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a b s t r a c t

The nonlinear matrix equation Xp
= A + MT (X#B)M , where p ≥ 1 is a positive integer,

M is an n× n nonsingular matrix, A is a positive semidefinite matrix and B is a positive
definite matrix, is considered. We denote by C#D the geometric mean of positive definite
matrices C and D. Based on the properties of the Thompson metric, we prove that this
nonlinear matrix equation always has a unique positive definite solution and that the
fixed-point iteration method can be efficiently employed to compute it. In addition,
estimates of the positive definite solution and perturbation analysis are investigated.
Numerical experiments are given to confirm the theoretical analysis.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We consider the nonlinear matrix equation

Xp
= A + MT (X#B)M, (1.1)

where p ≥ 1 is a positive integer, M is an n × n nonsingular matrix, A is a positive semidefinite matrix and B is a
positive definite matrix. We denote by C#D the geometric mean of positive definite matrices C and D, which is extended
by Ando [1] from the case of two positive scalars to the case of positive semidefinite operators. For positive definite
operators C and D, the geometric mean is defined as

C#D := C1/2(C−1/2DC−1/2)1/2C1/2,

see [2,3], and this definition can be extended to positive semidefinite operators, see [4, P. 107] for example.
The geometric mean is of great importance in the theory of matrix inequalities [1,5,6], semidefinite programming [7]

and geometry [3,8]. It also appears in solving matrix equations. In [3], it was proved that for positive definite matrices A
and Q , the Riccati equation XA−1X = Q has a unique positive definite solution A#Q . For positive definite matrices Q and
C , Lim [9] computed the unique positive definite solution of the matrix equation X = Q + CX−1C explicitly in terms of
the geometric mean, which is X =

1
2 (Q + Q#(Q + 4CQ−1C)).
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The matrix equation of the type

X = B#(A + X), (1.2)

which is a special case of Eq. (1.1), first appeared in [10]. It was proved that (1.2) has a unique positive definite solution
X =

1
2 (B + B#(B + 4A)), which served as a tool for finding the explicit solution of a special matrix equation. We found

that if A is a positive definite matrix and the nonlinear matrix equation

X = A(X#A−3)A (1.3)

has a positive definite solution X , then X also solves equation AXA = XAX , a special case of the Yang–Baxter equation which
plays an important role in topics of statistical mechanics, braid groups and knot theory, see [11–14] and the references
therein. In general, an explicit formula of the solutions of equations of the type (1.2) is nontrivial, efficient numerical
algorithms for the computation of the numerical solutions can be developed instead. Here, we give a comprehensive
study of the matrix equations of the type (1.1), including numerical algorithms, lower and upper bounds of the solution
and perturbation bound of the solution with respect to small perturbations on the coefficient matrices.

It seems that Eq. (1.1) has a similar form as the nonlinear matrix equation

Xp
= A + MT (X + B)M, (1.4)

which has been well studied, see [10,15–17]. It was proved by Jung, Kim and Lim in [10] that the unique positive definite
solution of (1.4) always exists providing that p ≥ 2 and both A and B are positive semidefinite matrices. For the case
p = 1, it is the well-known Stein equation and has a unique positive definite solution if the spectral radius ρ(MTM) < 1.

In this paper, the relationship of the solutions of Eqs. (1.1) and (1.4) is studied. We prove that the nonlinear matrix
equation (1.1) always has a unique positive definite solution X+, and X+ ≤ X∗∗, where X∗∗ is the unique positive definite
solution of Eq. (1.4). A fixed-point iteration for finding the unique positive definite solution of Eq. (1.1) is proposed.
By using the harmonic–geometric–arithmetic mean inequality, some easy-to-compute elegant estimates of the unique
positive definite solution are given. Perturbation analysis of the solution with respect to small perturbations on the
coefficient matrices is presented.

This paper is organized as follows. In Section 2, based on the elegant properties of the Thompson metric, we show
that Eq. (1.1) always has a unique positive definite solution and a fixed-point iteration is proposed to compute it. In
Section 3, elegant estimates of the positive definite solution are given. In Section 4, we derive a sharp perturbation bound
for the positive definite solution with respect to small perturbations on the coefficient matrices. In Section 5, numerical
examples are given to confirm the theoretical analysis.

