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a b s t r a c t

This paper is concerned with the anti-periodic boundary value problem of first-order
nonlinear impulsive integro-differential equations. We first establish a new comparison
principle, and then obtain the existence of extremal solutions by upper–lower solution
and monotone iterative techniques. Some examples are presented to illustrate the main
results.
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1. Introduction

In recent years, there has been a great deal of research into the equations of existence and uniqueness of solutions to
boundary value problems for differential equations [1]. Meanwhile, impulsive differential equations have also attracted
more and more attention [2–6] because it is an important tool to study practical problems of biology, engineering and
physics. The periodic boundary value problems involving impulsive differential equations have been studied by many
authors; see [7–15] and the references therein. The first-order integro-differential equation with periodic boundary value
condition has also been considered by many authors; see [12,16–18]. However, in real problems, some problems come
down to anti-periodic boundary value problems. As far as we know, the papers concerned with anti-periodic boundary
value problems are few; see [19–24].
In this paper, we consider the following nonlinear problem for first-order integro-differential equation with impulse at

fixed points

y′(t) = f (t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, (1.1)
1y(tk) = Ik(y(tk)), k = 1, 2, . . . , p, (1.2)
y(0) = −y(T ), (1.3)

where J = [0, T ], J0 = J \ {t1, t2, . . . , tp}, 0 < t1 < t2 < · · · < tp < T , f ∈ C( J × R × R × R, R), Ik ∈ C(R, R),
1y(tk) = y(t+k )− y(t

−

k ). And y(t
+

k ), y(t
−

k ) denote the right and left limits of y(t) at tk, k = 1, 2, . . . , p,

(Ty)(t) =
∫ t

0
k(t, s)y(s)ds, (Sy)(t) =

∫ T

0
h(t, s)y(s)ds,

k ∈ C(D, R+), D = {(t, s) ∈ J × J : t ≥ s}, h ∈ C( J × J, R+).
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Problems (1.1) and (1.2) were considered in several papers with different types of boundary conditions. In [12,25], Chen
and Sun studied problems (1.1) and (1.2) and a similar problem to (1.1) and (1.2), respectively, under the boundary condition
g(y(0), y(T )) = 0. There, the authors established the existence of extremal solutions by the upper and lower solutions and
the monotone iterative technique when g satisfied some monotonicity conditions. Those results are applicable in some
important case such as the initial or the periodic case. However, they are not valid for anti-periodic boundary conditions,
i.e. y(0) = −y(T ).
Just recently, Luo and Nieto [17] proved some new comparison principles for periodic boundary value problem and

extended the earlier results. Encouraged by paper [17], in this paper we first establish a new comparison principle for anti-
periodic boundary value problem and then obtain the existence of extremal solutions for Eqs. (1.1)–(1.3) by the upper–lower
solution and monotone iterative techniques.

2. Preliminaries and lemmas

In this section, we first introduce some definitions in order to define the concept of solution for Eqs. (1.1)–(1.3). Let

PC( J) = {y : J → R : y is continuous at t ∈ J0;
y(0+), y(T−), y(t+k ) and y(t

−

k ) exist and y(t
−

k ) = y(tk), k = 1, . . . , p},

PC1( J) = {y ∈ PC( J) : y is continuously differentiable for any t ∈ J0;
y′(0+), y′(T−) and y′(t+k ), y

′(t−k ) exist, k = 1, . . . , p}.

PC( J) and PC1( J) are Banach spaces with the norms

‖y‖PC( J) = sup{|y(t)| : t ∈ J}, ‖y‖PC1( J) = ‖y‖PC( J) + ‖y
′
‖PC( J).

We say that a function y is a solution for Eqs. (1.1)–(1.3) if y ∈ PC1( J) and satisfies Eqs. (1.1)–(1.3).
In order to obtain the existence of solution for Eqs. (1.1)–(1.3), we need the following key lemma.

