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used in many applications.
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1. Introduction and formulation of the problem
1.1. Motivation

Multicontinua models arise in many applications [1], which include porous media, material sciences, and so on. The
main idea of multicontinua model is to prescribe multiple effective properties in each macroscale point. These approaches
are important in many real-world applications, where classical homogenization fails. A typical example is flow in fractured
media. One typically cannot upscale fracture and surrounding media, called matrix. For this reason, different effective
parameters are prescribed in each coarse-grid block. In applications related to shale gas, one uses multiple continua to
describe organic and inorganic matter besides fractures [2-5].

Multicontinua approaches have rigorously been justified recently using constraint energy minimizing Generalized
Multiscale Finite Element Method [6] and nonlocal multicontinua approaches [7]. It turns out that these models can
be used for general upscaling and multicontinua and can be employed to separate different regions using spectral
decompositions. The spectral decomposition allows identifying each continua and local basis functions allow coupling
these continua with each others. These approaches can also be applied to nonlinear problems [8].

In multicontinua approaches, the interaction between different continua is challenging to model. This modeling
requires complex local solves and can depend on the solution itself [9]. This dependence can be a result of nonlinear
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modeling or due to particle deposition due to pore-scale modeling, which occur in porous media applications. The latter
can modify the interaction between the continua, which will depend on the solution. The modeling the interaction
coefficients in the presence of particle deposition introduces additional challenges and their modeling requires some
type of stochastic modeling. Our goal is to study one such model, which is sufficiently general and can be generalized for
more complex cases. Currently, we can only rigorously analyze the proposed model, which we plan to generalize later.

1.2. Mathematical model

Following the previous motivation, we consider a particular system given by:

ou .
Shx = div (A1 (g) vue(t, x)) ta (g V(L ), Vi, x)) (us(t, X) — ws(t, X)) + fi(t, x),
a &
%(r, x) = div (A (g) Vi (£, + o (g V(e X), v5(, %)) (5, X) — uS(t, X)) + fult, x),
1
dvi(t,x) = —g(vi(t,x) — Bruf(t, x) — Brau5(t, x))dt + %dwl(t,x),
1 o (1.1)
dvy(t,x) = —g(vﬁ(t,X) — Baui(t, x) — Bnusy(t, x))dt + ?dwz(t,X)
ui(t,X)lsp =0,
us(t, x)lap =0,
w(0,x) = i (x),
u(0,x) = us,(x),
V(0,X) = vgy(x).
05(0,%) = vSy(x).

where x € D a bounded domain of R*® with a smooth boundary dD, and t € [0, T]. u§, u$ and v§, v are respectively
the components of the velocity of the fluid and the velocity of the particles. W;(t), W,(t) are two standard L*(D)-valued
independent Brownian motions defined on a complete probability basis (£2, F, 7, P) with expectation E, and Q;, Q, are
bounded linear operators on L*(D) of trace class. uj,, uf, and vS,, v, are the initial conditions, 8;j, 1 < i,j < 2 are
constants, and f;, f> are the external forces.

Our main goal in this paper is to study the asymptotic behavior of the solution of the system (1.1) when ¢ — 0.
Notice that uj, u, the slow components, are random through the function « that depends on the stochastic processes
vy, v, the fast ones, solutions of the stochastic differential equations. Moreover, the function « as well as the matrices
A = (a“j)1<i,j<3’ A = (afo)1<i,j<3 are multiscale. We will prove that uf, u§ converge to averaged velocities Uy, iU

solutions of the averaged system (3.31) defined in Section 3.4, where the averaged operators A, A; and « are given by
(3.17) and (3.30). The averages are taken with respect to the periodic variable y and the invariant measure associated to
the process (v{, v3) for frozen (uj, uj).

The techniques used to pass to the limit in the mathematical model (1.1) are a generalization of the techniques used
in our recent paper [10], where a simpler reaction diffusion model was considered. Let us mention that, like in [10] and
[11] the random coefficient « does depend on the spatial variable x/e and the process (v{, v5) which is ergodic for frozen
(u3, u3). Hence, the passage to the limit involves a combination of two kind of convergences: averaging (in time) and
homogenization (in space). There is an extensive literature on averaging principles for stochastic systems [12-16] and
the references therein. For the basic results on homogenization of periodic and random equations, we refer to [17,18].
Let us refer to an interesting paper [19] where the authors studied a particular model of random homogenization, where
the coefficients depend upon x/¢ and a stationary diffusion process. They effectively used averaging and homogenization
techniques like in our current paper. However, the big difference is that our stochastic process (v{, v3) is solution of an
SDE coupled with the slow motion equation. And a consequence, the ergodic properties of the stochastic process have to
be understood when the solution (uf, u3) is frozen. This added difficulty makes our convergence process quite different
from the convergence process in [19].

The existence of weak solution for (1.1) is proved in Theorem 3.1 by using a Galerkin approximation (uf,, u5,, vi,, v5,)
that is a solution of a well posed system. We then pass to the limit on n after showing some uniform estimates in n. These
estimates are also uniform in . By using our assumption on « and the special form of our system, we are able to prove the
uniqueness of the weak solution (uj, uj, v{, v;). We prove that our weak solution is also strong, and get better uniform
estimates in ¢ for the solution u? in the Sobolev space W'-2(0, T; L?(D)).

We study then the asymptotic behavior of the fast motion variable (v], v5) for frozen slow motion variables (uj, us).
Indeed, we consider the SDEs (3.18) for given & = (&1, &). It has a mild solution which is also a strong solution. Its
transition semigroup Pf = P{*1*2) is well defined and has a unique invariant measure u¢ = p(12) which is ergodic and
strongly mixing. We define the operators «® and « in Section 3 and «¢ refers to the average of «® wrt to the invariant
measure .¢. The main difficulty in showing the convergence stands in passing to the limit for ¢ H(}(D) on the term

f (Olg(vf, v5)(ug — uy) — @(Br1lly + Brallz, Boatly + Poallr Uy — ﬂz)) ¢dx. (1.2)
D
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This is done by using a Khasminskii type argument, following an idea already introduced in [16]. The key Lemma 3.4,
introduced previously in [10] is crucial for the passage to the limit in (1.2). This lemma is a refined version of previous
ergodic results used in [16]. By using the uniform estimates obtained in Section 3, a tightness argument and some known
results for periodic functions, see [17, lemma 1. 3] the passage to the limit is performed in distribution. We obtain a
convergence in probability by using the fact that the limit @ is deterministic.

The paper is organized as follows, Section 2 is dedicated to the introduction of the functional setting and assumptions.
The main results are given in Section 3. In particular the existence and uniqueness of weak solutions of system (1.1), the
regularity of solutions and all the uniform estimates wrt ¢, the cell problems are introduced, the asymptotic behavior of
the fast motion is analyzed and the main result to the averaged system is stated. All the proofs for the results of Section 3
are postponed to Section 4, including the proof of the main result and the passage to the limit to the averaged equation.