We begin with the notation used throughout this paper. Rn×n and P(n) represent, respectively, the set of n×n matrices
with elements on field R and the set of n × n symmetric positive definite matrices. ∥ · ∥ and ∥ · ∥F are the spectral norm
and the Frobenius norm, respectively. For a matrix H , λmax(H) (λmin(H) ) denotes the maximal (minimal) eigenvalue of H ,
and σmax(H) (σmin(H)) represents the maximal (minimal) singular value. For a matrix A = (a1, a2, · · · , an) = (aij) ∈ Rn×n

and a matrix B, vec(A) is a vector defined by vec(A) = (aT1, · · · , a
T
n )

T ; A⊗B = (aijB) is the Kronecker product. For Hermitian
matrices X and Y , X ≥ Y (X > Y ) means that X − Y is positive semidefinite (definite). I represents the identity matrix of
size implied by context. [αI, βI] denotes the matrix set {X : X − αI ≥ 0 and βI − X ≥ 0}.

2. Solvability of the matrix equation

In this section, we show that matrix equation (1.1) always has a unique positive definite solution. A fixed-point iteration
for computing the positive definite solution is proposed. We start this section by recalling some well-known results.

Lemma 2.1 (Löwner–Heinz Inequality, [18, Theorem 1.1]). If A ≥ B ≥ 0 and 0 ≤ r ≤ 1, then Ar
≥ Br .

The Thompson metric on P(n) is defined by

d(A, B) = max{logM(A/B), logM(B/A)},

where M(A/B) = inf{λ > 0 : A ≤ λB} = λmax(B−
1
2 AB−

1
2 ).

It is known that P(n) is a complete metric space in the Thompson metric [19].

Lemma 2.2 ([20]). For any X, Y ∈ P(n) and any n × n nonsingular matrix M, it holds

d(X, Y ) = d(X−1, Y−1) = d(MTXM,MTYM),

and

d(X r , Y r ) ≤ |r|d(X, Y ), r ∈ [−1, 1].

The following properties of the Thompson metric are proved by Lim in [21, Lemma 2.1].
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Lemma 2.3. For any A, B, C,D ∈ P(n),

d(A + B, C + D) ≤ max{d(A, C), d(B,D)}.

Especially,

d(A + B, A + C) ≤ d(B, C).

It is shown in [2,22,23] that

d(A#B, C#D) ≤
1
2

(
d(A, C) + d(B,D)

)
. (2.1)

Lemma 2.4. [Harmonic–Geometric–Arithmetic Mean Inequality, [3]] For two positive definite matrices A and B, the harmonic–
geometric–arithmetic mean inequality holds

2(A−1
+ B−1)−1

≤ A#B ≤ (A + B)/2.

Theorem 2.5. Matrix equation (1.1) always has a unique positive definite solution X+. The matrix sequence {Xk} generated by
the iteration

X0 ∈ P(n), Xk+1 =
(
A + MT (Xk#B)M

) 1
p (2.2)

converges to X+.

Proof. Define a map g : P(n) → P(n) by

g(X) =
(
A + MT (X#B)M

) 1
p . (2.3)

For any X, Y ∈ P(n), under Thompson metric and according to Lemmas 2.2 and 2.3, we have

d(g(X), g(Y )) = d
(
(A + MT (X#B)M)

1
p , (A + MT (Y#B)M)

1
p
)

≤
1
p
d
(
MT (X#B)M,MT (Y#B)M

)
≤

1
p
d
(
X#B, Y#B

)
≤

1
2p

d(X, Y ),

which shows that the map g is a strict contraction in the Thompson metric with the contraction constant 1
2p . In view of

the Banach fixed point theorem, there is a unique X+ ∈ P(n) such that X+ = g(X+), that is, X+ is the unique positive
definite solution of Eq. (1.1), and for every X0 ∈ P(n), the sequence {Xk} generated by (2.2) converges to X+. □

3. Lower and upper bounds

In this section, we further investigate the properties of the positive definite solution of Eq. (1.1). Sharp lower and upper
bounds on the solution are obtained. Consider the following two auxiliary nonlinear matrix equations:

Xp
= A + MT (X−1

+ B−1)−1M (3.1)

and

Xp
= A + MTBM + MTXM, (3.2)

where p, A,M and B are defined the same as in Eq. (1.1).
For the case p = 1, Eqs. (3.1) and (3.2) are, respectively, the discrete algebraic Riccati equation and the Stein matrix

equation. Eq. (3.1) has a unique positive definite solution when A and B are positive definite matrices while Eq. (3.2) has
a unique positive definite solution if MTM < I . If p ≥ 2 is a positive integer, Eqs. (3.1) and (3.2) are studied in [24] and
both of them have a unique positive definite solution. We show that the unique positive definite solution X+ of Eq. (1.1)
lies between the positive definite solutions of Eqs. (3.1) and (3.2).

