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Abstract

We discuss a moment problem of Stieltjes type that is related to the theory of orthogonal rational functions. We obtain
results which lead to a su:cient condition of Carleman type for determinacy of the moment problem. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The moments cn of a positive measure � on the nonnegative real line [0;∞) are de?ned as

cn =
∫ ∞

0
tn d�(t); n= 0; 1; : : : ; (1.1)

if these integrals are ?nite (see [1,26–28]). The Stieltjes moment problem associated with the
sequence {cn} is called determinate if there is only one measure � (with support in [0;∞)) giving
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rise to the moments cn through the formula (1.1). A well-known criterion by Carleman gives a
su:cient condition for determinacy: If

∞∑
n=1

c−1=2n
n =∞; (1.2)

then the Stieltjes moment problem is determinate. See e.g. [10–12,20,26,27]. Our treatment in this
paper of a rational Stieltjes problem is especially indebted to a method developed by Karlsson
and von Sydow in [20]. By an argument in [1, p. 25–26, Problem 4] (building on results by
Wouk [29]) for a similar situation, and also from results in [20], it can even be shown that if the
Stieltjes moment problem is solvable and (1.2) is satis5ed, then the Hamburger moment problem is
determinate (i.e., there is only one measure with support in (−∞;∞) giving rise to the moments cn
through the formula cn=

∫∞
−∞ tn d�(t), n=0; 1; : : :). We shall discuss in detail the analogous situation

for the rational moment problem treated in this paper in Section 5.
The strong Stieltjes moment problem arises when also moments with negative index are given:

cn =
∫ ∞

0
tn d�(t); n= 0;±1;±2; : : : (1.3)

(See e.g. [17,19,25].)
A result analogous to Carleman’s criterion was proved by Ald*en [2,3]: If

∞∑
n=0

[(cn)−1=2n + (c−n)−1=2n] =∞; (1.4)

then the strong Stieltjes moment problem is determinate (see also [15,24]). By an approach follow-
ing that of Karlsson and von Sydow, two of the present authors [14] obtained essentially the same
result. A condition equivalent to (1.4) is

∞∑
m=0

[(c2m)−1=4m + (c−2m)−1=(4m−2)] =∞: (1.5)

The classical moment problems are related to the theory of orthogonal polynomials. Similarly, the
strong moment problems are related to the theory of orthogonal Laurent polynomials (see [13,17,18]).
In this paper, we discuss a moment problem of Stieltjes type that is related to the theory of orthogonal
rational functions. The basic theory of this problem is developed in [9]. We obtain results which
also in this situation lead to a su:cient condition of Carleman type for determinacy of the moment
problem.

Related problems have been treated by diPerent methods, and related Carleman type conditions
obtained. See especially the work by Lopez [21–23].

2. Orthogonal rational functions

The basic theory of orthogonal rational functions can be found in [8] and also in [4–6] for the
situation discussed here where interpolation points may belong to the support of the measure.

Let {	k}∞k=1 be a sequence of points on the real line (−∞;∞). For some nonessential technical
reasons, we assume that 	k �= 0 for all k. We might include the possibility that some or all of
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the points 	k could be the point at in?nity (on the Riemann sphere), but that situation will not be
considered in this paper.

We de?ne

!0 = 1; !n(z) = (z − 	1)(z − 	2) · · · (z − 	n); n= 1; 2; : : : (2.1)

The space L is de?ned to be the linear span of the sequence {1=!n}∞n=0. We note that L consists
of all functions of the form sn=!n for some n, where sn is a polynomial of degree at most n.

Other bases for L than {1=!n}∞n=0 may be useful. We shall in this paper mostly consider the
situation when 	2p �= 	2q+1 for all p and q. It is readily veri?ed that the sequence {bn}∞n=0 is a basis
for L, where

b0 = 1; (2.2)

b2m(z) =
z2m

(z − 	1)(1− z=	2) · · · (z − 	2m−1)(1− z=	2m)
; (2.3)

b2m+1(z) =
1

(z − 	1)(1− z=	2) · · · (1− z=	2m)(z − 	2m+1)
: (2.4)

In the limiting situation 	2m → ∞; 	2m+1 → 0, these functions become b0=1; b2m=zm; b2m+1=1=zm+1,
which is a standard basis for the Laurent polynomials.

