

n−1∑

k=0

n−1∑

i=0

αkA
i−kRBi.

By Theorem 1, we can derive the conclusion. �

Corollary 2. Let A ∈ Rn×n, B ∈ Rp×p, C ∈ Rn×r and R ∈ Rn×p, suppose that

{s|det(I −sA) = 0}∩λ(B) = ϕ, and (2.2) holds. Then all solutions to the nonhomogeneous

Yakubovich matrix equation (1.3) can be expressed as





X =
n−1∑

i=0

Ri[CZf(I,A)(B) + R)Bi[f(I,A)(B)]−1],

Y = Zf(I,A)(B),

where Z ∈ Rr×p is an arbitrary chosen free parameter matrix.

Proof. By considering (2.3), we can get

Xf(I,A)(B) =
n−1∑

i=0

RiCZBif(I,A)(B) +
n−1∑

i=0

RiRBi

=
n−1∑

i=0

RiCZf(I,A)(B)Bi +
n−1∑

i=0

RiRBi

=
n−1∑

i=0

Ri(CZf(I,A)(B) + R)Bi
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Now Post-multiplying the two sides of the above relation by (f(I,A)(B))−1 , we can obtain

X =
n−1∑

i=0

Ri(CZf(I,A)(B) + R)Bi[f(I,A)(B)]−1

The proof is finished. �

Corollary 3. Given matrices A ∈ Rn×n, B ∈ Rp×p, C ∈ Rn×r and R ∈ Rn×p, suppose

that {s|det(I − sA) = 0}∩λ(B) = ϕ, and (2.2) holds. Then all the solutions to the

nonhomogeneous Yakubovich matrix equation (1.3) can be characterized by

{
X = Ctrn(A,CZ)Sr(I, A)Obsn(B, f(I,A)(B)) + Ctrn(A,R)Sr(I, A)Obsn(B, In)
Y = Zf(I,A)(B),

where Z ∈ Rr×p is an arbitrary chosen free parameter matrix.

Proof. By the direct computation, it follows from Theorem 2 that we can get

n−1∑

k=0

n−1∑

i=0

αk(A)i−kCZBif(I,A)(B) =
n−1∑

k=0

n−1∑

i=0

αk(A)i−kCZf(I,A)(B)Bi

= Ctrn(A,CZ)Sr(I, A)Obsn(B, f(I,A)(B))

,

and
n−1∑

k=0

n−1∑

i=0

αkA
i−kRBi = Ctrn(A,R)Sr(I, A)Obsn(B, In).

Hence, we have

n−1∑

k=0

n−1∑

i=0

αk(A)i−kCZBif(I,A)(B) +
n−1∑

k=0

n−1∑

i=0

αkA
i−kRBi

= Ctrn(A,CZ)Sr(I, A)Obsn(B, f(I,A)(B)) + Ctrn(A,R)Sr(I, A)Obsn(B, In)

.

The proof is finished. �

3. Quaternion j-conjugate matrix equation X − AX̂B = CY + R

In this section, we consider the solution to the quaternion j-conjugate matrix equation

by applying of the real representation of a quaternion matrix. First of all, we introduce the

definition and some properties of the real representation of a quaternion matrix.
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3.1. Real representation of a quaternion matrix

For any quaternion matrix A = A1 + A2i + A3j + A4k ∈ Qm×n, Al ∈ Rm×n(l = 1, 2, 3, 4),

the real representation matrix of quaternion matrix A can be defined as

Aσ =




A1 A2 −A3 A4

A2 −A1 −A4 −A3

A3 −A4 A1 A2

A4 A3 A2 −A1


 ∈ R4m×4n.

For a m × n quaternion matrix A, we define At
σ = (Aσ)t. In addition, if we let

Pt =




It 0 0 0
0 −It 0 0
0 0 It 0
0 0 0 −It


 , Qt =




0 −It 0 0
It 0 0 0
0 0 0 It

0 0 −It 0


 ,

St =




0 0 0 −It

0 0 It 0
0 −It 0 0
It 0 0 0


 , Rt =




0 0 It 0
0 0 0 It

−It 0 0 0
0 −It 0 0


 .

in which It is a t × t identity matrix, then Pt, Qt, St, Rt are unitary matrices. Next, the

properties of the real representation can be expressed as the following, which are given in

[43].