Theorem 3.1. Let X∗ and X∗∗ be the unique positive definite solutions of Eqs. (3.1) and (3.2), respectively, then the unique
positive definite solution X+ of Eq. (1.1) satisfies

X∗ ≤ X+ ≤ X∗∗. (3.3)
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Proof. Define a map f : P(n) → P(n) by

f (X) =
(
A + MT (X−1

+ B−1)−1M
) 1

p .

It follows from Lemma 2.4 that for any X ∈ P(n)

X#B ≥ 2(X−1
+ B−1)−1

≥ (X−1
+ B−1)−1.

For any p ≥ 1, applying Lemma 2.1 yields(
A + MT (X#B)M

) 1
p ≥

(
A + MT (X−1

+ B−1)−1M
) 1

p ,

that is, f (X) ≤ g(X) for any X ∈ P(n), where g is defined by (2.3). Thus, X∗ = f (X∗) ≤ g(X∗).
Also, it has been proved in [3] that for C,D, C ′,D′

∈ P(n), C ′#D′
≤ C#D whenever C ′

≤ C and D′
≤ D. Thus, the map

g is monotonically increasing. Since X∗ = f (X∗) ≤ g(X∗), it follows that X∗ ≤ g(X∗) ≤ g2(X∗) ≤ . . . ≤ gm(X∗) ≤ . . ..
According to Theorem 2.5, the sequence {gm(X∗)} is convergent and limm→∞ gm(X∗) = X+, which shows that X∗ ≤ X+.

Applying Lemma 2.4 again yields

X#B ≤
X + B

2
≤ X + B,

which, together with Lemma 2.1, leads to(
A + MT (X#B)M

) 1
p ≤

(
A + MTBM + MTXM

) 1
p . (3.4)

Set Q = A + MTBM and let h : P(n) → P(n) be the map defined by

h(X) = (Q + MTXM)
1
p .

Then, X∗∗ = h(X∗∗) and it follows from (3.4) that g(X) ≤ h(X) for any X ∈ P(n). Analogously, we get X+ ≤ X∗∗. □

Although inequality (3.3) provides a lower and an upper bound on the unique positive definite solution X+ of Eq. (1.1),
the computation of X∗ and X∗∗ is not trivial. Hence, finding a more explicit lower and upper bound which is easy to
compute is of interest.

In [24], it was showed that if p ≥ 2, the unique positive definite solution X∗ of Eq. (3.1) is bounded below by a diagonal
matrix α1I , where α1 is the unique positive zero of the function

f1(x) = xp − λmin(MTM)(x−1
+ λ−1

min(B))
−1

− λmin(A).

On the other hand, it was proved in [16] that the unique positive definite solution X∗∗ of Eq. (3.2) is bounded above by
α2I , where α2 > 0 is the unique positive zero of the function

h2(x) = xp − λmax(MTM)x − λmax(A + MTBM). (3.5)

A direct application of Theorem 3.1 yields the following theorem.

Theorem 3.2. Suppose p ≥ 2 is a positive integer, then the unique positive definite solution X+ of Eq. (1.1) satisfies

α1I ≤ X+ ≤ α2I, (3.6)

where α1 and α2 are, respectively, the unique positive zeros of functions f1(x) and h2(x).

Remark 3.3. For the case p = 1, if both A and B are positive definite matrices, Meng and Kim [24] proved that X∗ ≥ α1I
still holds true. It follows that X+ ≥ α1I holds true for p = 1 if both A and B are positive definite matrices.

Remark 3.4. For the case p = 1, if λmax(MTM) < 1, then function h2(x) also has a unique positive zero α2. It can be
proved analogously to the proof of Theorem 7 in [16] that X∗∗ ≤ α2I . It follows that X+ ≤ α2I holds true for p = 1 if
λmax(MTM) < 1.

