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Abstract

Schmidt, A.L., Generalized g-legendre polynomials, Journal of Computational and Applied Mathematics 49
(1993) 243-249.

This article gives a g-version of the generalized Legendre polynomials recently introduced by the author. The
generalization makes use of the little g-Jacobi polynomials. In conclusion some open problems are posed.
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1. Introduction

In an earlier paper [4] we considered the problem of finding all polynomials f, in the
variable n such that the recursion formula
(n+Du,,,—fuu,+nu,_; =0, fornz0,

has an integral solution (u) with u _, = 0 and u, = 1. With a slight change of notation the main
result obtained was the following.

Theorem 1.1. Let (x) =(xy, x,,...,X;,...) be a sequence of complex numbers. Let

£

) satisfying the recursion formula

f(x)=(2n+1)

and consider sequences (u) = (uy, Uy, ..., U,,...

(n+VDu, ,—fu, +nu,_ =0, forn>1. ~ (2)

Then (2) has two independent solutions (p) and (q) as follows. The element p, is represented as

= X O )" e ©)
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where
=1,
Ch1 = Z( 1)< Z (l+j)(l?)(]f)xjc,-, for k> 0. 4)
jek-i\ K JNTTU
The element q,, is represented as
+k
Z( D ()" EF ), 5)
where
d,=0,
k=i i+j k) k 1 (6)
k+1 Z( 1) Z ( k )(l (] xjd,'+k+l, fork>0

i=0 J=k—i

As a corollary of this theorem, formula (1) will provide a solution to the problem when
(x)=(xg, Xp,---, %Xy, 0,0,...) and x,€Z for 0 <i < N.

The purpose of the present paper is to give a g-version of this theorem, and to pose some
open problems.

2. Notation and preliminary results

In the sequel, g is a fixed real number in 10, 1, and f, g, etc. are complex polynomials in one

variable.
To fix the notation we recall a number of definitions and results (see in particular [1,3]).

For a € C the g-shifted factorial is defined by
1, if n=20,
(a; ), = (1—a)(1—aq) - (1—ag"™"), ifneN,
(1—ag )1 —aq™?) - (1— aq"))_l, if —neN.
We need the elementary formula
1 n
(a7';q),= (— —) a®(aq'™"; q),, fora=+0, neN,. (7)
a
The Gaussian polynomial or g-binomial coefficient is defined by

wl (q*~"*1; q),,
[’"]q— CH) .

The Heine (or basic) series , ¢, is defined by

fora e R, meN,.

o0 (aO; Q),, P (ar; q)n
r (b a 2 r’ b . 7br7 qa X)= Z xn?
1A ) n=0 (@ @)u(by; q), - (b5 q),

for a,, b, C,|x| <1.
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We shall make essential use of the g-Pfaff—Saalschiitz identity (see [S])
(c/a5 a)u(c/b; @)n

s0x(q7 ", a,b5¢,d5q9,9)= (© d)(c/abs a), " if cd =abg' ™"
The Jackson integral J, and the g-derivative 9, are defined by
() = [ 1) dyt=x(1=q) ¥ fxa")a",
_ f(x) = flax)
(9,f)(x)= —————x(l mpta
Both J, and 4, are linear operators on Z[ x] satistying the following rules:
(T (F))=F, (8)
J(3,(f)) =f—£(0), (9)
F,(fe)(x) =f(ax)d,(8)(x) + F,(f)(x)g(x), (10)
01(f)(x) = X || 06N (xa" )97 (8)(x), for neN, (11)
k=0
o, (x") = [’”qx”‘l, for n e N, (12)
3y((x3 a7 ")) = — [’{qu‘"(x; q ')y, fornen, (13)
1—gq
un=£)lx” dqx=1—_‘—qm, fOI'}’lENO. (14)

The little g-Jacobi polynomials introduced by Hahn [3] (see [2]) are given by

P(x;a, Blg)=,0:(a7", aBq"*"; aq; q, qx), for a, BeC.