Proposition 1 [43]. Assume that the quaternion matrices A,B ∈ Qm×n, C ∈ Qn×s, a ∈ R,

then

(1) (A + B)σ = Aσ + Bσ, (aA)σ = aAσ, (AC)σ = AσPnCσ = Aσ(Ĉ)σPs;

(2) A = B ⇔ Aσ = Bσ;

(3) Q−1
m AσQn = −Aσ, R

−1
m AσRn = Aσ, S

−1
m AσSn = −Aσ, P

−1
m AσPn = (Â)σ;

(4) The quaternion matrix A is nonsingular if and only if Aσ is nonsingular, and the quater-

nion matrix A is an unitary matrix if and only if Aσ is an orthogonal matrix;

(5) If A ∈ Qm×m, then A2k
σ = ((AÂ)k)σPm;

(6) A ∈ Qm×m, B ∈ Qn×n, C ∈ Qm×n and k + l is even, then

Ak
σCσB

l
σ =

{
((AÂ)s(AĈB)(B̂B)t)σ, k = 2s + 1, l = 2t + 1,

((AÂ)sC(B̂B)t)σ, k = 2s, l = 2t.
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Proposition 2 [43]. If λ is a characteristic value of Aσ, then so are ±λ,±λ.

For any A ∈ Qm×m, let the characteristic polynomial of the real representation matrix

Aσ be f(I,Aσ)(λ) = det(I4m − λAσ) =
∑2m

k=0 a2kλ
2k, and define hAσ(λ) = λ4mf(I,Aσ)(λ

−1) =
∑2m

k=0 a2kλ
2(2m−k). So by Proposition 1 and Proposition 2 we have the following Proposition 3.

Proposition 3. Let A ∈ Qm×m, B ∈ Qn×n. Then

(1) f(I,Aσ)(λ) is a real polynomial, and f(I,Aσ)(λ) =
∑2m

k=0 a2kλ
2k;

(2) hAσ(λ) is a real polynomial, and hAσ(λ) =
∑2m

k=0 a2kλ
2(2m−k);

(3) hAσ(Bσ) = (gAσ(BB̃))σPn, f(I,Aσ)(Bσ) = (pAσ(BB̃))σPn,

in which gAσ(λ) =
∑2m

k=0 a2kλ
2m−k, pAσ(λ) =

∑2m
k=0 a2kλ

k are real polynomials.

Proof. By Proposition 2, we easily know that ak is a real number, and a2k+1 = 0. For any

k, by Proposition 1, we have B2k
σ = ((BB̃)k)σPn, so we can obtain the result (3).

3.2. On solutions to the quaternion j-conjugate matrix equation X − AX̂B =

CY + R

In this subsection, the solution to the quaternion j-conjugate matrix equation

X − AX̂B = CY + R, (3.1)

is presented by the use of real representation of a quaternion matrix, in which A ∈ Qn×n,

B ∈ Qp×p, C ∈ Qn×r and R ∈ Qn×p are given quaternion matrices, X ∈ Qn×p and Y ∈ Qr×p

are the determined quaternion matrices. Moreover, the real representation matrix equation

of quaternion matrix equation (3.1) is defined as

V − AσV Bσ = CσPrW + Rσ. (3.2)

According to (1) in Proposition 1, the quaternion matrix equation (3.1) is equivalent to

the matrix equation (X − AX̂B)σ = Xσ − AσXσBσ. Hence, the matrix equation (3.1) can

be converted into Xσ−AσXσBσ = CσPrYσ+Rσ. Therefore, we have the following conclusions.

Theorem 3. Suppose that A ∈ Qn×n, B ∈ Qp×p, C ∈ Qn×r and R ∈ Qn×p, the quaternion

matrix equation (3.1) has a solution (X, Y ) if and only if the real representation matrix
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equation (3.2) has a solution (V, W ) = (Xσ, Yσ). Furthermore, if (V, W ) is a solution to

(3.2), the following quaternion matrices are solutions to the quaternion matrix equation

(3.1)





X =
1

16

[
In iIn jIn kIn

]
(V − Q−1

n V Qp + R−1
n V Rp − S−1

n V Sp)




Ip

−iIp

−jIp

−kIp


 ,

Y =
1

16

[
Ir iIr jIr kIr

]
(W − Q−1

n WQp + R−1
n WRp − S−1

n WSp)




Ip

−iIp

−jIp

−kIp


 .