Example 3.5. Set p = 3 and M = diag(α ∗ rand(n, 1)) with α = 1, 10, 30 and n = 10, 30, 60, 80. Let A = Q ∗

1 Λ1Q1,
B = Q ∗

2 Λ2Q2, where, in MATLAB commands, Λi = diag(1 + rand(n, 1)) ∈ Rn×n, Qi = orth(rand(n)) ∈ Rn×n, i = 1, 2.
We compute the lower bound α1I and the upper bound α2I . The results are shown in Table 1.

In the above example, the largest eigenvalue of the matrix MTM is controlled by a parameter α, where λmax(MTM) ≈

α2. It can be seen from Table 1 that the largest eigenvalue of the matrix MTM makes a difference to the value of α2. When
λmax(MTM) becomes large, α2I becomes a rather loose upper bound. Actually, note that α2 is the unique positive zero of

the function h2(x), which is defined by (3.5). Since h′

2(x) = pxp−1
− λmax(MTM), it implies that α2 >

(
λmax(MTM)

p

) 1
p−1

for
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Table 1
Lower and upper bounds (3.6) of the unique positive definite solution of Eq. (1.1).
n α1I λmin(X+)I λmax(X+)I α2I

α = 1

10 1.0030I 1.0666I 1.4115I 1.4115I
30 1.0066I 1.0578I 1.4313I 1.6631I
60 1.0001I 1.0660I 1.4588I 1.6875I
80 1.0007I 1.0439I 1.4596I 1.6952I

α = 10

10 1.0582I 1.1090I 6.1949I 9.5424I
30 1.0975I 1.3049I 6.9752I 10.7031I
60 1.0081I 1.1195I 6.8818I 10.6199I
80 1.0001I 1.1368I 6.8693I 10.6840I

α = 30

10 1.4330I 1.8833I 15.5767I 28.4264I
30 1.0176I 1.1161I 16.2378I 29.8444I
60 1.0062I 1.1745I 16.3280I 29.8836I
80 1.0492I 1.2177I 16.4255I 30.7172I

p > 1. If p = 1, a direct computation yields α2 =
λmax(A+MT BM)
1−λmax(MTM)

. In both cases, the upper bound α2I may become loose
when λmax(MTM) is very large.

According to the idea developed in [24, Theorem 2.3], we turn to the following real functions

k1(x) = xp − λmin(MTM)λ
1
2
min(B)x

1/2
− λmin(A),

k2(x) = xp − λmax(MTM)λ
1
2
max(B)x1/2 − λmax(A).

Consider the real function k(x) = xp − bx
1
2 − a, a > 0, b > 0. It can be seen that k(x) has only one positive stationary

point x0 = ( b
2p )

2
2p−1 . Since p ≥ 1, we deduce that k(x) is monotonically decreasing on (0, ( b

2p )
2

2p−1 ) and monotonically

increasing on (( b
2p )

2
2p−1 , +∞). Moreover, since k(0) = −a < 0 and k(x) → +∞ as x → +∞, it implies that k(x) has a

unique positive zero in (0, +∞). Using the same technique, we find that k1(x) has a unique positive zero β1 and k2(x) has
a unique positive zero β2. Moreover, β1 ≤ β2 since k1(x) ≥ k2(x) for x ∈ (0, +∞). We show that β1I and β2I are lower
and upper bounds on X+ which are tighter than α1I and α2I .

Theorem 3.6. Suppose p ≥ 1 is a positive integer, then the unique positive definite solution X+ of Eq. (1.1) satisfies

β1I ≤ X+ ≤ β2I. (3.7)

Moreover, α1I ≤ β1I and if λmax(A) +
1
4λmax(MTM)λmax(B) ≤ λmax(A + MTBM), then it holds that β2I ≤ α2I .

Proof. Note that√
λmin(X+) λmin(B) I ≤ X+#B ≤

√
λmax(X+) λmax(B) I.

It can be proved as in Theorem 2.3 in [24] that β1I ≤ X+ ≤ β2I .
Applying the harmonic–geometric–arithmetic mean inequality, it holds that k1(x) ≤ f1(x) for all x > 0. This implies

that α1I ≤ β1I .
Set q(x) = h2(x) − k2(x), then

q(x) = λmax(MTM)λ
1
2
max(B)x1/2 + λmax(A) − λmax(MTM)x − λmax(A + MTBM).