Lemma 2.1. Assume that y ∈ PC1( J) satisfies{y′(t)+My(t)+ N(Ty)(t)+ N1(Sy)(t) ≤ 0, t ∈ J0,
1y(tk) ≤ −Lky(tk), k = 1, 2, . . . , p,
y(0) ≤ 0,

(2.1)

where M > 0, N,N1 ≥ 0, Lk < 1, k = 1, 2, . . . , p, and∫ T

0
q(s)ds ≤

p∏
j=1

(1− Lj) (2.2)

with Lk = max{Lk, 0}, k = 1, 2, . . . , p,

q(t) = N
∫ t

0
k(t, s)eM(t−s)

∏
s<tk<T

(1− Lk)ds+ N1

∫ T

0
h(t, s)eM(t−s)

∏
s<tk<T

(1− Lk)ds,

then y ≤ 0.

Proof. Let ck = 1− Lk and x(t) = (
∏
t<tk<T

c−1k )y(t)e
Mt , then we have

x′(t) ≤ −

( ∏
t<tk<T

c−1k

)[
N
∫ t

0
k(t, s)x(s)eM(t−s)

( ∏
s<tk<T

ck

)
ds+ N1

∫ T

0
h(t, s)x(s)eM(t−s)

( ∏
s<tk<T

ck

)
ds

]
,

t ∈ J0,
x(t+k ) ≤ ckx(tk), k = 1, 2, . . . , p,
x(0) ≤ 0.

(2.3)

Obviously, the function y and x have the same sign.
Suppose the contrary, then there exists a t∗ ∈ J such that x(t∗) > 0. Let x(t∗) = mint∈[0,t∗] x(t) = b, then b < 0.

Otherwise, it follows the first equation of (2.3) that x′(t) ≤ 0 on [0, t∗]
⋂
J0 so x is non-increasing. Thus x(t∗) ≤ x(0) ≤ 0,

which is a contradiction. Therefore, Eq. (2.3) becomes
x′(t) ≤ −b

( ∏
t<tk<T

c−1k

)
q(t), t ∈ J0,

x(t+k ) ≤ ckx(tk), k = 1, 2, . . . , p,
x(0) ≤ 0.

(2.4)
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Suppose t∗ ∈ (tj, tj+1) and t∗ ∈ (tm, tm+1), then integrate the first equation of (2.4) on (tj, t∗), (tj−1, tj), . . . , (tm, t∗) and we
have

x(t∗) ≤ x(t+j )− b
∫ t∗

tj

( ∏
s<tk<T

c−1k

)
q(s)ds,

≤ cjx(tj)− b
∫ t∗

tj

( ∏
s<tk<T

c−1k

)
q(s)ds,

x(tj) ≤ cj−1x(t+j−1)− b
∫ tj

tj−1

( ∏
s<tk<T

c−1k

)
q(s)ds,

...

x(tm+1) ≤ x(t∗)− b
∫ tm+1

t∗

( ∏
s<tk<T

c−1k

)
q(s)ds,

which yield( ∏
t∗<tk<T

c−1k

)∫ t∗

t∗
q(s)ds >

∏
t∗<tk<t∗

ck.

Therefore∫ T

0
q(s)ds ≥

∫ t∗

t∗
q(s)ds >

( ∏
t∗<tk<T

ck

)
≥

p∏
j=1

c j =
p∏
j=1

(1− Lj)

which is a contradiction. This completes the proof. �

Remark 2.1. As [17], in Lemma 2.1, we do not require Lk ≥ 0, k = 1, 2, . . . , p. But usually in references in the literature,
for example, Lemma 2.4 in [21] and Lemma 1 in [25], they all assume 0 ≤ Lk ≤ 1. So our result improves all known
corresponding conclusions.

Similar to the proof of Lemma 2.1, we can prove the following more general result.