Let M be a positive linear functional on the product space L ·L (consisting of products f · g,
with f; g ∈ L). The moments �m;n are de?ned by

�m;n =M [bm · bn]; m; n= 0; 1; 2; : : : : (2.5)

For simplicity we normalize such that �0;0 = 1.
A positive measure with in?nite support in (−∞;∞) is said to solve the rational (Hamburger)

moment problem (RMP) on L ·L if

�m;n =
∫ ∞

−∞
bm(t)bn(t) d�(t); m; n= 0; 1; 2; : : : ; (2.6)

and to solve the rational moment problem (Hamburger) (RMP) on L if

�0; n =
∫ ∞

−∞
bn(t) d�(t); n= 0; 1; 2; : : : : (2.7)

A measure which solves the moment problem on L ·L obviously also solves the moment problem
on L.
We shall in the following assume that the moment problem on L ·L has at least one solution

�. An inner product 〈·; ·〉 is then de?ned on L by

〈f; g〉=
∫ ∞

−∞
f(t)g(t) d�(t); f; g ∈ L; (2.8)

where � is any solution of the moment problem on L ·L.
Let {�n}∞n=0 denote an orthonormal sequence in L obtained by orthonormalization with respect

to 〈·; ·〉 of the basis {1=!n}, (or equivalently of the basis {bn}). The associated orthogonal rational
functions �n are de?ned by

�n(z) =M
[
�n(t)− �n(z)

t − z

]
; n= 0; 1; 2; : : : (2.9)
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(the functional operating on its argument as a function of t). Equivalently,

�n(z) =
∫ ∞

−∞

�n(t)− �n(z)
t − z

d�(t); (2.10)

where � is any solution of the moment problem on L.
By the Stieltjes transform of a ?nite measure �, we shall here mean the function

S(z; �) =
∫ ∞

−∞

d�(t)
z − t

: (2.11)

The measure � is determined by its Stieltjes transform S(z; �), which means that if two measures
have the same Stieltjes transform, then they are equal.

The rational function �n(z)=�n(z) is an [n − 1=n] multi-point Pad*e approximant of S(z; �) at the
table {∞; 	1; 	1; : : : ; 	n−1; 	n−1; 	n}. See [7, Theorem 5:2].

We will need an estimate of the error term �n(z)=�n(z)− S(z; �). We have the following result.

Proposition 2.1. Let � be an arbitrary solution of the RMP on L. Then the following formula is
valid:

�n(z)
�n(z)

− S(z; �) =
1

�n(z)

∫ ∞

−∞

�n(t)
t − z

d�(t): (2.12)

Proof. This follows immediately from (2.10) and (2.11).

3. A Stieltjes problem

We deal in this paper with a special situation, which may be considered as an extension of the
Stieltjes situation for the classical (one-point) and strong (two-point) problems. Contributions to a
theory of this rational Stieltjes problem are given in [9].

We assume the existence of real numbers 	 and � such that

	2m6	¡�6	2m−160; m= 1; 2; : : : (3.1)

and such that for all measures � considered, the support is contained in the nonnegative real line:

supp(�)⊂ [0;∞): (3.2)

Thus we assume the existence of at least one positive measure � with support in [0;∞) which
solves the moment problem on L · L for the sequence {�m;n}m;n, and we only consider solutions
of the moment problem on L and on L · L with support in [0;∞). Such solutions are called
solutions of the rational Stieltjes moment problem (RSMP) on L and L·L, respectively. (In [9] we
considered a slightly more general situation, where 0 in (3.1) and (3.2) is replaced by an arbitrary real
point �.)

The orthogonal rational function �n may be written in the form

�n(z) =
pn(z)
!n(z)

; (3.3)
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where pn(z) is a polynomial of exact degree n. The polynomial pn has n simple zeros in (0;∞).
We assume that �n is normalized such that

�2m(x)¿ 0; �2m+1(x)¡ 0; x ∈ (	; �): (3.4)

(This determination is unambiguous, �n(x) having constant sign in (	; �).)
The function �n can be written as

�n = vnbn + · · ·+ unb0: (3.5)

(We may call vn the leading coe9cient and un the trailing coe9cient with respect to the basis {bn}.)
It easily follows from the de?nitions (2.1), (2.3)–(2.4), and (3.4) and (3.5) that we have

p2m(	2m) = (−1)m	2	4 · · · 	2m(	2m)2mv2m; (3.6)

p2m+1(	2m+1) = (−1)m	2	4 · · · 	2mv2m+1: (3.7)