With the help of the first derivative of q(x) in (0, +∞), we know that q(x) has only one positive stationary point
x0 =

1
4λmax(B) and max

x∈(0,+∞)
q(x) = q(x0). It can be seen that if

λmax(A) +
1
4
λmax(MTM)λmax(B) ≤ λmax(A + MTBM),

then q(x) = h2(x) − k2(x) ≤ q(x0) ≤ 0 for all x > 0. This leads to β2I ≤ α2I . □

4. Perturbation analysis

In this section, we consider the perturbed matrix equation

X̂p
= Â + M̂T (X̂#B̂)M̂, (4.1)
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where Â = A + ∆A, M̂ = M + ∆M and B̂ = B + ∆B. In the rest of this section, we suppose that M + ∆M is nonsingular,
A + ∆A is symmetric positive semidefinite and B + ∆B is symmetric positive definite. Then, according to Theorem 2.5,
matrix equation (4.1) has a unique positive definite solution X̂ .

Lemma 4.1 ([25, Lemma 2.1]). For symmetric positive definite matrices A and B,

∥A − B∥ ≤ (ed(A,B)
− 1)∥A∥.

Lemma 4.2 ([26]). If 0 < θ ≤ 1, and P and Q are positive definite matrices of the same order with P,Q ≥ bI > 0, then
∥Pθ

− Q θ
∥u ≤ θbθ−1

∥P − Q∥u and ∥P−θ
− Q−θ

∥u ≤ θb−(θ+1)
∥P − Q∥u. Here ∥ · ∥u stands for any unitarily invariant matrix

norm.

Consider the case where only the matrix A in Eq. (1.1) is perturbed by ∆A. Theorem 2.5 implies that there is a unique
positive definite matrix Y such that

Y p
= Â + MT (Y#B)M.

Suppose X is the unique positive definite solution of Eq. (1.1). Applying Lemmas 2.2 and 2.3, we have

d(X, Y ) = d
(
(A + MT (X#B)M)

1
p , (Â + MT (Y#B)M)

1
p
)

≤
1
p
d(A + MT (X#B)M, Â + MT (Y#B)M)

≤
1
p
max

{
d(A, Â),

1
2
d(X, Y )

}
. (4.2)

The last inequality follows from Lemma 2.3. In fact, we can deduce from (4.2) that

d(X, Y ) ≤
1
p
d(A, Â). (4.3)

Indeed, suppose 0 < d(A, Â) < 1
2d(X, Y ), we have from (4.2) that

d(X, Y ) ≤
1
2p

d(X, Y ),

which indicates that d(A, Â) < 1
2d(X, Y ) = 0, which is a contradiction. Hence, d(A, Â) ≥

1
2d(X, Y ) and inequality (4.3)

follows immediately from (4.2).
According to Lemma 4.1, we have

∥X − Y∥

∥X∥
≤ e

1
p d(Â, A)

− 1.

For the case where only the matrix B in Eq. (1.1) is perturbed by ∆B, Theorem 2.5 shows that there is a unique positive
definite matrix Z such that

Zp
= A + MT (Z#B̂)M.

Then, from Lemma 2.3 and (2.1), we have

d(X, Z) ≤
1
p
d(A + MT (X#B)M, A + MT (Z#B̂)M)

≤
1
p
d(MT (X#B)M,MT (Z#B̂)M)

=
1
p
d(X#B, Z#B̂)

≤
1
2p

(
d(X, Z) + d(B, B̂)

)
.

It follows that

d(X, Z) ≤
1

2p − 1
d(B, B̂). (4.4)

According to Lemma 4.1, we have
∥X − Z∥

∥X∥
≤ e

1
2p−1 d(B,B̂) − 1.

For the case when both A and B are perturbed by ∆A and ∆B, respectively, we have the following theorem.
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Theorem 4.3. Suppose the matrices A and B are perturbed by ∆A and ∆B, respectively, where A + ∆A is symmetric positive
semidefinite and B + ∆B is symmetric positive definite. Let X and X̃ be, respectively, the unique positive definite solution
of Eq. (1.1) and the unique positive definite solution of the perturbed matrix equation

X̃p
= Â + MT (X̃#B̂)M. (4.5)

Then,

∥X̃ − X∥

∥X∥
≤ eσ

− 1, (4.6)

where σ =
1
pd(Â, A) +

1
2p−1d(B̂, B).