2. Preliminaries and assumptions

We make the following notations for spaces that will be used throughout the paper. For any two Hilbert spaces X and
Y, with norms denoted by | - ||x and | - ||y, C(X, Y) denotes the space of continuous functions, and C,(X, Y) the Banach
space of bounded and continuous functions ¢ : X — Y endowed with the supremum norm:

lllcyx.vy = sup llp(x)lly.
xeX

For any ¢ € CY(X,Y), the subspace of uniformly continuous functions defined on X with values in Y, we denote by
[@lcux.vy : (0, 00) — R, the modulus of uniform continuity of ¢:

[Plexnr) = sup 160 =Wl
<[[X—=y XSr
with

}er(l)[d’]cg(x’y)(r) =0.

Lip(X, Y) denotes the space of Lipschitz functions defined on X with values in Y, for ¢ € Lip(X, Y) we denote by [¢]5ipx,v)
the Lipschitz constant of ¢:

16 — ¢l
[@lLipx,v) = sup ——————.
Ay X —=Yllx
We notice that for any ¢ € Lip(X, Y) we have:

leClly < lo(x) = d(0)lly + 16(0)lly = [@liipex.v)lIXllx + 6(0)lly
= ([Pluipx, vy + 19(0)lly )T + lIxIlx),

so the space will be naturally equipped with the norm

@ lLipx.yy = 1@(O)ly + [@lLipx.v)- (2.2)

To simplify the notations, when there is no confusion we omit the use of subscripts from the notations, and we simply
write [|x]], |¢]l, [#1(r), [¢]. Also if Y = R we omit it from the notations, and the spaces are denoted by C(X), Gy(X), C*(X),
and Lip(X).

For Y = [0, 1] the space Cx(Y) denotes the space of continuous functions on Y that are Y-periodic and the space Li(Y)
denotes the closure of Cx(Y) in L2(Y).

We now give the assumptions for the system (1.1) .

The function « : Y x R? — R satisfies the following conditions:

(i) For any 71, n2 € R the function «(-, n1, 172) is measurable and periodic iny € Y.

(ii) For almost every y € Y, the function «(y, -, -) is bounded and Lipschitz, uniformly with respect to y.

(2.1)

We notice that the function @ : R? — R, @(n1, 12) = | «(y, n1, n2)dy is Lipschitz and bounded.

Y
The matrices Ay = (alij)1<ij<3 , Ay = (azij)1<”<3 € [%(Y; R3*3) are strictly positive and bounded uniformly iny € Y,
i.e. there exist 0 < m < M such that o

mE? < A(y)EE < ME*,  mE? < Ay (y)EE < ME?, (2.3)

for almost every y € Y and & € R>.
We also assume that the external forces f;, f, € [*(0, T; L*(D)) and the initial conditions uf,.uf,, vj,, v§, € L*(D).

3. Main results

In this section we state the main results of the paper while their proofs will be postponed to the following sections.
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3.1. Well-posedness of the system (1.1)

This subsection will be devoted to stating the existence and uniqueness of the solution of the system (1.1) as well as
some uniform estimates.
For any ¢ > 0 we denote by Aj, A5 the matrices

& e .3 3x3 & _ § & _ f
AL AS RS > R3S, A](x)_Al(g), Az(x)_Az(g) (3.1)
and by «® the operator,
X
o D) x (D) > L¥(D), @ (1, 1)) = & (. m(x). ma(x) (32)

The operator «f is well defined. Indeed, given that « is bounded, we only need to show the measurability in x of «®(n1, 12)
for any ny, n, € L*(D). For such a function, we consider two sequences 11,, 72, € Co(D) convergent to 1y, 1, pointwise
in D. The function (y,x) — «(y, n1n(X), n2n(x)) is a Carathéodory function, measurable in y and continuous in x, so

X —> o | —, nn(X), n2n(x) ) is measurable, and by the Lipschitz condition of « is pointwise convergent to «®(n1, n2), which
shows that «®(n1, ;) is measurable. We have the following existence and uniqueness result:

Theorem 3.1. Assume that ug,, ug,, vy, Vg, € L*(D) for every & > 0, then for each T > 0, there exists a unique F;-measurable
solution of the system (1.1), uf, u5 € L>°(£2; C([0, T1]; L*(D)) N L*(0, T; HY(D))) and v§, v € L*(82; C([0, T1; L*(D))) in the
following sense: P a. s.

/ ui(t)pdx — / U, pdx + / / ASVUE(s)Vdxds =

(3.3)
/ / s), v5(s))(us(s) — ui(s) d)dxds-i—/ ffl(s pdxds,
/ us(t)pdx — /u02¢>dx +f /ASVu2 Wpdxds =
(3.4)
/ | 051090 v (9) (oo + / [ fwsares.
0 D
for every t € [0, T] and every ¢ € H(}(D), and

1 t / t
vi(t) = v e+ */ (But(s) + Braus(s))e Veds + &/ e (= dw (s), (3.5)

€ Jo \/g 0

1 t / t
v(t) = vie 4 — f (B21U5(s) + Bauis(s))e™ =V eds + A / e TIEdwy(s). (3.6)

& Jo \/E 0

Moreover, if the initial conditions uf,, u§, are uniformly bounded in L?(D), then the solutions uf, u$ satisfy the estimates:
sulg ”uis”LOO(SZ;LZ(O,T;H&(D))) =G, (3.7)
£>
Sulg 1uf oo 2scqo, 20y = Crs (3.8)
&>
and

sup || — <Gy, (39)
e>0 || OC oo @200, 10))

for i € {1, 2}. Also, if the initial conditions vg,, vy, are uniformly bounded in L?(D) we also have the estimates for v, v3:

supE sup |[[v](t) <(Cr, (3.10)

e>0 te[0,T]

forie {1,2}.

12
12(0)

Theorem 3.2. Assume that the initial conditions ug,, ug, are uniformly bounded in H&(D). Then the solutions uf, uj €
L*°($2; C([0, T]; H(}(D))) and satisfy the following uniform estimates:

Sug ||u1€||LOO(Q;C([Q,T];H3(D))) < CT7 (3.11)
&>
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and
e
sup | — : <G, G12)
e>0 || OF || oo(2:12(0,1:12(D))
fort<ij<2

3.2. The cell problems

In this subsection we introduce x, x2 : Y — R3 the solutions of the cell problems that correspond to the system (1.1):

div(A) (1 + V() =0 iny, (3.13)
Xxi —Yperiodic, )
fori e 1, 2, and the solutions of the adjoint equations x;, x3.:

{div(A;"(y)(I—i—Vx,-*(y))Z =0 iy, (3.14)
Xxi —Yperiodic,

where A}, A} are the adjoints of Ay, Ay, A7 = ((@1)j)i=ij<3, (@) = (@) and A7 = ((@2)j)1<ij<3. (@2); = (az);i for
1 <i,j < 3.1t follows that x{(y) = x1 (X> x50 = x2 <X) are the solutions for the equations:
& &
div (A7) (I + eVxj(y)) =0 in Y, (3.15)
X; —eYperiodic, ’

{div(Ag(y)(IJrevx;(y))Z =0~ ineY. (3.16)
x5 —eYperiodic,

We define now the homogenized operator A;, fori € 1,2 as
A= [ A0) 0+ T . (3.17)
Y
3.3. The fast motion equation

In this subsection, we present some facts for the invariant measure associated with (3.18). We consider the following
problem for fixed & = (£, &) € L*(D)?, an [?(D)?>-valued Brownian motion W on a probability space (£2, 7, 7, P) and a
bounded linear operator Q on L*(D)? with trace class:

dvf = —(vf — £)dt + /QdW,
{ v¥(0)  =n = (n,m). (3.18)

This equation admits a unique mild solution vé(t) e L>(£2; C([0, T]; L*(D)?)) given by:
t
V) =net +E(1—et) +/ e 9,/Qdw. (3.19)
0

When needed to specify the dependence with respect to the initial condition the solution will be denoted by v%-"(t). The
following estimate can be derived for v¥"(t).