Corollary 2.1. Assume that y ∈ PC1( J) satisfies{y′(t)+My(t)+ N(t)(Ty)(t)+ N1(t)(Sy)(t) ≤ 0, t ∈ J0,
1y(tk) ≤ −Lky(tk), k = 1, 2, . . . , p,
y(0) ≤ 0,

where M > 0, N(t),N1(t) are non-negative bounded integrable functions and satisfy∫ T

0
q(s)ds ≤

p∏
j=1

(1− Lj)

with Lk = max{Lk, 0}, k = 1, 2, . . . , p,

q(t) = N(t)
∫ t

0
k(t, s)e

∫ t
s M(τ )dτ

∏
s<tk<T

(1− Lk)ds+ N1(t)
∫ T

0
h(t, s)e

∫ t
s M(τ )dτ

∏
s<tk<T

(1− Lk)ds.

Then y ≤ 0.

Consider the following linear equation{y′(t)+My(t) = σ(t)− N(Ty)(t)− N1(Sy)(t), t ∈ J0,
1y(tk) = −Lky(tk)+ Ik(u(tk))+ Lku(tk), k = 1, 2, . . . , p,
y(0) = −y(T ),

(2.5)

whereM > 0, N,N1 ≥ 0, Lk < 1 are constants and σ(t) ∈ PC( J, R).

Lemma 2.2. y ∈ PC1( J) is a solution of (2.5) if and only if y ∈ PC( J) is a solution of the impulsive integral equation

y(t) =
∫ T

0
G(t, s)[σ(s)− N(Ty)(s)− N1(Sy)(s)]ds+

p∑
k=1

G(t, tk)[−Lky(tk)+ Ik(u(tk))+ Lku(tk)],
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where

G(t, s) =


eM(T−t+s)

eMT + 1
, 0 ≤ s < t ≤ T ,

−eM(s−t)

eMT + 1
, 0 ≤ t ≤ s ≤ T .

The proof is similar to Lemma 2.1 [21], so we omit it.

Remark 2.2. If the constants N,N1 would be replaced by N(t),N1(t), we will get a similar result to Lemma 2.2. This result
and Corollary 2.1 improve the known conclusions in the literature.

Lemma 2.3. Assume that M > 0, N,N1 ≥ 0, Lk < 1, k = 1, 2, . . . , p and the following inequality holds

sup
t∈J

∫ T

0
G(t, s)

[
N
∫ s

0
k(s, τ )dτ + N1

∫ T

0
h(s, τ )dτ

]
ds+

eMT

eMT + 1

p∑
j=1

|Lk| < 1, (2.6)

where G(t, s) is defined as in Lemma 2.2. Then (2.5) has a unique solution.

The proof is easy and we omit it.

Remark 2.3. As Remark 2.2, if the constantsN,N1would be replaced byN(t),N1(t), then the Lemma2.3 also holds provided
that the inequality (2.6) is replaced by

sup
t∈J

∫ T

0
G(t, s)

[
N(s)

∫ s

0
k(s, τ )dτ + N1(s)

∫ T

0
h(s, τ )dτ

]
ds+

eMT

eMT + 1

p∑
j=1

|Lk| < 1, (2.7)

where G(t, s) is defined as in Lemma 2.2.

Now we recall the concepts of the upper and lower solutions of anti-periodic boundary value problem.

Definition 2.1. Functions α0, β0 ∈ PC1( J) are called a coupled lower and upper solution of Eqs. (1.1)–(1.3) if α0 ≤ β0 and{
α′0(t) ≤ f (t, α0(t), (Tα0)(t), (Sα0)(t)), t ∈ J0,
1α0(tk) ≤ Ik(α0(tk)), k = 1, 2, . . . , p,
α0(0) ≤ −β0(T ).{
β ′0(t) ≥ f (t, β0(t), (Tβ0)(t), (Sβ0)(t)), t ∈ J0,
1β0(tk) ≥ Ik(β0(tk)), k = 1, 2, . . . , p,
β0(0) ≥ −α0(T ).