(3.3)

Proof. By (3) of Proposition 1, the matrix equation (3.2) is equivalent to

V − R−1
n AσRnV R−1

p BσRp = R−1
n CσRrPrW + Rσ. (3.4)

Post-multiplying the two sides of the quaternion matrix equation (3.4) by R−1
p , we can obtain

V R−1
p − R−1

n AσRnV R−1
p Bσ = R−1

n CσRrPrWR−1
p + RσR

−1
p . (3.5)

Pre-multiplying the two sides of (3.5) by Rn and R−1
p = −Rp, RrPr = PrRr, we can get

R−1
n V Rp − AσR

−1
n V RpBσ = CσPrR

−1
r WRp + Rσ. (3.6)

This shows that if (V,W ) is a real solution of matrix equation (3.2), (R−1
n V Rp, R

−1
r WRp) is

also a real solution of matrix equation (3.2). In addition, according to (3) of Proposition 1,

the matrix equation (3.2) is also equivalent to

V − QnAσQnV QpBσQp = QnCσQrPrW + QnRσQp. (3.7)

Post-multiplying the two sides of the quaternion matrix equation (3.7) by Q−1
p , we have

V Q−1
p − QnAσQnV QpBσ = QnCσQrPrWQ−1

p + QnRσ. (3.8)

Note Q−1
p = −Qp, QrPr = −PrQr, pre-multiplying the two sides of the quaternion matrix

equation (3.8) by Q−1
n , we conclude that

(−Q−1
n V Qp) − Aσ(−Q−1

n V Qp)Bσ = CσPp(−Q−1
r WQp) + Rσ.
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This means (−Q−1
n V Qp,−Q−1

r WQp) is also a real solution of matrix equation (3.2) if (V, W )

is a real solution of matrix equation (3.2). Similarly, we can prove (−S−1
n V Sp,−S−1

r WSp) is

also a real solution of quaternion matrix equation (3.2). In this case, the conclusion can be

obtained along the line of the proof of Theorem 4.2 in [43]. �

Theorem 4. Given quaternion matrices A ∈ Qn×n, B ∈ Qp×p, C ∈ Qn×r, R ∈ Qn×p, let

f(I,Aσ)(s) = det(I4n − sAσ) =
2n∑

k=0

a2ks
2k, pAσ(s) =

2n∑

k=0

a2ks
k,

then the solutions to the quaternion j-conjugate matrix equation (3.1) can be characterized

by





XpAσ(B̂B) =
2n−1∑

k=0

2n−1∑

s=0

α2k(AÂ)s−k(CZ + AĈẐB)(B̂B)spAσ(B̂B)

+
2n−1∑

k=0

2n−1∑

s=0

α2k(AÂ)s−k(R + AR̂B)(B̂B)s,

Y = ZpAσ(B̂B),

in which Z is an arbitrary quaternion matrix.

Proof. If the Yakubovich quaternion j-conjugate matrix equation (3.1) has solution (X, Y ),

then its real representation matrix equation (3.2) has solution (V,W ) = (Xσ, Yσ) with the

free parameter Zσ . Now according to Theorem 2 and 3, we can conclude that

Xσf(I,Aσ)(Bσ) =
2n−1∑

k=0

4n−1∑

j=0

α2kA
j−2k
σ CσPrZσB

j
σf(I,Aσ)(Bσ) +

2n−1∑

k=0

4n−1∑

j=0

α2kA
j−2k
σ RσB

j
σ,

and

Yσ = Zσf(I,Aσ)(Bσ).

Moreover, by Proposition 1 and Proposition 3, we can get

f(I,Aσ)(Bσ) = (pAσ(BB̂))σPp.

Hence, we can obtain

Xσf(I,Aσ)(Bσ) = Xσ[pAσ(BB̂)]σPp = [XpAσ(B̂B)]σ,
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and

Yσ = Zσf(I,Aσ)(Bσ) = Zσ(pAσ(BB̂))σPp = (ZpAσ(B̂B))σ.