BN (010 < 2 (Ilppe ™ +1815pp + Q). (3.20)
We define the transition semigroups Pf associated to Eq. (3.18):
PEW (i) = BY (v5(t)), (3.21)

for every ¥ e By(L*(D)?), the space of real valued Borel functions defined on L*(D)?, and every n € L[*>(D)%. It is easy to
verify that Pf is a Feller semigroup because P a. s.

S — oS 21T o < el — 2l - (322)

We also denote by ¢ the associated invariant measure on L2(D)?. We recall that it is invariant for the semigroup Pf if
f PEW(2)dp (2) = / ()t (2),
LZ(D)Z L2(D)2

for every ¥ e By(L%(D)?). It is obvious that v¢ is a stationary Gaussian process. Eq. (3.18) admits a unique ergodic invariant
measure u¢ that is strongly mixing and Gaussian with mean & and covariance operator Q. All these results can be found
in [20] or [21].
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As a consequence of (3.22) we also have:

< c[@le™" (1 + [nll2pp + 1€ 12pp2)- (3.23)

PED () — / B(2)dpif (2)
LZ(D)Z

for any Lipschitz function @ defined on L?(D)?, where [@] is the Lipschitz constant of ®.

As described in the introduction, in order to pass to the limit on some terms of Eqs. (3.3) and (3.4), we will need to
use the ergodic properties of the fast motion. However, the estimate (3.23) is not enough and we will need to use a more
refined ergodic result. The remark and the lemma below have been introduced in our previous paper, see [10] in order
to analyze a similar model. Indeed, the use of Lemma 3.4 is essential to the analysis of our mathematical model (1.1).

Remark 3.3. For &, 7 € [%(£2, 7, [*(D)*), let v*" be the solution of the following system, the equivalent of the system
(3.18) but with random initial conditions n and random parameter &:

di1 = —(uE — £)dt + /QdW,
[ W o o0
The mild solution for (3.24) v57(t) € [*(£2; C([ty, T]; [*(D)?)) exists and is given by:

(t—to)

V() = e 4 E(1 — e7 U0y 4 f e (073 /Qaw. (3.25)

0

The estimates provided by (3.20) and (3.23) remain valid also in the case when & and 5 are random. So for any
&,n € L%(82, Fy,, [*(D)*) we have:

E (||v‘?-”(t)||fz(mz Iff(,) <2 (”W“fz(mze_z([_[m + 1§ + TrQ) , (3.26)

and

E(’(Pf)“%(n(w))— f o (2)du“)(z) fq)) < c[®@1e” 1 + In(@)l 2pp + 1E@)ll2pp2); (3.27)
[2(D)?

a.s. w € 2, for any Lipschitz function @ defined on L*(D)?.

Eq. (3.27) implies the following Lemma that has been first introduced in [10] where a detailed proof can be found.

Lemma 3.4. Let @ e CY([0, T]; L°(£2; Lip(L*(D)?))) be an F;-measurable process on Lip(L*(D)?), and let 0 < ty < to+8 < T.
For &,n € L*(82, Fy,, L*(D)?), let v*" be the solution of the system (3.24). We have:

to+4
E(‘lf ((D(s, v‘f’”(s))—/ cp(s,z)dyﬁ(z)) ds ft()) <
8 to LZ(D)Z

[Ed 528)

¢ (1+ Inllzpye + 1 l2pp) (% + ||q>||[<p](3)> ,

where [@] is the modulus of uniform continuity of @ and c is a positive constant.

Proof. See [10] O

3.4. Main result: The averaged system

We introduce the following averaged operators:

o IP(DY — L¥(D), (&, &)= /LZ(D)Z o (1, m2)dpt (11, 12) (3.29)
@ 0F > 150), a6 = [ ( [ otz Zz)dJ’> at(21.22) (330)

We remark that «® as an operator from L*(D) x L*(D) to L*(D) is Lipschitz and L*(D) is separable, so Pettis Theorem
implies that «® : L[*(D) x [*(D) — L?(D) is measurable. The boundedness of o implies the integrability with respect
to the probability measure (1, 72) is well defined (see Chapter 5, Sections 4 and 5 from [22] for details). The same
considerations hold also for the operators (z1, z;) € L*(D) x [*(D) = @(z1,22) = | a(y,z1,22)dy € L®(D), so & is also

) . L . Y
well defined. Our main result is given in the next theorem.
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Theorem 3.5. Assume the sequences ug,, ug, are uniformly bounded in H(}(D) and strongly convergent in L*(D) to some
functions u1, ugy, and vl,, vi, are uniformly bounded in L?(D). Then, there exist Uy, u; € L*(0, T; Hy(D)) N C([0, T1; L*(D))
such that u§, u§ converge in probability to Uy, Uy in w-L*(0, T; HY(D)) N C([0, T1; L*(D)) and {uy, Uy} is the solution of the
following deterministic equation:

% = div (A1 Vtly) + @(B11lh + Brallz, Bully + Pl Uy — Ur) + fi i D,
% = div (A, Vi) + @Bty + Brally, Porlly + Pralla)(th — )+ o in D,
i =0 on D, (3.31)
u =0 on aD,
51(0) = Up1 in D,
uz(0) = up in D.

3.5. Well-posedness for the averaged equation (3.31)

We state here that the averaged system (3.31) is well posed while its proof will be postponed to the section on proofs.

Theorem 3.6. Assume fi, fo € [?(0, T; L*(D)) and @ € Lipy(R?). Then, for any ugq, ugy € L*(D) the system (3.31) admits a
Ju; Ju
unique solution Uy, u, € C([0, T]; L*(D)) N L*(0, T; H,y (D)) with ait] —2 ¢ 12(0, T; H~\(D)) in the following sense:

at
t

/ Uy (t)pdx — / Ug1pdx + / / AV (s)Vdxds =

D D 0 D

t t
/ /&(ﬂnm + B2z, Borlly + Btz )(Uz — Uq)pdxds +/ ff1(5)¢dXd5
o Jo o Jo

t
/ Uy (t)pdx — / Ugapdx + / / A, Vi, (s)Vedxds =
D D 0 D

/ /&(ﬁnm + B2z, Borlly + Btz )(Uy — Up)pdxds +/ /f2(5)¢d><d5,
o Jo o Jo

(3.32)

for every t € [0, T] and every ¢ € H(}(D). Moreover, if the initial condition uo1, Uy € H&(D), then uq, u, have the improved

ol ou
regularity, iy, Ui, € L°(0, T; H)(D)) and % %2 1200, T; 1X(D)).

at

4. Proofs
4.1. Proof of Theorem 3.5
In order to prove the theorem, we first need to prove that

lim E

e—0

T
/ f (O{S(vij’ v; uy — ul) — a(Brilly + Brallz, Br1lly + Porly)(Us — a1)) ¢°Ydxdt| =0, (4.1)
o Jo

for a particular sequence ¢° € H(}(D) and ¢ € C[0, T]. We rewrite it as a sum:

T
/ / (0" (08 0505 — ) — @Byt + Proliz, Bnth + Palia )Ty — ) @t = S + S5 + S5,
0 D

where

T
5= [ / (00 050 — 1) — EBurtt -+ Bratih, Bortss + Bl uly — 1) 6° e,
0 D

S

N o

T

= / / (aF(Bratt + Bratth, Bt + Boatt) (1 — u5) — oF(Bu1thy + Brallz, Barlly + Boally Uz — 1)) ¢° Yrdlxd,
o Jo

and

S

w o

T
= / / (@®(Burtiy + Brallz, Borlhy + ool (Ul — Ty) — @(Burlliy + Prallz, Barlhy + Poailly Uz — ) ¢°Yradxd.
o Jo
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The convergence to 0 for S7 is performed by proving the more general result (4.1) where the equation satisfied by u® is
not important. The idea of proving (4.1) is to approximate u® and ¢¢ by step functions in time and use Lemma 3.4 on
each piece. Then the convergence of S5 and S35 to 0 is proved below.
The sequence u1 given by Skorokhod theorem converges a. s. to u1 weakly in L*(0, T; H] o(D)) and strongly in
C([0, T1; L*(D)) so

lim

e—0

// )) %' (t)dxdt — //ASVul AVul)Vdnp(t)dxdt as. (4.2)

Egs. (4.1) and (4.2) imply that ﬁl satisfies almost surely the variational formulation associated with (3.31), so ﬁ~1 and u,
are deterministic and as a consequence the convergence of the sequence uj to u; will be in probability. Similarly we get
the convergence for uj to .

4.1.1. Convergence of S§

Lemma 4.1. Assume that u® is a sequence of F,-measurable processes in L*(D)?, uniformly bounded in L*°(£2, W12(0, T;
[2(D)?)), ¢° a sequence of F;-measurable processes in L>(D)?, such that ¢¢ e L®(£2; C*([0, T]; L*(D)?)) uniformly bounded
and equiuniform continuous with respect to ¢ > 0 and w € £2. Let the sequence v° satisfy the equation

dvi(t,x) = —l(vs(t, x) —uf(t, x))dt + ,/ gdW(t, x) in [0,T] x D, (43)
3 3 .
v¥(0,x) = vy(x) in D,

with the sequence vg uniformly bounded in L?(D)?. Then we have that:

limE

e—0

T
/ (f(V(t)) — a®(u(t)) d)g(t)dxdt‘ =0. (4.4)
o Jp

. P T o~ . . .
Proof. Fix n® a positive integer and let §° = —. We define u® as the piecewise constant function:
n

U (t) = u(ks®) fort e [ks®, (k + 1)8°). (4.5)
We define also the sequence v¢ as the solution of:
1. ~ 1Q .
dvé(t,x) = ——(ve(t, x) — ué(t, x))dt + ,/ =dW(t,x) in [0,T] x D, (4.6)
N e e .
v°(0,x) = v(x) in D.

A simple calculation shows that the sequence u® is Holder continuous, uniformly in & and w:

u(t) — u®(s) = / aautg(r)dr =

1 Tl gut 2 ’ 1
IO = Sl = =9 [ |50 ar) scw-9k
0 31’ LZ(D)
This implies that:
3l€iLno l7* — uE”LOO(O,T;LZ(D)Z) =0, (4.7)

—(t—s)

~ 1"
uniformly in & and w. From (4.3) and (4.6) we get that v¢(t) — vé(t) = — / e & @E(s) — u®(s)) ds, so we also have that
€ Jo

lim ||2° — v®|| 0000 7 =0, 4.8
85%0” ||L (0,T;L2(D)?) ( )

uniformly in ¢ and w.
Now

T
/ / (@ (8)) — & (u°(6))) ¢° ()t — / f (@ (5 () — @ (@ (1)) ¢ (¢ )dxdt =
0 D

T
/ / ¢°(0) (e (v (1)) — " (¥ (1)) dxdt + f / () @ (@ (1)) — @ (' () e,
0 D 0 D
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But

T
/ /qbs(t)(of(vs(t))—af(i@(r))) dxdt <
0 D

12
||¢£”LOO(.Q;C([O,TJ;LZ(D)Z))/ ([ e (Ve () — (W (1)) dx) =
1/2
||¢8”LOC(Q;C([O,T];LZ(D)Z))/ (/[05]2 e () — B (0)) dx) <
0o \Jp

CVTIG leqecqo.riezopyl@d T = v o, 2oy,

and similarly

T
/ /¢€(t)(5£(ﬁ£(t))—&S(us(t))) dxdt <
o Jo

~ 172
CVTI¢ o,y szopyle T — uf oo 0,120y

which will imply based on (4.7) and (4.8) that

lim E

8¢—0

/(a (vo(t)) — a®(u®(t))) @°(t)dxdt — //(oz )) — @ (U°(t))) p°(t)dxdt| = 0, (4.9)
uniformly in e.

Let us study now the termf /(a VE(t)) — @ (U (t))) ¢°(t)dxdt.

T n°=1 o (k+1)s¢
/ /(oﬁ(ig(t — ot (U°(t))) p°(t)dxdt = Z/ /(ag(is(t))—ag(ﬁg(t))) @ (t)dxdt. (4.10)
o Jp D

kse
The process defined by
Flsn = [ ot es) d @1
D
belongs to CY([0, T /e]; Lip(L*(D)?)), with

[F(s, 0)] < leel 16° | cqpo.1y: 12(D12)

Fe(s, -] < [@) 19"l co.mai22) »

SO

IFE () ipzpy < Ueel + [aeDI? o 2012)

and
[FE1(r) < (la| + [eDIé* Icuqo.1.2(012) (6T )

so we can apply Lemma 3.4 on the interval [kS, /s, (k + 1)8./¢] for & = u®(k8¢) and n = v¢(k&¢) to the sequence F®:

& (k+1)5% /e £ (kSE) T (kSE £ (kSE
Bls [ PTG @) [ ) <
k

8¢ 5 e L2(D)?
¢ (14 117 (k8*)ll 2o + ||u8(k68)||Lz(D>z)< |IF¢ ||[F€]<as/s)) < (4.12)

JENFe|
N

Jelloé|l
Vo

But by a change of variables v* (st) is a solution for Eq. (3.24) on the interval [k&¢/e, (k + 1)8¢/¢] with & = u®(ks®)
and n = v¢(ks?), so

ng(kas),ig(kég)(s)

C (1 + I9° (k82 + lu* (k8°)ll2(py2) ( el [¢°] (58)> :

=7° (s5).
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Also using formula (3.26):
(1 + 18°)pa s ) =€ (I5° (k8% e 7% 1 (k8% + 1) =

“’U ((k + 1)85)”1_2(9 12 D)Z) —= (” (kSS)HLZ(Q LZ(D)Z) 728 /e + ”u “LZ(Q C([0,T1; LZ(D)Z)) + ]) )

and we obtain by induction that:

1) (I<85)||L2(S2 2opR) = < cke 21T (0 )||,_z 212D (Z cke=2k" /8> (|u ”fz(g,c([O,T];LZ(D)Z)) + ]) )
so for ¢/6° small enough we get the estimate:

15 (5 g 0y = € (18 W o ryazopy + 1)+ Yk > 0. (4.13)

Eq. (4.12) now becomes:

PRI .
E —/ F® (s, 7° (ss))ds—/ F (s, 2) du* ®(z)| =
8% Jisese (D2
1 e ~ .
By [ FCT oM [ FC a0 ) < (4.14)
&€ ks€ & LZ(D)Z &
Velolll
C (14 I o o Lz(D)z»)( T HYIeTETe)).
If we sum over all 0 < k < n® — 1 and go back to Eq. (4.10) we obtain that
T
Bl [ [ @ - @@ oo
o Jp (4.15)

<C (1 + I lleqo.ryr(e.202) (‘fﬂ;” + Vgl [¢8](8a)) .