The functions {�m; �n} satisfy a three-term recurrence relation of the following form (see [4,6–8]):[
�n(z)
�n(z)

]
=

Un(z − 	n−2) + Vn(z − 	n−1)
z − 	n

[
�n−1(z)
�n−1(z)

]
+

Wn(z − 	n−2)
z − 	n

[
�n−2(z)
�n−2(z)

]
; n= 3; 4; : : : ;

(3.8)[
�2(z)
�2(z)

]
=

U2(z − 	2) + V2(z − 	1)
z − 	2

[
�1(z)
�1(z)

]
+

W2

z − 	2

[
�0(z)
�0(z)

]
; (3.9)

[
�1(z)
�1(z)

]
=

U1(z − 	1) + V1(z − 	2)
z − 	1

[
�0(z)
�0(z)

]
+

W1

z − 	1

[
�−1(z)
�−1(z)

]
; (3.10)

[
�0(z)
�0(z)

]
=

[
0
1

]
;

[
�−1(z)
�−1(z)

]
=

[−�0;1

0

]
: (3.11)

Here

Un ¡ 0 for n= 1; 2; 3; : : : (3.12)

Vn ¿ 0 for n= 1; 3; 4; : : : (3.13)

Wn ¿ 0 for n= 1; 2; 3; : : : (3.14)

We also ?nd that (see [7, Proposition 3:4])

W1W2 · · ·Wn = (−1)n(�0;1)−1(	n−2 − 	n−1)Un: (3.15)

The coe:cients Un, Vn can be expressed as follows:

U1 =
p1(	2)
	2 − 	1

; U2 =
p2(	1)

p1(	1)(	1 − 	2)
;

Un =
pn(	n−1)

pn−1(	n−1)(	n−1 − 	n−2)
; n= 3; 4; : : : (3.16)

V1 =
p1(	1)
	1 − 	2

; Vn =
pn(	n−1)

pn−1(	n−2)(	n−2 − 	n−1)
; n= 3; 4; : : : (3.17)

For the approximants {�n(z)=�n(z)} of the continued fraction associated with the three-term recur-
rence relation given by (3.8)–(3.11) the following fundamental result holds (see [7]):
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Theorem 3.1. For x ∈ (	; �) the sequence {�2m(x)=�2m(x)} is decreasing and the sequence
{�2m+1(x)=�2m+1(x)} is increasing. For z ∈ C \ [0;∞); {�2m(z)=�2m(z)} converges to S(z; �(0))
and {�2m+1(z)=�2m+1(z)} converges to S(z; �(∞)); where �(0) and �(∞) are solutions of the RSMP
on L.

4. Estimates on coe cients

We shall in the following restrict ourselves to consider the following situation:

The sequence {	2m}∞m=1 decreases to −∞; (4.1)

The sequence {	2m+1}∞m=0 increases to 0: (4.2)

To discuss determinacy of the moment problem, we need estimates on the diPerences �n(x)=�n(x)−
�n−2(x)=�n−2(x). It follows from (3.15) and [7, formula (4.10)] that for n= 3; 4; : : : we may write

�n(z)
�n(z)

− �n−2(z)
�n−2(z)

= $n(z)
1

�n(z)�n−2(z)
; (4.3)

where

$n(z) =
Un−1(	n−3 − 	n−2)[Un(z − 	n−2) + Vn(z − 	n−1)]

(z − 	n)(z − 	n−1)(z − 	n−2)
: (4.4)

Lemma 4.1. For x ∈ (	; �) and n= 3; 4; : : : we have

|$n(z)|¿ Vn|Un−1(	n−3 − 	n−2)|
|(x − 	n)(x − 	n−2)| : (4.5)

Proof. It follows from (3.1) and (3.12)–(3.13) that Un(x − 	n−2) and Vn(x − 	n−1) have the same
sign for x ∈ (	; �). Thus |Un(x− 	n−2)+Vn(x− 	n−1)|¿ |Vn(x− 	n−1)|. From this and the positivity
of �0;1 and Vn the inequality follows.

Lemma 4.2. The following results hold:

(A) The function |pn(x)| is decreasing with increasing x for x¡ 0.
(B) The function |pn(x)=xn| is increasing with increasing x for x¡ 0.

Proof. The polynomial pn has n simple zeros in (0;∞), hence p′
n has n − 1 zeros in (0;∞), and

so pn is monotonic for x¡ 0. Since |pn(x)| → ∞ as x → −∞, (A) follows.
We have [pn(x)=xn]

′=(xp′
n(x)−npn(x))=xn+1. The numerator polynomial has degree at most n−1.