Furthermore, by the use of Proposition 1 we have

2n−1∑

k=0

4n−1∑

j=0

α2kA
j−2k
σ CσPrZσB

j
σf(I,Aσ)(Bσ)

=
2n−1∑

k=0

α2k

[
2n−1∑

s=0

A2s−2k
σ CσPrZσB

2s
σ +

2n∑

s=1

A2s−2k+1
σ CσPrZσB

2s+1
σ

]
f(I,Aσ)(Bσ)

=
2n−1∑

k=0

2n−1∑

s=0

α2k

[
((AÂ)s−k)σPnCσPrZσ((BB̂)s)σPp + ((AÂ)s−k)σPnAσCσPrZσBσ((BB̂)s)σPp

]
f(I,Aσ)(Bσ)

=
2n−1∑

k=0

2n−1∑

s=0

α2k

[(
(AÂ)s−kCZ(B̂B)s

)
σ

+
(
(AÂ)s−kAĈẐB(B̂B)s

)
σ

]
f(I,Aσ)(Bσ)

=
2n−1∑

k=0

2n−1∑

s=0

α2k

[(
(AÂ)s−kCZ(B̂B)spAσ(B̂B)

)
σ

+
(
(AÂ)s−kAĈẐB(B̂B)spAσ(B̂B)

)
σ

]
,

and

2n−1∑

k=0

4n−1∑

j=0

α2kA
j−2k
σ RσB

j
σ =

2n−1∑

k=0

α2k

[
2n−1∑

s=0

A2s−2k
σ RσB

2s
σ +

2n∑

s=1

A2s+1−2k
σ RσB

2s+1
σ

]

=
2n−1∑

k=0

α2k

[
2n−1∑

s=0

((AÂ)s−k)σPnRσ((B̂B)s)σPp +
2n∑

s=1

((AÂ)s−k)σPnAσRσBσ((BB̂)s)σPp

]

=
2n−1∑

k=0

α2k

[
2n−1∑

s=0

(
(AÂ)s−kR(B̂B)s

)
σ

+
2n−1∑

s=0

(
(AÂ)s−kAR̂B(B̂B)s

)
σ

]

=
2n−1∑

k=0

2n−1∑

s=0

α2k

[(
(AÂ)s−kR(B̂B)s

)
σ

+
(
(AÂ)s−kAR̂B(B̂B)s

)
σ

]
.

The proof is finished. �

In the following, we provide an equivalent statement of the above Theorem 4.

Theorem 5. Given quaternion matrices A ∈ Qn×n, B ∈ Qp×p, C ∈ Qn×r and R ∈ Qn×p, let

f(I,Aσ)(s) = det(I4n − sAσ) =
2n∑

k=0

a2ks
2k, pAσ(s) =

2n∑

k=0

a2ks
k,

then the solutions to the quaternion j-conjugate matrix equation (3.1) can be characterized
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as




XpAσ(B̂B) = Ctr2n(AÂ,C)Sr(I, Aσ)Obs2n(B̂B, ZpAσ(B̂B)) + Ctr2n(AÂ, AĈ)Sr(I, Aσ)

Obs2n(B̂B, ẐBpAσ(B̂B)) + Ctr2n(AÂ,R)Sr(I, Aσ)Obs2n(B̂B, Ir)

+ Ctr2n(AÂ,A, 2n)Sr(I, Aσ)Obs2n(B̂B, R̂B),

Y = ZpAσ(B̂B),

in which Z is an arbitrary quaternion matrix.

Proof. By the direct computation, we can get

2n−1∑

k=0

2n−1∑

s=0

α2k(AÂ)s−kCZ(B̂B)s = Ctr2n(AÂ, C)Sr(I, Aσ)Obs2n(B̂B, ZpAσ(B̂B)),

and

2n−1∑

k=0

2n−1∑

s=0

α2k(AÂ)s−kAĈẐB(B̂B)s = Ctr2n(AÂ, AĈ)Sr(I, Aσ)Obs2n(B̂B, ẐBpAσ(B̂B)).

Moreover, we can obtain

2n−1∑

k=0

2n−1∑

s=0

α2k(AÂ)s−kR(B̂B)s = Ctr2n(AÂ,R)Sr(I, Aσ)Obs2n(B̂B, Ir),

and
2n−1∑

k=0

2n−1∑

s=0

α2k(AÂ)s−kAR̂B(B̂B)s = Ctr2n(AÂ,A)Sr(I, Aσ)Obs2n(B̂B, R̂B).