If we choose now n® = T/,/¢ use the equiuniform continuity of ¢* and the convergences given by (4.9) we obtain that

limE

e—0

T
f (@ (W (0) — @ (1)) ¢ (t)dxde | =
0 D

which proves the Lemma. 0O

The convergence to 0 of S7 follows:

Lemma 4.2. Ifq)g is a sequence uniformly bounded in H(}(D) and € C[0, T] then:

limE

e—0

f(v], v5)(u5 —uj) — (ﬂllul + Bratll, Ba1uf + Poatis (U5 — 1)) ¢°Yrdxdt| =0. (4.16)

Proof. As uf, uj are uniformly bounded in L°($2, C([0, T]; H3(D))) N L>®(£2, W'2(0, T; L*(D))) and ¥ € C[0, T], then the
sequences (u; — uj)¢°y are uniformly bounded and equiuniformly continuous in C([0, T]; L>(£2; 1?(D))). We then apply
the Lemma for v® = (v], v3) and u® = (By1uf + Brals, Baruf + Baous). O

4.1.2. Convergence of S5

Lemma 4.3. Assume uj, u5 are two sequences uniformly bounded in L>($2, C([0, T, H(}(D))) that converge in distribution
to 1y, Uy in C([0, T], L*(D)). Then, for any sequence ¢° uniformly bounded in Hy(D) and ¥ € C[0, T] we have:

limE

e—0

=0.

(a® (Bt + Bratty, oyt + Boatty )l — ) — a®(B11thy + Pralla, Parlly + Paalla )(Ua — 1)) ¢°dxdt
D

(4.17)
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Proof. We compute:

af(Brru] + Bras, Pt} + Parui5)(uh — uf) — o(Brilly + Prallz, Porlly + Poallx Uz — Uy) =
af(Bru] + Braus, Baru] + Bauy U5 — uf — Uz + 1y) (4.18)
+ (U — up)(@®(Briu] + Biaus, Bartiy + Bus) — af(Brils + Piallz, fartin + Boalla)),

SO
T
E|[sf] < CE f IS(E) — T2y + 15(E) — ()2, (4.19)
0

based on the uniform Lipschitz condition of «® and the embedding of H(}(D) into [%(D). The uniform bounds for uf, u§
now give (4.17). O

4.1.3. Convergence of S5

Lemma 4.4. For u;,u, € L®(£2; C([0, T]; [*(D))), ¢° € H(}(D) uniformly bounded and s € C[0, T] we define by S5 the
integral

T
/ / (¥ (Buily + Brallz. Baally + Paally) — (P11t + Brallz, Parlly + Poatly))(Ua — Uy) ¢° Yrdlxd.
o Jo

Then:
gi_r)l‘(l) E [S5| =0. (4.20)

Proof. For fixed t € [0, T] and w € £2 we consider the sequence of functions F¢ : I?(D)? — [(D),

Fi(2)0 = (a (2.20) - [ao, z(x))) (@o(t, x) — (£, )
Y

We show now that F(z) converges in L*(D) to O, for every z € [*(D)?. Let z;, and w;, two sequences of continuous
functions converging in L>(D)? to z and in [*(D) to & — u;. We use Lemma 1. 3 from [17] to get that (Ff),(x) =

X
(a (7, zn(x)) — / o (y, zn(x))) wp(x) converges to 0 in L(D).

€ Y

But
|(Fn(x) = FE(2)(0)] < clwa(x) = Ta(t, %) + T (t, )| + clza(x) — 2(x)],

based on the Lipschitz condition and boundedness for « so we deduce that F(z) converges in L*(D) to 0. The sequence
is uniformly bounded by C||t1 |l 00(.c(jo0.11:2(0)) + CllU21l100(@:c(r0.17:12(py) Vitali's convergence theorem implies that the

sequence of the integrals with respect to the probablllty measure on (D), pu = pPni@+ri(0) forth(0+Fnth(0) g]50
converges to 0 in [*(D):

lim Ff(z)du(z) = 0 in L*(D),
e—0 L2(D)2
which can be rewritten as

EL% (aF(Buitis + Brallz. Porlly + PBaalla) — &(B1ally + Prolla, Parlly + Paallz)) (Ta — Up) = 0 in L*(D).

This implies that P a. s. and for every t € [0, T]

lim [ (a®(B11lly + Brallz. Baallt + Brollz) — @(B11lly + Pralla, Barllt + Prally))(Uz — Usp) ¢°Ydx =0,
D

e—>0

with the sequence being also uniformly bounded. We apply the bounded convergence theorem and integrate over
2 x [0, T] to get the result. O

Now, we are able to pass to the limit on the remaining terms of the variational equation (3.3). The uniform bounds
(3.11) and (3.12) hold for uj and us. So the sequences are a. s. @ € §2 contained in a compact set K of w-1%(0, T; H&(D)) S0
they are tight in w-L%(0, T; H(}(D))DC([O, T1; I2(D)). Then, there exist subsequences ui/, ui/ and random elements uq, U, €
L*(0, T; Hy(D))NC([O, T1; L*(D)) such that u¢', us converge in distribution to iy, 1 ﬁz in w-L*(0, T; Hy(D))NC([0, TT; LZ( ))
Skorokhod theorem gives us the existence of subsequences u’, u2 and u1 , 1§ with the same distribution as u¢", ug’
defined on another probability space Q _that converges p01ntw1se to uq, up with the same distribution as u;, u,. It follows
from here that u;, U, € K a. 5. 50 Uy, Up € L®(82, [X(0, T; HJ(D))) and 1y, Uy € L°(£2, L%(0, T; Hj(D))).
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In the variational formulation (3.3) for uﬁ” we use a test function ¢* = ¢ + &V - X{‘S// where ¢ € C§°(D), multiply
it with ¥’ where ¥ € Cj(0, T) to get:

/ 1(t)p° wdx—/u01¢ wdx—i—/ /AFVu Wo° 1//dxds_

(4.21)
/ / s), v3(s))u5(s) — ui(s))e* wdxds+/ /f1 )¢ ' dxds,
We notice that
lim & (@ (Vs (E), V5(ED(WE(E) — U5())) — @ (Buatia(£) + Bratia(t), Borlia () + Boalia(t)) & (t)dxdt| =
(4.22)

rewriting the integral as Sf" + S;"" + S§" and using the convergences given by Lemmas 4.2-4.4. We obtain that:

T T T
lim E / / u ()¢ v (t)dxdt — / / U1 ® W' (¢)dxdt — / / ALV (Ve (t)dxdt+
e"—=0 o Jp o JD o JD

T T
f / Tt (6) + Proio(t), oria(6) + Baatia ) a(t) — T (0))6° v ()t + / / f(E) w(e)dxde | =
D

l”imO]E/ '/ul” ) ' (t)dxdt — / fuo¢w t)dxdt — / /AF Vu1 )V yr(t)dxde+

T
/ / TBHT () + Braia(t), Bora() + Boalia()NTt) — T(0)P ()t + f / Oy (dxde| =
0 D 0 D

(4.23)
We make now several calculations under the integral in the above equation and then pass to the limit pointwise
inw e 2:
T n_ "
/ fAi Vug”v ¢+e"Vo - xi* )w(t)dxdt =
/ ng Vu] V¢+8”VV¢X*€ +e”v¢vxf”) Y (t)dxdt =
/ / A Vu] "V (t )+e“Ai”Vui”vwX;“”w(t)+s”Ai”Vui”vwxf”*w(t)dxdt -
/ / A Vi VY (t) + &AL VU YV Wy (t) + AV ¢ Ve Vo (t)dxdt.
From Eq. (3.15) satisfied by Xf” we have that
/ A (1 +e'V Xf”) v (uﬁ” v¢>) dx=0=
D

/ <A§”Vu§"V¢ +e"'A'V Xf”wﬁ”w) dx = — f A 8"VV¢dx - / e"A VxS U YV s,
D D
so we get that

T ~
/ / A V'V (q> + &'V -y ) Y(t)dxdt =
0 D
T ” Y " "= " ",
/0 fD <5”A§ VUl VG P(t) — AT U V() — &”AT V xE us”vvw(t)) dxdt =

T —~ ~
/ f (g”Ai”Vuﬁ”vvm;"S%/f(t) — A (1 + g”vxf’) uq”vvw(t)) dxdt,

and will converge pointwise in Q (see [17, Lemma 1. 3]) to

/[—A1u1VV¢1// t)dxdt = //A Vu1V¢>1/f t)dxdt.
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The sequence given in (4.23) above converges in Ll(ﬁ) to 0 and pointwise to
T ~ p— ~
| [ @0ow© - w0 = &5 T0U(0) + A1) drde
0 D

T ~ ~ ~ ~ ~ ~
+ / f (@(Braur(t) + Bratla(t), Bartia(t) + Bl (t))(Uz(t) — Us(£))Pr (1)) dxdt,
o Jo

and similarly is true for u, which means that u;, u, is pointwise the weak solution of the deterministic system (3.31)
which, according to Theorem 3.6 has a unique solution, so i1, U, and i, U, are deterministic. Then, the whole sequences
ui”, ui” converge to Uy, U, in distribution, and since the limits are deterministic then the convergence is also in probability
see [23, Theorem 18.3].

4.2. Proof of Theorem 3.1

To prove the existence of solutions, we will follow a similar method used previously in [10], through a Galerkin
approximation procedure. We consider (ex)r>1 a sequence of linearly independent elements in H(}(D) N L*°(D) such that
span{ey | k > 1} is dense in H(}(D). We define the n-dimensional space H(}(D)n for every n > 0 as spanf{e, | 1 < k < n} and
we denote by 17, the projection operator from L*(D) onto H(}(D)n.

Let us denote by wj(t), 1 <i < 2 the following processes

wi(t) = e/*ug; + ‘/g / e VEdWi(s) e L*(82; C([0, T]; L*(D))). (4.24)
0

Now, in order to prove the existence of solutions, we define the Galerkin approximation
(U3, (t, ), 25,(t, @), U3, @), Z5,(t, @) € Hy(D)y

a.s. w € £2, solution of the following system

[ Sinicrpaes [ pwiomaan = [ o
b ot D b

/Ots(zfn(t) + wi(t), 25,(1) + wi(O)) W5, (1) — uf,(0)Pdx
D

% (4.25)
/ 2n (t)¢dx+/A§Vu§(t)V¢dx: /fz(f)¢dx
p Ot b s
/ Olg(zin(t) + w(;(t), Z;n(t) + w;(t))(uin(t) _ uin(t))d)dx,
D
for every ¢ € H}(D)n, u5,(0, ) = MTausy,, u5,(0, w) = ITyus,,
0z 1
%(f) = _*(an(t) - ﬂ]]Uin(t) - ﬂlzugn(t))’ Zin(o) —0,
" 8 (4.26)
2n

1
o (D= 2 (@n(0) = Bartty () — Pratizy (1)), 2q(0) = 0,

1 1 & £ &€ &
Then, we pass to the limit on (uf,, z{,, u5,, Z3,) when n — oo.
We write

Ui (o, t,x) = Zalkwtek , U (w, t,x) = Zaz,(a)tek
and
Zi(ow, t,x) = mewtek x), Zo (o, t,x) = Zbkatek

Then, we make the following notations:

de; de;
b= [ e = (3 o (£) o o
q p

p=1 g=1

de; de
i = /ZZ pq ) Bx, ax]d fai(s) /f1 s, x)ej(x)dx, f(s) /fz s, x)ej(x

p=1 g=1
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where aipq and ay,q are the entries of respectively the matrices A; and A, defined previously in Section 2. Moreover, we
set

n n
(FE)i(@, £, b, - b, bar . bay) = / o (wi(t) + 3 bye wi(0) + Y b§k<t)ek) ey
b k=1 k=1

and get the following system:

Z ”<bm+2a1kc1k, ZaZk—aikxF:)k,(bi],...,bgn)=fu(r),

k=1 k=1

0a;
Z 2’<bm+2a2kc2k, Zam—aék)(Fﬁ)m(bip.--,bin)=f21(f),

k=1 k=1
obs, 1
8t< =7 (b3 — —Budi, — /31202k) , 1<k<n
obé 1
th_k =7 (bik — —Baaj, — ,322a2k) , 1<k<n (4.27)

aj,(0) = / ugerdx, 1<k<n
D

a5,(0) = / ugerdx, 1<k<n
D

bi(0)=0, 1<k=<n

b5 (0)=0, 1<k<n

for each 1 < | < n. Given the linearly independence of the sequence (e k=1, the form of the functions (F;); and the
Lipschitz condition satisfied by o, the system has for every T > 0 a unique F;-measurable solution (a3, )i<k<n, (5 )1<k<n,
(bik)lsksn» (bgk)lsksn € C([0, TT; L*>°(£2)), with (aik)lgksny (agk)lsksnv (bik)lﬁkfna (bgk)lgkgn € WLZ(Ov T)a.s.w € £2.This
means that uf,, u5,, z;, = vj, — wj, z;5, = v3, — wj are a. s. a solution for:

at

ouj
/ ”(t)¢dx+/A§Vu‘§n(t)V¢dx—
D D
Jp @ (Z5,(t) + wi(t), 25, () + wi(6))(u,(t) — uf,(t))pdx = /fl(t)qﬁdx,
D

at

/ U 1 ypalx + / ASVIE, (6)V pdx—

D D

Jp af(Z5,(t) + wi(t), 25, (t) + wi(6))(uf, () — us,(£))pdx = [fz(f)fl)dX,
D

& 1 £ & &
dz{n = _E (Z{n - _,Blluin - ﬂlzuin) ’
(4.28)
& 1 £ & ro)
dzin = _E (Zin - :821uin - /322ujn) ’
Uin(O) = H,ﬂlS],