Since pn(x)=xn has at least n− 1 extrema for x¿ 0, it follows that pn(x)=xn is monotonic for x¡ 0.
Since |pn(x)=xn| → ∞ for x → 0−, we conclude that (B) holds.

It follows from (3.16) and (3.17) that we may write

VnUn−1(	n−3 − 	n−2) =
pn(	n−2)

pn−2(	n−2)(	n−1 − 	n−2)
; n= 3; 4; : : : (4.6)
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Lemma 4.3. For x ∈ (	; �); the following inequalities hold:
(A)

|V2mU2m−1(	2m−3 − 	2m−2)|¿ |	2m−2|2|	2m|
|	2m−2 − 	2m−1|

|v2m|
|v2m−2| ; m¿2; (4.7)

(B)

|V2m+1U2m(	2m−2 − 	2m−1)|¿ |	2m|
|	2m−1 − 	2m|

|v2m+1|
|v2m−1| ; m¿1: (4.8)

Proof. (A) It follows from (3.6) and (4.6) that we may write

V2mU2m−1(	2m−3 − 	2m−2) =
	2	4 · · · 	2m(	2m)2mv2m

	2	4 · · · 	2m−2(	2m−2)2m−2v2m−2(	2m−2 − 	2m−1)
p2m(	2m−2)
p2m(	2m)

: (4.9)

Lemma 4.2(B) together with (4.1) implies that∣∣∣∣p2m(	2m−2)
p2m(	2m)

∣∣∣∣¿ |	2m−2|2m
|	2m|2m :

This together with (4.9) gives (4.7).
(B) Similarly from (3.7) and (4.6) we ?nd that

V2m+1U2m(	2m−2 − 	2m−1) =− 	2	4 · · · 	2mv2m+1

	2	4 · · · 	2m−2v2m−1(	2m−1 − 	2m)
p2m+1(	2m−1)
p2m+1(	2m+1)

: (4.10)

Lemma 4.2(A) together with (4.2) implies that p2m+1(	2m−1)¿p2m+1(	2m+1). This together with
(4.10) gives (4.8).

Proposition 4.4. For x ∈ (	; �); the following inequalities hold:
(A)

|$2m(x)|¿ |v2m=v2m−2|; m= 2; 3; : : : (4.11)

(B)

|$2m+1(x)|¿ 1
	2
|v2m+1=v2m−1|; m= 1; 2; : : : (4.12)

with $n(x) as given by (4:4).

Proof. Because of (3.1) we have |	2p − 	2q+1|¡ |	2p|, |	2p − x|¡ |	2p|, and |	2q+1 − x|¡ |	| for all
p and q and for all x ∈ (	; �). We ?nd from (4.5) and (4.7) that

|$2m(x)|¿ |	2m−2|2|	2m|
|	2m−2||	2m||	2m−2|

∣∣∣∣ v2m
v2m−2

∣∣∣∣ ;
which is (4.11). Similarly, we ?nd from (4.5) and (4.8) that

|$2m+1(x)|¿ 1
	2

|	2m|
|	2m|

∣∣∣∣ v2m+1

v2m−1

∣∣∣∣ ;
which is (4.12).
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5. Uniqueness of solutions

We shall in this section give su:cient conditions in terms of the leading coe:cients vn for
determinacy of the RSMP on L ·L.

Proposition 5.1. The following implications hold:
(A) If

∞∑
m=1

∣∣∣∣ v2m
v2m−2

∣∣∣∣
1=2

=∞; then
∞∑
m=0

|�2m(x)|2 =∞ for x ∈ (	; �); (5.1)

(B) If
∞∑
m=1

∣∣∣∣ v2m+1

v2m−1

∣∣∣∣
1=2

=∞; then
∞∑
m=0

|�2m+1(x)|2 =∞ for x ∈ (	; �): (5.2)

Proof. It follows from Proposition 4.4 that there exists a constant K independent of n and x such
that ∣∣∣∣ vn

vn−2

∣∣∣∣6K |$n(x)|: (5.3)

Recall from (4.3) that

$n(x) =
[
�n(x)
�n(x)

− �n−2(x)
�n−2(x)

]
�n(x)�n−2(x): (5.4)