Proof. Let Z be the unique positive definite solution of the nonlinear matrix equation

Zp
= A + MT (Z#B̂)M. (4.7)

Then Eq. (4.5) can be regarded as a perturbed equation of Eq. (4.7) where only the matrix A is perturbed. It follows from
(4.3) that d(X̃, Z) ≤

1
pd(Â, A). From the triangle inequality and (4.4), we have

d(X̃, X) ≤ d(X̃, Z) + d(Z, X) ≤
1
p
d(Â, A) +

1
2p − 1

d(B̂, B),

which, together with Lemma 4.1, implies (4.6). □

When matrices A, B and M are all perturbed, the technique used above cannot apply. Here, a perturbation bound which
is measured by spectral norm is obtained.

Let X̂ be the unique positive definite solution of Eq. (4.1). As in Theorem 3.6, it can be proved that β̂1I ≤ X̂ ≤ β̂2I ,
where β̂1 and β̂2 are, respectively, the unique positive zeros of the functions

k̂1(x) = xp − λmin(M̂T M̂)λ
1
2
min(B̂)x

1/2
− λmin(Â),

and

k̂2(x) = xp − λmax(M̂T M̂)λ
1
2
max(B̂)x1/2 − λmax(Â).

Let β̃1 = min{β1, β̂1} and β̃2 = max{β2, β̂2}, then β̃1I ≤ X, X̂ ≤ β̃2I .

Theorem 4.4. Let X and X̂ be the unique positive definite solutions of Eqs. (1.1) and (4.1), respectively. Set ∆X = X̂ − X.

Suppose ξ = 1 −
β̃

1−2p
2

1 ∥M∥
2κ(B)∥B∥1/2

2p > 0, where κ(B) = ∥B∥∥B−1
∥. Let b = min{λmin(B̂), λmin(B)}, then

∥∆X∥ ≤
β̃

1−p
1 β̃

1/2
2

2pξ

(
2β̃−1/2

2 ∥∆A∥ + β̃−1
1 β̃2b−1/2

∥M∥
2
∥∆B∥

+ 2∥∆M∥∥B + ∆B∥1/2(2∥M∥ + ∥∆M∥)
)
. (4.8)

Proof. It holds that

Â + M̂T (X̂#B̂)M̂ ≥ β̃
p
1 I,

and

A + MT (X#B)M ≥ β̃
p
1 I.

Applying Lemma 4.2 yields

∥X̂ − X∥ ≤
1
p
β̃

1−p
1 ∥Â + M̂T (X̂#B̂)M̂ − A − MT (X#B)M∥

≤
1
p
β̃

1−p
1

(
∥∆A∥ + ∥M̂T (X̂#B̂)M̂ − MT (X#B)M∥

)
≤

1
p
β̃

1−p
1

(
∥∆A∥ + ∥MT (X̂#B̂ − X#B)M∥ + ∥∆MT (X̂#B̂)M∥

+ ∥MT (X̂#B̂)∆M∥ + ∥∆MT (X̂#B̂)∆M∥
)
. (4.9)
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Note that X̂−1/2B̂X̂−1/2
≥ β̃−1

2 bI and X̂−1/2BX̂−1/2
≥ β̃−1

2 bI , according to Lemma 4.2 again, we have

∥X̂#B̂ − X̂#B∥ = ∥X̂1/2
(
(X̂−1/2B̂X̂−1/2)1/2 − (X̂−1/2BX̂−1/2)1/2

)
X̂1/2

∥

≤ ∥X̂∥ ∥(X̂−1/2B̂X̂−1/2)1/2 − (X̂−1/2BX̂−1/2)1/2∥

≤
1
2

∥X̂∥ (β̃−1
2 b)−1/2

∥X̂−1/2B̂X̂−1/2
− X̂−1/2BX̂−1/2

∥

≤
1
2

(β̃−1
2 b)−1/2

∥X̂∥ ∥X̂−1
∥ ∥∆B∥

≤
1
2
β̃

3/2
2 β̃−1

1 b−1/2
∥∆B∥. (4.10)

Since B−1/2X̂B−1/2
≥ β̃1λ

−1
max(B)I and B−1/2XB−1/2

≥ β̃1λ
−1
max(B)I , we have

∥X̂#B − X#B∥ = ∥B#X̂ − B#X∥

= ∥B1/2
(
(B−1/2X̂B−1/2)1/2 − (B−1/2XB−1/2)1/2

)
B1/2

∥

≤ ∥B∥ ∥(B−1/2X̂B−1/2)1/2 − (B−1/2XB−1/2)1/2∥

≤
1
2

∥B∥ (β̃1∥B∥−1)−1/2
∥B−1/2X̂B−1/2

− B−1/2XB−1/2
∥

≤
1
2

∥B∥ (β̃1∥B∥−1)−1/2
∥B−1

∥ ∥X̂ − X∥

=
1
2

β̃
−1/2
1 ∥B−1

∥ ∥B∥3/2
∥∆X∥. (4.11)

