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Abstract

Approximations for the complex zeros in the �-plane of the Hankel functions H�(x) and H ′
�(x) are available in terms of the zeros

of Airy functions. The corresponding zeros of a linear combination of Hankel functions are of interest when scattering from cylinders
with a surface impedance is studied. A simple method to compute these zeros efficiently is presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The zeros of the Hankel functions in the complex �-plane relate to scattering from circular cylinders [2,3] and also
to the Regge poles of quantum mechanics. One important function of these zeros is to determine the propagation
constants of creeping waves [9,10]. Expressions for the zeros for the two basic scattering problems (two polarizations)
can be found in Ref. [3]. A more difficult problem arises when an impedance boundary condition is used. One then
looks for the zeros, in the complex variable corresponding to the index, of a linear combination of the Hankel function
and its derivative. This problem was solved by Bouche et al. [2] by approximating the Hankel functions in terms of
Airy functions and then applying a numerical procedure to the resulting approximate problem. Other combinations of
numerical procedures, suitable for small values of x, have also been devised [4]. This note presents an approximate
solution to the original problem.

2. Discussion

The zeros of H�(x) and H ′
�(x) are given in terms of the parameter x that corresponds to frequency, the zeros of the

Airy function and its derivative as =−�s , a′
s =−�s [1,3] and the Fock parameter m= (x/2)1/3. Asymptotic expansions
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will be used and the value of x; and hence also of m, is therefore assumed to be large. Approximate zeros are given by

�s = x + ei�/3�sm − e−i�/3 �2
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The combination of Hankel functions that is studied in this note,

H ′
�(x) + i�H�(x) = 0, (3)

involves the complex parameter � that corresponds to either a surface impedance or a surface admittance depending
on the polarization of the field [2]. We refer to the function H

(1)
� (x) [1]. Also in this case, the zeros can be found by

extending the approach devised by Franz and Galle [6].
Asymptotic expansions for the Hankel function and its derivative are obtained from Watson’s integral representation

by means of the saddle-point method. From these expansions, in terms of Airy functions, the zeros in Eqs. (1) and (2)
were extracted by means of Taylor expansions of the Airy functions, in the neighbourhood of their zeros [6]. By simply
combining the expansions one obtains approximate zeros, corresponding to the impedance �, in terms of the zeros of
either the Airy function or its derivative.
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These expressions are fairly accurate for the first zeros, i.e., small values of the index s. The error with respect to
the exact zero is larger when m|�| is close to 1 since neither of the Taylor expansions is accurate when the linear
combination does not clearly emphasize one of the functions, cf. Eq. (3). Similar results were derived by Keller et al.
[7] from a linear combination of Airy functions with constant coefficients, under the assumption that m|�| is either
large or small. Cochran [5] uses uniform expansions systematically to derive higher-order terms, but with no significant
improvement in accuracy. Streifer [11] also derives higher order terms for large and small m|�| but the method has
the same deficiency for m|�| ≈ 1. Fig. 1 shows the difference between the approximate zero and the exact zero as a
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Fig. 1. The error �� = |�s� − �se|, as a function of the complex surface impedance �, computed by means of asymptotic expansions of the Hankel
function and Taylor expansions of the Airy function: x = 10, s = 1. A grid that corresponds to −1.3 < Re �< 1.3, −1.3 < Im �< 1.3 is used. The
surface is truncated at about half the maximum value for the sake of clarity. The circle m|�| = 1 can be discerned in the graph.
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function of the impedance �. The accuracy is poor in a fairly large domain m|�| ≈ 1. This region also presents some
difficulties as regards uniformity when the boundary layer method is used [8]. In order to improve accuracy, asymptotic
expansions for the Hankel function, in terms of only one type of Airy function, could be used [6]. Eq. (3) can then be
written in the approximate form [2]

Ai′(−z) − qAi(−z) = 0, (6)
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(x

2

)1/3
, z = � − x

m
e−i�/3,

q(z, �) =
�

(
1 − ei�/3z

15m2 − e−i�/3z2

20m4

(
13

63
− z3

360

))
+ ei�/3

10m2

(
1 + z3

6

)
+ e−i�/3z

60m4

(
1 + z3

56

)

1 + ei�/3z

15m2 + e−i�/3z2

40m4

(
19

63
+ z3

180

)
− �

(
ei�/3z2

60m2 − e−i�/3

140m4

(
1 − z3

3

)) .

The Airy function and its derivative have asymptotic expansions [1] for large arguments and notably for large arguments
close to the negative real axis where the zeros of the Airy functions are located. Rearranging Eq. (6) yields,
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Three or four terms are useful in the sums in Eq. (7) and with some shorthand for these sums one obtains,

tan
(
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4

)
= Sc1 − (z1/2/q)Sd0

Sc0 + (z1/2/q)Sd1
= −Q. (8)

By means of the inverse tangent function it is possible to formulate a stable iteration for the zeros, cf. [1, p. 18].
The periodicity of the tangent function introduces an index s > 0 that enumerates the zeros. There are two possible
formulations since one could relate either to the zeros of the Airy function or to the zeros of its derivative
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The iteration achieves |zn+1 − zn| < 
 ≈ 10−5 after typically 5 –10 steps. One notes that the first term in the expansion
for the zeros of the Airy function and its derivative [1] can be retrieved by letting Q tend to extreme values in Eqs. (9)
and (10). Some caution is appropriate if the value of � should bring the iteration procedure close to the branch points
of the arctan function. The iteration is not sensitive to the initial value and the accuracy improves with the number of
terms included from the Hankel expansion, i.e., the complexity of q.

The actual zeros are obtained from,

�s� = x + ei�/3zs�m. (11)

One notes that the error, shown in Fig. 2, increases close to the branch points associated with the arctan function [1].
The branch cut, as it appears in the �-plane, lies between the branch points and marks the transition to other values of
the index s, cf. Eq. (9). The branch points could possibly have interpretations in the context of waves on the surface
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Fig. 2. The error �� = |�s� − �se|, as a function of the complex surface impedance �, computed by means of asymptotic expansions of the Hankel
function and the Airy function followed by the iteration in Eq. (12): x = 10, s = 1. A grid that corresponds to −1.3 < Re �< 1.3, −1.3 < Im �< 1.3
is used.

[9]. Higher zeros s > 1 are of interest for coated structures [10] and can be computed without difficulty even though
the accuracy decreases gradually with the index s.

Yet another possibility is to use the Airy functions directly, starting from a point z0 close to the zero value. A Taylor
expansion yields the following iteration:

zn+1 = zn − Ai′(−zn) − qnAi(−zn)

znAi(−zn) + qnAi′(−zn)
, (12)

in terms of the Airy function and its derivative and the function q introduced in Eq. (6). There is no index s, as in Eqs.
(4) and (5) and (9) and (10) that specifies which zero that is sought. A fairly good initial estimate of the zero is required
but such an estimate is readily available from Eqs. (9) and (10). These iterations are easily combined and the final result
is shown in Fig. 2. The accuracy is much better than that of Eqs. (9) and (10) alone, particularly for s = 1, due to the
asymptotic approximation of the Airy function. Accuracy increases with the parameter x up to a limit (x = 370) where
instability sets in. The accuracy is fair down to x = 1.

3. Conclusion

An approximate method has been devised to compute the zeros of a linear combination of Hankel functions efficiently.
The accuracy of the zeros is sufficient to provide good initial values for root finding algorithms. Should the accuracy
requirements be moderate, these approximate zeros may suffice as is for most, or all, values of the surface impedance.
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