We shall need only the special case P(x|q)=P/x; 1, 1|g) which consequently will be called
the little g-Legendre polynomials. By means of the g-binomial coefficients this can be written as

B(xla)= ¥ (~1y gl [7Ek] xx
k=0 klal kg
Some fundamental properties of the little g-Legendre polynomials are the following.
(i) The sequence u, = P (x| q) satisfies a three-term recurrence relation
qn(l _qn+1)(1 +qn)un+1 _ (1 _q2n+1)(2qn _ (1 +qn)(1 +qn+1)x)un
+q"(1-q")(1+q" " Yu,_,=0, forn=0,

with initial conditions u_; =0, u,=1.
(ii) They are given by a g-Rodrigues formula

1 _ n
(—q—)—f}"(x"(x; q7"),), forn>0.

P(xlq)= (q;q), ¢
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(iii) They satisfy the following orthogonality relations:

1 1—¢q
j;Pm(xlq)Pn(xlq) dqx=8mﬂq 1_q2n+1 ’

for m, n>0.

Lemma 2.1. The following identity is valid for n, i, j € N:

£l [

n+i] n+j [n] [n]
il J q ilald1g
Proof. When we apply the g-Pfaff-Saalschiitz identity for

a=qn+l, b=q_i_j+2€, c=ql—i+e, d=ql-j+e’

where 0 <e < 3, we get

n+l. —i—j+2e.

i (@ a)k(a"*'5 a)ela ,q)qu= (@775 a).(a' 7% a),
o (@ @) (@ s g) (@S a), (a" "% a) (a5 aq),

By applying (7) twice on each side and rearranging, we get
n n+k] [i+j—26} 2
n [ku e q(q,Q)k

)»

(n—kXi+j—k—2¢€)

iso (@' @)@ @)i(a' ™55 a)k-i(a5 a);
n+i—el [nt+j—€ .32
_ [ n ]q n ]q(q’ q)n
(@' a),_da; @)(d"*5 a)u-i(a5 a);

From this the result is obtained by letting e - 0. O

Lemma 2.2. For n > 1 the following identity is valid:

n 1_q
—1) (nz—k)[n] [n+k] =0
kz=:0( ) 4q klgl k J,1=g%t
Proof. For the g-Legendre polynomial P(x|q) we get, by (14),
1 i’ ko okxly_ n n+k 1 -4
— -1 *7H k”[ ] [ ] -
j;)Pn(X|Q) dqx k§0( ) q klal &k ql_qk+l
On the other hand, it follows by the g-Rodrigues formula and (9) that
1 (1-4q)"
P(xlg)d, x=———(f(1)—f(0)),
J Pulx1@) dyx =" = (£(1) = £(0))

where
f(x)y=97""(x"(x;47")a)-

However, it follows by (11)—(13) that f(0) = f(1) = 0, and multiplication by g® then ends the
proof. O



A.L. Schmidt / g-Legendre polynomials 247

3. Solutions of the recursion relation

Theorem 3.1. Let (x) =(xg, Xy,...,X,...) be a sequence of complex numbers. Let
n n n n - —jn n n +]
fulxla)=(1—a*"")|2q" - (1+q")(1 +q""") L g™’ [,— q[ j ] x,-), (15)
j=0 q
and consider sequences (u) = (uy, uy,...,u,,...) satisfying the recursion formula
1—g" YA +q"u, —fuxl@)u, +q* "1 —g")(1+q" " Hu,_, =0, forn>0.
(16)

Then (16) has two independent solutions (p) and (q) as follows. The element p, is represented as

n
= Y (—1)4qeo[” {””‘] , 17
DO Rl R (17)
where
=1,
ey s [i+i] [K][k (18)
o= 2 (=1)"g" ¥ q*’k[ ][H] x;c;, fork>=0.
i=0 j=k—i k lgLill] |,

The element q,, is represented as

- Kk o[n] [n+k
9= X (05 ] [ 0] (19)
where
d,=0,
k . k . . 1—
— _ k—i R —jk l+] [k] k g q
diva EO( 1)" g j}k‘,_iq [k L iy qxjd,+——1_qk+l, for k>0.
(20)

Corollary 3.2. If x;€Z for jEN,, then g~ DGr=V/6p = gqr=DrC@r=D/6[] — g 1—gq?,.
1—-q"lq, € Zlq] for all n, the symbol [-] denoting the least common multiple in Z[q].

ey

Remark 3.3. It follows immediately that by letting g — 1 (after dividing by 1 — ¢ in (15) and
(16)) the previous theorem is obtained.