15,(0) = My,

27,(0) =0,

2,(0) =0,
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for every ¢ € H(}(D)n. We take ¢ = uj, in the first equation of (4.28), and ¢ = u$, in the second equation to derive that
A S we:

0
el ) = IOy F Clta o) + Clli )

0
Sy < 12Oy F Cllt )+ Cllilpy. =

”uin”zl(p) + ”ugﬂHiZ(D) <e“ (”fl li20,7:1200)) + ||f2||L2(0,T;L2(D)) + llug, li2py + ||u82||L2(D)) )

)
Sulg lu5nll oo, :12(0) Sug 1650 oo, 7200y < Cr(1 + llugy li2(py + 11tz ll12(y)- (4.29)
n> n>

We also obtain based on the positivity of A; that

T T
[ T s + Ty < [ [ Aon e
0 0 D
T

%”U&Hfz(m +/0 C(||u§n||§2(D) + ||U§n||fz(D))d5
which infers that
T
/(; m||Vuin||Zz(D)3ds < Tllfillizco.r.20p 130 lzoogo. . 2¢pyy + Cr(1 + llugy 2y + 1ugy l2(p))-
Hence,
iglg ”uin”Lz(O,T;Hé(D))’ igg ||U§n||L2(0,T;H&(D)) < Cr(1 + llugy lizpy + Nugz lli2(py)- (4.30)

The estimates (4.29) and (4.30) imply using the first equation of the system (4.28) that

&
uln

at

&€
ous,

at

sup
n>0

, sup
L2(0,T;(Hy (DY) >0

<Cr(1+ ||u81||,_2(D) + ||u(5)2||1,2(13))' (4.31)
12(0,T;(H{ (D)n)')

This means that the sequences uf,, uj, are bounded in L*(0, T; H}(D)) N W'2(0, T; H~!(D)) which is compactly
embedded in [2(0, T; L*(D)) (Theorem 2. 1, page 271 from [24]) and in C([0, T], H~'(D)). Hence, there exist subsequences
ug,,, u;, that converge P-as. in 1%(0, T; L*(D)) N C([0, T], H"'(D)) to some uf, uj which are also weak limits in
[*(0, T; Hy(D)) N W'2(0, T; H~Y(D)) and weak* limits in L*(0, T; L?(D)). So using Lemma 1.2, page 260 from [24] a. s.
w e Q,ut, us € [*(0,T; HY(D)) N C([0, T]; L*(D)) N W'2(0, T; H1(D)).

We also have from (4.28) that

-l t
zE (1) = E/O e EyE (s)ds

1 t
will converge P-a.s. to z5(t) = — f e~ =y (s)ds in C([0, T]; L*(D)) and
& Jo

-l t
Z5,(t) = E/ e EE (s)ds
0

1 t
toz(t) = — / e /eus(s)ds in C([0, T1; LA(D)).
0

We remark that the sequences uf ,, uj  are F-measurable in H~Y(D).

We now pass to the limit when n’ —>goo in the first equation of the system (4.28) pointwise in w € £2 using the

lim// 1“’¢d ds_//
n’—o0

t t
lim / /AiVuin,chdxds:/ fAiVudi)dxds.
n—co Jo Jp o Jo

and
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Also

IA

t t
f /oﬁ(zfn, + wi, 25, + wi)u5,, — uj, )pdxds — / /a‘”‘(zf + wi, Z5 + wi)(u, — ui)pdxds
0 JD 0 JD

of(z] + wi, z5 + wh)us —uj —uj, + uj, pdxds| +

t
/ / (25, + wi, 25, + wh) — (25 + wi, 25 + wf)) (u5, — uf, )pdxds| <
o Jo

(// S —u dxds) +C//|zn,—z||ul|¢|dxds<

Clluly — uillzeo.r:2m) + Clusy — U3l .20y +
T
C/ (||Z§n/ =2l + 125y — 27 2 ||) (||u‘“{||,_z(D) + ||u§||L2(D)) P l1oe(pyds,
0

so we obtain that a. s.

t t
lim / /oﬁ(z;’n, + wi, z5, + wy)(uy, — u, )¢dxds = f /oﬁ(zf + wi, 25 + wH)(u5 — uf)pdxds.
D 0 D

n'—o0 Jq

Using these convergences, we obtain in the limit:

ot t
/ f < L ASVUSY — of (25 + wi, 25 + wh)(u — uﬁ)) pdxds = /0 /Df1¢dxds,
aug & £ & & & & & & & ‘
+AVUIV — of(Z5 + wi, Z5 + wi)(uf — uj) ) ¢pdxds = fredxds,
o Jo\ ot o Jo
&€ l &€ & &€
dzi = 7 (Z{ = Buu] — 1312112’),
1 (4.32)
dz; = — (25 — Bt — B2ty)
15(0) = uy,
u3(0) = ugy,
Z(0) =0,
z;(0) =0,
pointwise in w € §2 for every ¢ € H&(D)n, so by density it is true for any ¢ € H(}(D). Now, let us denote
Vi (8) = z3,(8) — wi(t), v3,(t) = z5,(t) — w(t), (4.33)

vi(t) = z§(t) — wi(t), vy(t) = z;3(t) — w(t),
then we deduce that (u®, v®) is a solution for our initial system in the sense given by (3.3), (3.4) and (3.6). The solution
(u®, v®) is Fr-measurable as the limit of the Galerkin approximation (uf,, v;,) which is F;-measurable by construction.
Furthermore, given the uniform estimates for uj it is easy to obtain from (4.29)-(4.31) the estimates (3.7)-(3.9) and
(3.10) follows from the uniform bounds for vg.
Now, we prove the uniqueness. Let us assume that we have two solutions {u3;, uj,, v, v{,} and {u3,, u3,, v3,, v3,} for
the system. Then,

/(u%(t) — ui,(t))pdx +/ fAi(Vuil — Vui,)Vedxds =
D o Jo

t
[ tuti v, = 5 - a%(uty o, — 5 s,
0 D
and

1 t
v5(8) — vi(t) = Z /0 (Bu(u5(s) — u5,(5)) + Bra(u5, () — 15 (s))) e */eds.
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we take ¢ = uj; — uj; and we get:

/(ugl(t) ug,(£) dx+/ fA‘ Vus, — Vus,)dxds =
/ / (V31 V3 NUgy — Uy — UGy + ufy Uy — ufy)dxds +
/(; /(0‘8(1’51’ V) — e (viy, vip)) UG, — Uy Uy — gy )dxds <
D
t t
2 2
c/(; lus; — u§1||L2(D)dS + C/(; lus, — u§2||L2(D)ds+
t
Cf /(|U§1 — vl + vgy — Vi, DIy, — gy luh, — ufyldxds <
o Jp
t t
2 2
C/ ”uil - ui‘l ”LZ(D)dS + C/ ||u§2 - uiZHLZ(D)dS—i_
0 0

t
C/ (lhvg; = v§ li2py + vy, — Uiz”ﬂ(n))””ﬁz —uj ||L4(D)||”§1 —uj liapyds <
0

t t
c [ = s+ [ = i+
¢ 12 ; 12
c (/0 (”U§1 - Ui] ”zz(m + ”ng - UTz”fz(D))”uiz - u§1||§4(D)d5> (/0 ||U§1 - ui] ”i“(D)dS) =<

t t
2 2
cf llug, — u§1||L2(D)ds+cf U5y — uis M2 ds +
0 0
t t
& g 12 & e 12 e e 2 m e e 2
c (”Uz] — U ”LZ(D) + ”Uzz - U]z”,_z(D))Hvu]z - Vu11||,_2(D)3d5 + 5 ”Vuz] - Vu11||,_2(D)3d5 =
0 0
t t
2 2
C/ ||u§] - uf:ll ||L2(D)ds + C/ ”u§2 - u{:l2||L2(D)ds +
0 0

t t
m
2 2 Vit 2 3 Vit 2
C/o (val - Ui] ”LZ(D) ”U;Z - U;:ZHLZ(D))” uiz - Vu§1||L2(D)3dS 2 /0 ”Vu;] - ui‘l”LZ(D)BdS,

where we used Holder’s inequality, the embedding of H(}(D) into L*(D) and the Lipschitz condition of «. So:

t t
[ = e < [ s, — i ds o [ g, = gl dst
D 0 0
t
C/ (||U§1 - U§1 ”fZ(D) + ||U§2 - Uiz”fz(D))Hvuiz Vu11||,_2(D)3
0

and similarly

t t
3 2 2 2
[t = e < c [ s, = s [ s = ui i st
D 0 0
t
2 2
C/ (llvg; — vi ”LZ(D) + vy, — Uulle(D))HVUZz - Vu§1||L2(D)3d5~
0

We add these two equations and use

t
195,(6) = 05, (Dl < € /0 (151(9) = Uy (Dl + N5o(8) = U () ) €200

3 3 2 3] 2
< cT sup (Iluil(S) — Uz p) T lIu5a(s) — uiz(S)lle(D)) ;
se[0,t]

and

2 2
19500 = V5Ol < T sup (151(9) = US4 () + 15505) — U5l y) -
se

17
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to obtain:

sup. (11u3y(5) = 5 (5) g, + 145(8) = Ui(5)Eyp)) <
se[0,t]

t
T / sgp](uuil(r)—uil(r)ufz(pﬁ||u§2() 15 p) Zuwl, Sy + 1] ds.
0 rel0,s
ij=1

We use Gronwall’s lemma for the function supsq (||u§1(s) —ufy(s )”LZ(D) + |luf,(s) — ui,(s )||L2(D)) to obtain that:

sup (IIUZ1(S) — U5 ()l + () — u‘iz(S)llfz(D)) <
se[0,t]

2

t
CT/ 1+Z||Vu;;.(s)||fzw)3 ds
0

(11852(0) = 51 (O)Ps gy + 185,(0) — 5, (Ol ) € bt ,
which gives the uniqueness and this completes the proof.

4.3. Proof of Theorem 3.2

To show the estimates ofa the theorem, we go back to the Galerkin approximation used to show the existence. In the
system (4.28) we take ¢ = 1” (t) and get

/ Buln(t)
D

at

2 & &

ou ou
dx + /AﬁVuin(t)V Inydx < C | —2(¢)
D ot ot

, (”fl(t)”Lz(D) + Ui (Ol 2y + ||U§n(t)||1_2(o)) .
12(D)

We integrate on [0, t] and use the estimates already obtained for uj, to get:

3”1n Houg,
(S) ds +m | Vug,(t ||L2(D) <M | Vui( O)HL2 +C (s) ’
o Il 9t iz
and from here
Hloug 2
sup sup/ —1n(5) ds < Cr,
e>0 n>0 Jo at 12(D)
and
. 2
supsup sup ||Vu1n(t)||Lz(D) <Cr,

&>0 n>0 te[0,T]

which will give us by passing to the limit on the subsequence uj ,
ouj

su
0 ot

e>0

<G,
L2°(£2;12(0,T:12(D)))

and
SUP (1143 lso( 10000, ;31 = €T
e>0
From the previous theorem, we know that uf € L*(£2; C(0, T; L?(D))) then using Lemma 1.4, Chap Il from [24] we deduce

that uf € L°(£2; C(0, T; Hy(D))).
Similar arguments are used for u$, which completes the proof of Theorem 3.2.

4.4. Proof of Theorem 3.6

The proof of existence of solutions for the averaged system is similar to the proof of system (1.1), using a Galerkin
approximation procedure. The finite dimensional approximation uy,, Uy, defined as in Theorem 3.1 will solve

du1p - _ _ _ _ o _
f S+ / A Vil(t)Vedx = / SBuriian + Praiian, Borilm + Poalian)(lign — T b + / f(Opdx, (434)
D D D D
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for every ¢ € C([0, T, Hy(D))n, and U1,(0) = Myuigr. We take ¢ = Un(t):

ou _ _ _ _ _
f a;"(f)um(t)dXJr f m|| Vil (t)]|2dx < C/ ([um(®) + [En(t)) dx + /ﬁ(t)um(t)dx =
D D D D
0 _ _ _
o (O, < WO ) + IOl ) + Tl 5, =
t

[Tl < €+ /0 () + [Ean(l )

We use Gronwall’s lemma, and get that for 1 <i < 2:

sup [[tinllcqo. 112120y =< Crs (4.35)
n>0

and from here we also obtain

Sulg IVttinll 207,120y < Cr (4.36)
n>
and
au;
sup || — <Cr. (4.37)
n>0 at LZ(O,T;H_l(D))

So there exist a subsequence Uy and function u; € L*°(0,T; [*(D)) N L*(0, T; HY(D)) for 1 < i < 2 such that Uy
AUy ou;
converges weakly star in L>°(0, T; [*(D)) and weakly to L*(0, T; H(}(D)) to u; and also a—;" converges to a—t’ weakly in

1%(0, T; H~(D)). We apply again now Theorem 2. 1, page 271 and Lemma 1. 2 page 260 from [24] to obtain that Uy,
converges strongly in L?(0, T; L?(D)) and in C([0, T]; L>(D)) to u; for 1 < i < 2. We then pass to the limit and obtain that
uq, Uy is a weak solution for (3.31).

Uniqueness is proved similarly as in Theorem 3.1. Let us now assume that the initial condition ug, ug; € H(}(D). We

9
use Eq. (4.34) with ¢ = ;’;
Aty \ - ot
f( um) dX—I—/A]VE]nV ude:
b\ 0t D ot (4.38)

aﬂln / aﬁln
dx dx,
ot T Df ot

fa(ﬂ11ﬁ1n + Bralizn, Ba1liin + Baolizn)(Uzn — Utn)
D
we integrate it over [0, T], and use Hoélder’s inequality:

’ 2

which will imply that

Uy,
at

du1y
at

+ M VU(T)lI 5y — MIIVn(0)

<C
12(0,T;L4(D)) Her

2
||L2(D)3 =

’

12(0,T;L2(D))

3ﬁ1n

€ 1%(0, T; [*(D)) uniformly bounded and Vuy, € L*(0, T; [*(D)?) uniformly bounded. We
deduce by passing to the limit that % € [%(0, T; L*(D)) and u; € C([0, T]; HY(D)) and the same is true also for u,.
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