If there exists a coupled lower and upper solution of Eqs. (1.1)–(1.3) such that α0 ≤ β0 and the nonlinearity f and the
impulsive Ik satisfy one-side Lipschitz condition, then wewill prove that Eqs. (1.1)–(1.3) have an extremal solution between
the lower and upper solutions in the next section.

3. Main result

In this section, we shall prove that Eqs. (1.1)–(1.3) have at least one solution by using the upper and lower solutions and
monotone iterative technique.

Theorem 3.1. Assume that
(A1) Functions α0, β0 are a coupled lower and upper solution of Eqs. (1.1)–(1.3) such that α0 ≤ β0 for t ∈ J0;
(A2) the function f ∈ C( J × R× R× R, R) satisfies

f (t, x1, y1, z1)− f (t, x2, y2, z2) ≥ −M(x1 − x2)− N(y1 − y2)− N1(z1 − z2),
α0 ≤ x2 ≤ x1 ≤ β0, Tα0 ≤ y2 ≤ y1 ≤ Tβ0, Sα0 ≤ z2 ≤ z1 ≤ Sβ0, t ∈ J,

where M > 0, N,N1 ≥ 0;
(A3) the functions Ik ∈ C(R, R), k = 1, 2, . . . , p, satisfy

Ik(x)− Ik(y) ≥ −Lk(x− y),

where α0 ≤ y ≤ x ≤ β0 and Lk < 1;
(A4) The inequalities (2.2) and (2.6) hold.
Then there exist monotone sequences {αn(t)} and {βn(t)} which converge uniformly on J to the extremal solutions of
Eqs. (1.1)–(1.3) in [α0, β0].
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Proof. Firstly, we construct two sequences {αn(t)} and {βn(t)}which satisfy the following problems
α′i(t)+Mαi(t)+ N(Tαi)(t)+ N1(Sαi)(t)
= f (t, αi−1(t), (Tαi−1)(t), (Sαi−1)(t))+Mαi−1(t)+ N(Tαi−1)(t)+ N1(Sαi−1)(t), t ∈ J0,

1αi(tk) = −Lkαi(tk)+ Ik(αi−1(tk))+ Lkαi−1(tk), k = 1, 2, . . . , p,
αi(0) = −βi−1(T ),

(3.1)


β ′i (t)+Mβi(t)+ N(Tβi)(t)+ N1(Sβi)(t)
= f (t, βi−1(t), (Tβi−1)(t), (Sβi−1)(t))+Mβi−1(t)+ N(Tβi−1)(t)+ N1(Sβi−1)(t), t ∈ J0,

1βi(tk) = −Lkβi(tk)+ Ik(βi−1(tk))+ Lkβi−1(tk), k = 1, 2, . . . , p,
βi(0) = −αi−1(T ).

(3.2)

It follows from Lemma 2.2 that problems (3.1) and (3.2) have a solution, respectively. So the above definitions are adequate.
Secondly, we prove that αi ≤ αi+1 and βi ≤ βi−1. For that we consider the following problem

α′1(t)+Mα1(t)+ N(Tα1)(t)+ N1(Sα1)(t) = f (t, α0(t), (Tα0)(t), (Sα0)(t))
+Mα0(t)+ N(Tα0)(t)+ N1(Sα0)(t), t ∈ J0,

1α1(tk) = −Lkα1(tk)+ Ik(α0(tk))+ Lkα0(tk), k = 1, 2, . . . , p,
α1(0) = −β0(T ).

Letting p(t) = α0(t)− α1(t), it follows that

p′(t)+Mp(t)+ N(Tp)(t)+ N1(Sp)(t) = α′0(t)+Mα0(t)+ N(Tα0)(t)+ N1(Sα0)(t)α
′

1(t)
−Mα1(t)− N(Tα1)(t)+ N1(Sα1)(t)

≤ 0,
1p(tk) ≤ −Lkp(tk), p(0) ≤ 0.