Thus, the first conclusion has been proved. With this the second conclusion is obviously

true. �

4. Examples

4.1. Numerical Examples

In the following, we give two numerical examples and application examples to show the

effectiveness of the obtained results.
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Example 1 . Consider the nonhomogeneous Yakubovich matrix equation in the form of

(1.3) with the following parameters:

A =




1 2 4 −6 −1 −2
−8 −1 0 −8 0 1
1 9 6 −12 4 0

−5 −2 1 −9 0 0
0 1 2 −3 −1 0
1 0 0 1 −2 3




, B =




−11 1 0 7 2 1 0 −11
−9 −8 1 19 21 23 24 2
1 −2 3 9 11 5 −4 3
18 1 4 6 7 9 −1 0
9 8 −7 6 5 4 3 −2
0 1 11 −2 −3 −4 5 4
11 −1 −2 −3 4 5 0 −5
−4 2 3 6 −7 9 −19 0




,

C =




−6.8367 6.9493 −9.0781 2.5301 −3.9528 −5.5645 −1.0500 2.2414
19.3891 −7.2607 13.7305 −8.0050 6.7793 7.7253 −9.2575 −1.0242

−12.8797 −8.9994 −17.5988 9.5575 2.0448 −11.2606 5.3451 11.1267
14.6108 −3.0322 10.1333 −5.9000 1.7579 7.7094 −7.7738 −1.9275
0.5285 −1.7823 −2.0056 0.7015 −1.2497 −0.5900 −0.8977 0.7600
9.4432 −17.0285 5.1795 0.1731 −0.6505 6.7242 0.9935 −1.7142




,

R =




1 2 3 −11 4 −3 9 9
4 3 7 −12 3 4 10 7

−1 4 6 13 2 5 11 6
−12 −9 5 14 −1 6 12 5
1 2 −4 6 −1 7 11 4
6 7 3 7 −2 8 13 3




.

It is easy to check that {s|det(I − sA) = 0}∩λ(B) = ϕ. By simple computations, we have

f(I,A)(s) = det(I − sA) = 752s6 − 2648s5 + 110s4 + 529s3 − 92s2 + s + 1,

α6 = 752, α5 = −2648, α4 = 110, α3 = 529, α2 = −92, α1 = 1, α0 = 1,

[f(I,A)(B)]−1

= 10−4 ×




−0.0117 0.0064 0.0121 −0.0416 0.0177 0.0315 0.0466 0.0111
0.0261 −0.0143 −0.0269 0.0928 −0.0396 −0.0702 −0.1040 −0.0247
0.0046 −0.0025 −0.0047 0.0162 −0.0069 −0.0123 −0.0182 −0.0043

−0.0223 0.0122 0.0230 −0.0791 0.0337 0.0599 0.0887 0.0210
0.0154 −0.0084 −0.0159 0.0549 −0.0234 −0.0415 −0.0615 −0.0146
0.0133 −0.0073 −0.0137 0.0473 −0.0202 −0.0358 −0.0531 −0.0126

−0.0017 0.0009 0.0017 −0.0060 0.0026 0.0045 0.0067 0.0016
0.0073 −0.0040 −0.0075 0.0259 −0.0110 −0.0196 −0.0290 −0.0069




,
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R4 =




71511 −250742 −151984 219259 −510594 −884097
−310094 995853 901646 −452672 1219872 1634013
−617957 1092862 1659610 306572 −67287 −2376366
51196 319077 658978 689135 −879342 −2518257

−15284 57010 50659 28685 24113 −166172
−189958 122836 126710 −397128 742797 1698921




,

R3 =




40 −4938 −7886 −4554 6482 13963
1005 4570 17506 20766 −31423 −73745
13188 −15327 −15015 29613 −57452 −134461
578 −29546 −15099 10990 −37314 −40491
3721 504 −1626 1667 −5308 −5002

−8426 7928 15041 222 2923 −12609




,

R2 =




26 289 38 −125 207 444
−128 −934 −430 190 −747 −969
714 −414 −1265 −136 −72 1257

−510 −319 −364 −638 1227 1350
−81 −119 −22 15 115 227
68 −46 −79 211 −405 −1278




.