If
∞∑
m=1

∣∣∣∣ v2m
v2m−2

∣∣∣∣
1=2

=∞ then
∞∑
m=1

|$2m(x)|1=2 =∞

and hence by (5.4), Schwartz’ inequality and Theorem 3.1{ ∞∑
m=1

[
�2m−2(x)
�2m−2(x)

− �2m(x)
�2m(x)

]}{ ∞∑
m=1

|�2m(x)�2m−2(x)|
}
=∞: (5.5)

Similarly, we ?nd that
∑∞

m=1 |v2m+1=v2m−1|1=2 =∞ implies{ ∞∑
m=1

[
�2m+1(x)
�2m+1(x)

− �2m−1(x)
�2m−1(x)

]}{ ∞∑
m=1

|�2m+1(x)�2m−1(x)|
}
=∞: (5.6)

Again by Theorem 3.1 we conclude that the series to the left in (5.5) and (5.6) converge to ?nite
values, hence

∑∞
m=1 |�2m(x)�2m−2(x)|=∞ holds if (5.5) holds and

∑∞
m=1 |�2m+1(x)�2m−1(x)|=∞ if

(5.6) holds. Divergence of
∑∞

m=0 |�2m(x)|2 and
∑∞

m=0 |�2m+1(x)|2, respectively, now easily follows by
Schwartz’ inequality.

Let � be an arbitrary solution of the RSMP on L ·L. Recall that the error term En(z; �) is de?ned
to be

En(z; �) =
�n(x)
�n(x)

− S(z; �); (5.7)

(cf. Section 2).
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Proposition 5.2. Let � be an arbitrary solution of the RSMP on L ·L; and let x ∈ (	; �).

(A) If
∑∞

m=0 |�2m(x)|2 =∞; then E2m(x; �) tends to zero as m → ∞;
(B) If

∑∞
m=0 |�2m+1(x)|2 =∞; then E2m+1(x; �) tends to zero as m → ∞.

Proof. According to Proposition 2.1 we have

En(z; �) =
1

�n(x)

∫ ∞

0

�n(t)
t − z

d�(t): (5.8)

Let x ∈ (	; �). Then the function t → 1=(t − x) is square integrable with respect to �. Its Fourier
coe:cients with respect to the system {�n} are En(x; �)�n(x) according to (5.8), hence by Bessel’s
inequality

∞∑
n=0

|En(z; �)|2|�n(x)|2 ¡∞: (5.9)

(Note that the use of Bessel’s inequality requires that the system {�n} is orthogonal with respect to
�, and hence that � is a solution of the RSMP on L ·L, not only on L.)
Assume e.g., that

∑∞
m=0 |�2m(x)|2 =∞. It then follows from (5.9) that at least a subsequence of

{E2m(x; �)} must tend to zero, and hence the whole sequence tends to zero since it is monotonic by
Theorem 3.1. Similarly we ?nd that {E2m+1(x; �)} tends to zero if

∑∞
m=0 |�2m+1(x)|2 =∞.

Theorem 5.3. Assume that
∑∞

n=2 |vn=vn−2|1=2 =∞. Then the RSMP on L ·L is determinate.

Proof. If
∑∞

n=2 |vn=vn−2|1=2 =∞, then at least one of the series
∞∑
m=1

|v2m=v2m−2|1=2 and
∞∑
m=1

|v2m+1=v2m−1|1=2

diverges. It follows from Proposition 5.1 that at least one of the series
∞∑
m=0

|�2m(x)|2 and
∞∑
m=0

|�2m+1(x)|2;

diverges for all x ∈ (	; �). Proposition 5.2 then implies that at least one of the sequences {E2m(x; �)}
and {E2m+1(x; �)} tends to zero for all solutions � of the RSMP on L · L. Consequently at least
one of the sequences {�2m(x)=�2m(x)} and {�2m+1(x)=�2m+1(x)} tends to S(x; �) for all solutions of
the RSMP on L ·L and all x ∈ (	; �). In any case, S(x; �) is then the same function on (	; �) for
all solutions � of the RSMP on L ·L, which implies that the solution is unique.