It follows from (4.10) and (4.11) that

∥MT ((X̂#B̂) − (X#B))M∥

≤ ∥M∥
2
∥X̂#B̂ − X#B∥

≤ ∥M∥
2
(
∥X̂#B̂ − X̂#B∥ + ∥X̂#B − X#B∥

)
≤

∥M∥
2

2β̃1/2
1

(
β̃

3/2
2 (β̃1b)−1/2

∥∆B∥ + κ(B)∥B∥1/2
∥∆X∥

)
. (4.12)

Moreover, since X̂ ≤ β̃2I , it follows from the monotone property [3] of the geometric mean that X̂#B̂ ≤ (β̃2I)#B̂ =

(β̃2)1/2B̂1/2, from which we have ∥X̂#B̂∥ ≤ β̃
1/2
2 ∥B̂1/2

∥. Subsequently, it yields

∥∆MT (X̂#B̂)M∥ + ∥MT (X̂#B̂)∆M∥ + ∥∆MT (X̂#B̂)∆M∥

≤ β̃
1/2
2 ∥∆M∥∥B̂1/2

∥(2∥M∥ + ∥∆M∥). (4.13)

Set ξ = 1 −
β̃

1−2p
2

1 ∥M∥
2κ(B)∥B∥1/2

2p , according to (4.9), (4.12) and (4.13), it yields

∥∆X∥ ≤
β̃

1−p
1 β̃

1/2
2

2pξ

(
2β̃−1/2

2 ∥∆A∥ + β̃−1
1 β̃2b−1/2

∥M∥
2
∥∆B∥

+ 2∥∆M∥∥B + ∆B∥1/2(2∥M∥ + ∥∆M∥)
)
.

5. Numerical examples

In this section, we present some test results which illustrate the performance of the fixed-point iteration (2.2), the
tightness of the lower and upper bounds (3.6) and (3.7), and the perturbation bounds (4.6) and (4.8). The computations
were performed in Matlab R2017b with unit roundoff µ ≈ 10−16 and the iterations terminate if the relative residual
ρ(Xk) satisfies

ρ(Xk) =
∥fl(Xp

k − A − MT (Xk#B)M)∥F

∥Xk∥
p
F + ∥A∥F + ∥M∥

2
F∥Xk#B∥F

≤ 10−15.

Example 5.1 ([10]). Let

A =

( 0.0120 −0.0030 0.0010
−0.0030 0.0210 0.0020
0.0010 0.0020 0.0070

)
, B =

( 1.1231 0.4497 0.9024
0.4497 0.8283 0.7254
0.9024 0.7254 1.0292

)
,
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Fig. 1. Convergence behaviour of the fixed-point iteration (2.2).

Table 2
Lower and upper bounds of the unique positive definite solution of Eq. (1.1).
n α1I β1I λmin(X+)I λmax(X+)I β2I α2I

α = 1

10 1.0030I 1.0056I 1.0666I 1.4115I 1.5014I 1.4115I
30 1.0066I 1.0066I 1.0578I 1.4313I 1.5447I 1.6631I
60 1.0001I 1.0001I 1.0660I 1.4588I 1.5467I 1.6875I
80 1.0007I 1.0007I 1.0439I 1.4596I 1.5509I 1.6952I

α = 10

10 1.0582I 1.0701I 1.1090I 6.1949I 6.5998I 9.5424I
30 1.0975I 1.1728I 1.3049I 6.9752I 7.2032I 10.7039I
60 1.0081I 1.0082I 1.1195I 6.8818I 7.1923I 10.6199I
80 1.0001I 1.0001I 1.1368I 6.8693I 7.2287I 10.6840I

α = 30

10 1.4330I 1.7467I 1.8833I 15.5767I 16.2707I 28.42643I
30 1.0176I 1.0177I 1.1161I 16.2378I 16.9957I 29.8444I
60 1.0062I 1.0067I 1.1745I 16.3280I 17.0233I 29.8836I
80 1.0492I 1.0931I 1.2177I 16.4255I 17.4167I 30.7172 I

M =

( 0.7922 0.0357 0.6787
0.9594 0.8491 0.7577
0.6557 0.9339 0.7431

)
, and p = 2, 3, 4, 5, 6, 7. We apply the fixed-point iteration (2.2) with starting point

X0 = I to Eq. (1.1). The results are shown in Fig. 1.