R1 =




2 2 4 6 −1 −2
−8 0 −11 −18 29 31
1 9 7 −12 34 98
25 42 1 −8 0 0
0 1 2 −3 −10 0
11 0 −12 1 −2 4




, R0 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,

R5 =




−2320777 7724192 11939537 5440584 −5125757 −25462747
−717929 −11296227 −24405967 −28557225 43159177 124754978

−26176969 25416451 24150092 −48228231 94230584 190627318
−12314894 33778445 29798340 −19429040 46316565 66814068
−1531472 1597236 1686683 −2222468 3455433 6263944
7713995 −15298941 −20649354 −1826634 −3508267 21699527




,

R6 = 109




−0.1962 0.3185 0.2781 −0.3553 0.7396 1.3378
0.7236 −1.3660 −1.4643 0.7442 −1.8809 −2.3663
0.6858 −1.7918 −2.3867 −0.5624 0.1666 3.7789

−0.0035 −0.5599 −0.9706 −0.9368 1.3619 4.1924
0.0007 −0.0794 −0.0841 −0.0423 0.0547 0.2367
0.3025 −0.2353 −0.1940 0.6181 −1.1583 −2.4482




,
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Choose Z =




1 2 19 2 2 21 0 −1
4 3 21 0 3 12 2 0

−1 −13 22 1 4 −13 3 1
1 −14 23 −1 −5 6 4 −9
9 1 2 3 4 0 1 −1
2 3 −1 0 0 9 6 2
9 −1 2 −9 8 7 2 −1

−10 −9 8 7 0 10 11 13




. So from Theorem 1 we have

X =




2 3 36 16 9 4 1 9
3 4 48 1 7 9 2 −1
4 2 1 2 6 2 −3 −2

−5 0 −1 3 −2 7 0 0
−6 11 0 4 −3 8 −9 −3
7 29 15 −4 −2 9 −8 0




,

Y = 1012×




0.9967 0.1219 0.1325 0.7507 1.2366 0.7164 1.2608 −0.2614
1.4717 0.1579 0.1926 0.4968 1.2267 0.5219 1.5579 0.0043
0.1493 0.2854 −0.1894 0.1609 −0.1677 0.2949 −0.9352 −0.5724

−0.6657 0.0236 −0.2209 0.2364 −0.2277 0.2602 −0.9383 −0.5034
0.3622 0.1181 0.0215 0.1922 0.3992 0.1250 0.6353 −0.1945
0.2367 0.0378 0.0426 0.1431 0.2769 0.1123 0.3676 −0.0511

−0.7892 −0.0015 −0.0096 0.2866 0.0100 −0.0059 0.1746 −0.3507
−0.2435 0.3674 −0.2141 0.6507 −0.0918 0.7113 −1.5539 −1.0505




.

4.2. Application Examples

Lemma 2 [15]. The generalized Sylvester matrix equation (1.1), where A,E ∈ Rn×n,

B ∈ Rn×r, and F ∈ Rp×p are known and the matrix pair (E, A) is regular, is equivalent to

the generalized discrete Sylvester matrix equation (1.2) with

M = (γE − A)−1E, N = γI − F, T = (γE − A)−1B,

where γ is an arbitrary scalar such that (γE − A) is nonsingular.

Proof. Since the matrix pair (E, A) is regular, there exists a scalar γ such that (γE − A) is

nonsingular. Premultiplying (1.2) by (γE − A)−1 produces

(γE − A)−1AX − (γE − A)−1EXF = (γE − A)−1BY, (4.1)

Let M = (γE − A)−1E and note that

γM − (γE − A)−1A = γ(γE − A)−1E − (γE − A)−1A
= (γE − A)−1(γE − A)

= I,

17



We have (γE − A)−1A = γM − I. So (4.1) is equivalent to

(γM − I)X − MXF = TY

or

MX(γI − F )X − X = TY.

Let N = γI − F , then the above equation is reduced to (1.1).