Remark 5.4. It follows from Lemma 11:7:3 and Theorem 11:7:5 of [8] that if
∑∞

n=0 |�n(z)|2 con-
verges for some z ∈ C\{R∪{i}∪{−i}}, then ∑∞

n=0 |�n(z)|2 converges for every z ∈ C\{R∪{i}∪
{−i}}. Actually the proof shows that if

∑∞
n=0 |�n(z)|2 converges for some z ∈ C \ {R∪{i}∪{−i}},

then
∑∞

n=0 |�n(z)|2 converges for every z ∈ C	:=C \ {Â∪{i}∪{−i}} where Â is the closure of the
set A of interpolation points 	n. Furthermore, it follows from Lemma 11:7:3 and Corollary 11:8:3
of [8] that if

∑∞
n=0 |�n(z)|2 diverges for some (or all) z ∈ C \ {R ∪ {i} ∪ {−i}}, then the rational
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(Hamburger) moment problem on L · L (see Section 1) is determinate. Thus we may conclude
from Proposition 5.1 that the following stronger version of Theorem 5.3 holds.
Assume that (4.1) and (4.2) hold, that the RSMP on L ·L is solvable and that

∞∑
n=2

|vn=vn−2|1=2 =∞:

Then the rational (Hamburger) moment problem on L ·L is determinate.

6. A Carleman condition

We shall brieRy point out how we can obtain from Theorem 5.3 a su:cient condition of Carleman
type for the determinacy of the RSMP on L ·L. Let � be any solution of the RSMP on L ·L.
We recall the de?nition (2.5), which means that we may write the moments �m;n as

�m;n =
∫ ∞

0
bm(t)bn(t) d�(t); m; n= 0; 1; 2; : : : (6.1)

Lemma 6.1. For n= 0; 1; 2; : : : we have

|vn|¿ 1√
�n;n

: (6.2)

Proof. We ?nd from the orthogonality of {�n} and the representation (3.5) that we may write

1 = vn
∫ ∞

0
bn(t)�n(t) d�(t): (6.3)

By using Schwartz’ inequality in the integral we obtain

16|vn|√�n;n;

which is (6.2).

Theorem 6.2. Assume that
∞∑
n=0

1
(�n;n)1=2n

=∞: (6.4)

Then the RSMP on L ·L is determinate.

Proof. Carleman’s inequality for nonnegative numbers a1; a2; : : : ; ak ; : : : may be written
∞∑
k=1

ak¿
1
e

∞∑
m=1

(a1a2 · · · am)1=m (6.5)

(see e.g. [16]). Applying this inequality to the situation ak = |v2k =v2k−2|1=2 we obtain
∞∑
k=1

∣∣∣∣ v2k
v2k−2

∣∣∣∣
1=2

¿
1
e

∞∑
m=1

|v2m|1=2m: (6.6)
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Similarly by applying the inequality to the situation ak = |v2k−1=v2k−3|1=2 (with v−1 = 1) we obtain
(with m replaced by m+ 1)

∞∑
k=1

∣∣∣∣v2k−1

v2k−3

∣∣∣∣
1=2

¿
1
e

∞∑
m=1

|v2m+1|1=(2m+2): (6.7)

If (6.4) holds, then at least one of the series
∞∑
m=1

1
(�2m;2m)1=4m

and
∞∑
m=1

1
(�2m+1;2m+1)1=4m+4

diverges. (Note that (�2m+1;2m+1)1=4m+2 ¿ (�2m+1;2m+1)1=4m+4 if �2m+1;2m+1 ¿ 1. If �2m+1;2m+161 for in-
?nitely many m, then the series

∞∑
m=1

1
(�2m+1;2m+1)(1=4m+4)

trivially diverges.) It follows from (6.2) and (6.6), (6.7) that also at least one of the series
∞∑
k=1

∣∣∣∣ v2k
v2k−2

∣∣∣∣
1=2

and
∞∑
k=1

∣∣∣∣ v2k+1

v2k−1

∣∣∣∣
1=2

diverges, which means that the series
∑∞

n=1 |vn=vn−2|1=2 diverges. The result now follows from
Theorem 5.3.

Remark 6.3. In the limiting situation 	2m = −∞; 	2m+1 = 0 for all m, the moments �n;n become
�2m−1;2m−1 = c−2m and �2m;2m = c2m. The condition

∑∞
n=0 1=(�n;n)1=2n becomes

∞∑
m=0

1
(c−2m)1=4m−2

+
∞∑
m=0

1
(c2m)1=4m

=∞:

(see Section 1.)

Remark 6.4. Taking into account the Remark 5.4, we ?nd that Theorem 6.2 can be strengthened as
follows.

Assume that (4.1) and (4.2) hold; that the RSMP on L ·L is solvable and that
∞∑
n=0

1
(�n;n)1=2n

=∞:

Then the rational (Hamburger) moment problem on L ·L is determinate.
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