Proof of Theorem 3.1. Let us denote the left-hand side of (16) by r,. We shall first show that
r, =0 for n €N when (1) = (p). In r, we substitute for p, and f, the expressions in (17) and
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(15). This gives

n+1
o= (1=a"")(1+q" ¥ (—1)tq"t )" 71 [n i IL%
k=0

__(1 _q2rz+1)

2" = (1+q")(1+¢"*") éq_m[’}]q[n ;rj]qxj)

y n _1 k sl n [n+k}
kgo( )4 [k]q k qck

n—1
ta (=g +am ) T (~nfa !
k=0

[n+k—1] c
q k g &

If we collect all terms with ¢, and without any explicit x; and perform some reductions and a
shift of index, we obtain

rn — (1 _q2n+])(1 +qn)(1 +qn+1)sn’

where

" iy [ 1 +k
S, = — Z (_l)kq( : )[k]q[n k LCkH

k=0

ro o [n n+j n k k[ R n+k
+ J"[.][ . ]x. -1 29 [ ]C.
jgloq J q J q Jkgo( ) & [k]q k q k

In the first sum we now substitute for ¢, , ,, 0 <k < n, the expression (18). Rearranging the
triple sum, we obtain

n n

] ’ n—ky o ck—iy_: [ ] k
= — —-1)'¢;x; T+ —jk| 1 ['H"k] [“"J][k][]
Sy Z 0( ) clx]kgoq [k]q k v . . .

i=0j= k tlalJ

‘ —in|l P n+] c LG R [n+k]
+ZQ’[]-L[ i LE’O( 1)'a [k]q ko]t

j=0

By Lemma 2.1 we finally get

- q<";k)+(*z"')—jk[”] [n +k] [i+j] [k] [k}
k=0 k q k q k q [ q J q

= g('TO=in n+j [”] [n+i] [n]
j q ] q l q 12 q’

so that s, = 0. This proves the first part of the theorem.
Proceeding in the same way with (u) = (g), we obtain an additional term in s,, namely

-E vl i

by Lemma 2.2. This proves the second part of the theorem. O

1-q
o

ql—qk+1
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4. Open problems

The first two problems comncern the generalized Legendre polynomials, cf. [4].
(1) Prove that the polynomials f, in (1) provide all polynomials such that the corresponding

sequence (u,) is integral.
(2) For x =(x,, X;,..., Xy, 0,0,...) find — as in the case N =0 — explicit expressions for
a in terms of x4, x,,..., x,. This would be very interesting in view of [4, Theorem 3].
(3) For r=2, 3,... the sequence a, = a,(r) given by
o (nY (n+k\
o= X (o) (" 1)
k=0 k k
can be written uniquely as
- (n\(n+k
an = Z ( )( )Ck’
k=0 k k
where ¢, =c,(r) € Q is independent on n. Note that the formula for a, determines c,, the

formula for a, then determines c;, etc. Show that the sequence (c,) is integral for all r. For
r =2, (a,) is the famous Apéry-sequence for {(3).

Added June 1992. Problem (3) (r =2) was solved independently by Strehl (University of
Erlangen-Nurnberg) and myself with

A
«-x (¥].
i=0
shortly after that this formula had been observed numerically by Deuber, Thumser and Voigt
(University of Bielefeld). Later Strehl solved the problem for r = 3 with

o £ 1)

The problem remains unsolved for r = 4.
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