Example 2. Consider the following linear system:

Eẋ = Ax + Bu, (4.2)

where A, E ∈ Rn×n and B ∈ Rn×r are known coefficient matrices. If the following state

feedback controller

u = −Kpx − Kdẋ, (4.3)

is applied to the above system (4.2), the closed-loop system becomes

(E + BKd)ẋ = (A − BKp)x, (4.4)

The eigenstructure assignment problem is to determine the matrix Kp such that the closed-

loop system matrix A−BKp has desired eigenvalues and struture, i.e., determine the matrix

Kp such that

A − BKp = EXFX−1, (4.5)

where F is the desired Jordan form of the closed-loop system and X is the corresponding

eigenvector matrix. If we choose KpX + KdXF = Y , the equation (4.5) is equivalent to the

generalized Sylvester matrix equation AX − EXF = BY . By Lemma 2, the generalized

Sylvester matrix equation AX −EXF = BY is equivelent into the Yakubovich matrix equa-

tion X − MXF = NY . By Corollary 2, we can obtain the solution to Yakubovich matrix

equation X − MXF = NY .

Example 3 . Consider the following linear system:

Aẋ = x + Bu, (4.6)

where A ∈ Rn×n and B ∈ Rn×r are known coefficient matrices. If the following state feedback

controller

u = −Kpx, (4.7)
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is applied to the above system (4.6), the closed-loop system becomes

Aẋ = (I − BKp)x, (4.8)

The eigenstructure assignment problem is to determine the matrix Kp such that the closed-

loop system matrix I −BKp has desired eigenvalues and struture, i.e., determine the matrix

Kp such that

AXF = X − BKpX, (4.9)

where F is the desired Jordan form of the closed-loop system and X is the corresponding

eigenvector matrix. If we choose KpX = Y , the equation (4.9) is equivalent to the generalized

Sylvester matrix equation X − AXF = BY . We choose the following parametric matrices.

A =




1 21 3 4
2 3 11 132
2 3 4 0
3 4 0 45


 , B =




10 0 9 19
21 2 7 20
2 33 8 10
3 4 1 0


 .

F =




6 −11 14 12 1 −29
1 129 118 11 −2 −8

−6 −4 −2 −131 2 −6
9 7 −6 5 14 −3
21 23 24 126 115 119
26 −11 16 −71 −9 −112




,

By computation, one can obtain

fA(s) = 43069s4 − 3107s3 − 242s2 − 53s + 1,

α4 = 43069, α3 = −3107, α2 = −242, α1 = −53, α0 = 1.

By (2.10), we have

R3 =




3057 3311 −11398 −9984
−2214 138 1281 −208
132 −1759 −6029 5148
−7 −233 646 −273


 , R2 =




−234 −1004 87 2744
320 211 −500 −652
−90 −96 −399 404
−13 43 53 −62


 ,

R1 =




−52 21 3 4
2 −50 11 132
2 3 −49 0
3 4 0 −8


 , R0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .
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If we choose Z = 10−3 ∗




0.1078 0.0030 0.0277 0.1043 −0.0177 −0.0525
−0.0108 −0.0003 −0.0028 −0.0104 0.0018 0.0053
0.2041 0.0057 0.0528 0.1972 −0.0335 −0.0996

−0.1479 −0.0041 −0.0382 −0.1429 0.0243 0.0721


,

then by (2.9) we can derive

Y =




−83150 19690 −57530 286620 59350 400540
−5200 880 −3340 17640 3060 23820
−26860 10120 −20370 97890 25940 142270
55140 −14770 38330 −19173 −41460 −269840


 ,

X =




1 0 7 −11 −25 129
−2 2 −6 −29 −2 11
−21 4 −5 −39 −1 −21
−98 9 −9 −48 −9 291


 .

5. Conclusions

In this paper we mainly consider the explicit solutions to two types of matrix equations.

Firstly, we provide an alternative approach to solve the explicit solution to the nonhomo-

geneous Yakubovich matrix equation. These obtained solutions can provide all the degrees

of freedom, which is represented by an arbitrarily chosen parameter matrix Z. All the co-

efficient matrices are not restricted to be in any canonical form. The matrix B explicitly

appears in the solutions, thus can be unknown a priori. Secondly, we present the solutions

to the nonhomogeneous Yakubovich j-conjugate matrix equation in quaternion field by the

real representation of a quaternion matrix. We generalize our previous results in [25, 35, 32].
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