It shows that the fixed-point iteration (2.2) works well for obtaining the symmetric positive definite solution of Eq. (1.1)
and the iteration number decreases as p increases.

Example 5.2. Let A, B and M be the same as those in Example 3.5. We compute the lower bound β1I and upper bound
β2I in (3.7) and compare them with α1I and α2I which are obtained in Theorem 3.2. The results are shown in Table 2.

We can see from Table 2 that the lower bound α1I is not as sensitive to the eigenvalues of M as α2I is. Both α1I and
β1I can be tight lower bounds. However, if λmax(MTM) is very large, then β2I can be a tighter upper bound than α2I .

Example 5.3. Set p = 2 and M = rand(n). Let A = Q ∗

1 Λ1Q1, B = Q ∗

2 Λ2Q2, ∆A = Q ∗

3 Λ3Q3 × 10−j, ∆B = Q ∗

4 Λ4Q4 × 10−j,
where, in MATLAB commands, Λi = diag(1 + rand(n, 1)) ∈ Rn×n, Qi = orth(rand(n)) ∈ Rn×n, i = 1, 2, 3, 4.

Set n = 10, 20, 30, 40, 50 and j = 3, 7, 10. The perturbation bound (4.6) is displayed in Table 3.

Table 3 shows that for the case where only the matrices A and B are perturbed, (4.6) provides a sharp perturbation
bound.
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Table 3
Perturbation bounds for the different n and j.
n j = 3 j = 7 j = 10

∥∆X∥

∥X∥
eσ

− 1 ∥∆X∥

∥X∥
eσ

− 1 ∥∆X∥

∥X∥
eσ

− 1

10 3.60e−04 1.22e−03 3.32e−08 1.30e−07 4.84e−10 1.34e−09
20 3.10e−04 1.41e−03 3.50e−08 1.44e−07 3.20e−10 1.35e−09
30 3.86e−04 1.41e−03 3.46e−08 1.30e−07 3.22e−10 1.31e−09
40 3.45e−04 1.35e−03 3.41e−08 1.38e−07 3.36e−10 1.34e−09
50 3.62e−04 1.34e−03 3.63e−08 1.34e−07 3.72e−10 1.42e−09

Table 4
Comparison of the perturbation error with the perturbation bound (4.8).
p j = 3 j = 5 j = 7

∥∆X∥ Bound (4.8) ∥∆X∥ Bound (4.8) ∥∆X∥ Bound (4.8)

1 1.00e−02 2.61e−02 1.00e−04 3.48e−04 1.25e−06 3.24e−06
3 1.04e−03 1.84e−03 1.28e−05 2.84e−05 8.32e−08 1.98e−07
5 3.98e−04 9.31e−04 6.56e−06 1.29e−05 3.21e−08 1.02e−07
7 4.26e−04 9.42e−04 3.73e−06 9.05e−06 3.80e−08 6.77e−08

Example 5.4. Set n = 3, let A, B, ∆A and ∆B be defined by using the same technique as in Example 5.3. Let

M =

( 0.3169 0.0143 0.2715
0.3838 0.3396 0.3031
0.2623 0.3736 0.2972

)
.

Suppose M is perturbed by ∆M = rand(3)× 10−j. Set p = 1, 3, 5, 7 and j = 3, 5, 7, respectively, it can be proved that all
the conditions in Theorem 4.4 are satisfied. We compare the perturbation error ∥∆X∥ with the perturbation bound (4.8)
in Theorem 4.4. The results are listed in Table 4.

Under the condition ξ > 0, where ξ is defined in Theorem 4.4, we can see from Table 4 that Theorem 4.4 gives a very
sharp and revealing perturbation bound.

6. Conclusion

In this paper, we consider the nonlinear matrix equation (1.1). Based on the elegant properties of the Thompson metric,
we prove that the nonlinear matrix equation always has a unique positive definite solution and we compare it with the
unique positive definite solution of equation Xp

= A+MT (X+B)M . A fixed-point iteration method is employed to compute
the positive definite solution and elegant estimates of the solution are given. Perturbation analysis of the unique positive
definite solution is presented.
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