Then by Lemma 2.1, we get p(t) ≤ 0, that is,α0(t) ≤ α1(t), for all t ∈ J0. In a similarway, it can be proved thatβ0(t) ≤ β1(t),
for all t ∈ J0. Now we prove that α1(t) ≤ β1(t), for all t ∈ J0. Setting p(t) = α1(t)− β1(t) and using (A1)–(A2), we have

p′(t)+Mp(t)+ N(Tp)(t)+ N1(Sp)(t)
= α′1(t)− β

′

1(t)+M(α1(t)− β1(t))+ N(Tα1(t)− Tβ1(t))+ N1(Sα1(t)− Sβ1(t))
= f (t, α0(t), (Tα0)(t), (Sα0)(t))+Mα0(t)+ N(Tα0)(t)+ N1(Sα0)(t)− f (t, β0(t), (Tβ0)(t), (Sβ0)(t))
−Mβ0(t)− N(Tβ0)(t)− N1(Sβ0)(t)
≤ 0,

1p(tk) = −Lkp(tk)+ Ik(α0(tk))− Ik(β0(tk))+ (Lkα0(tk)− Lkβ0(tk))
≤ −Lkp(tk),

p(0) = α1(0)− β1(0) = −β0(T )+ α0(T ) ≤ 0.

Again by Lemma 2.1, we get that p(t) ≤ 0, that is, α1(t) ≤ β1(t) for all t ∈ J0. Thus we have α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t)
for all t ∈ J0. Continuing this process, by induction, one can obtain monotone sequences {αn(t)} and {βn(t)} such that

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ · · · ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t), t ∈ J0,

where each αi(t), βi(t) ∈ PC1( J) and satisfies (3.1) and (3.2). As the sequences {αn} {βn} are uniformly bounded and equi-
continuous, one can employ the standard arguments Ascoli–Arzela criterion [2] to conclude that the sequences {αn} and
{βn} converge uniformly on J0 with

lim
n→∞

αn(t) = y∗(t), lim
n→∞

βn(t) = y∗(t).

Obviously, y∗(t), y∗(t) are the solutions of Eqs. (1.1)–(1.3). Nowwe prove that y∗(t), y∗(t) are in fact the extremal solutions
of Eqs. (1.1)–(1.3) in [α0, β0]. Let y(t) be any solution of Eqs. (1.1)–(1.3) such that y(t) ∈ [α0, β0], t ∈ J0. We will prove that
if αn(t) ≤ y(t) ≤ βn(t) for n = 0, 1, . . ., then αn+1(t) ≤ y(t) ≤ βn+1(t).
Letting p(t) = αn+1(t)− y(t), for t ∈ J0

p′(t)+Mp(t)+ N(Tp)(t)+ N1(Sp)(t) = f (t, αn(t), (Tαn)(t), (Sαn)(t))+Mαn(t)
+N(Tαn)(t)+ N1(Sαn)(t)− f (t, y(t), (Ty)(t), (Sy)(t))−My(t)− N(Ty)(t)− N1(Sy)(t)
≤ 0,

1p(tk) = −Lkp(tk)+ Ik(αn(tk))− Ik(y(tk))+ (Lkαn(tk)− Lky(tk))
≤ −Lkp(tk),

p(0) = αn(0)− y(0) ≤ 0.

By Lemma 2.1, we have p(t) ≤ 0 for all t ∈ J0, that is, αn+1(t) ≤ y(t). Similarly, we can prove y(t) ≤ βn+1(t) for all t ∈ J0.
Thus αn+1(t) ≤ y(t) ≤ βn+1(t) for all t ∈ J0, which implies y∗(t) ≤ y(t) ≤ y∗(t). This completes the proof. �
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Corollary 3.1. Assume that all assumptions in Theorem 3.1 hold with (A2) and (A4) replaced by (A∗2) and (A
∗

4),
(A∗2) the function f ∈ C( J × R× R× R, R) satisfies

f (t, x1, y1, z1)− f (t, x2, y2, z2) ≥ −M(x1 − x2)− N(t)(y1 − y2)− N1(t)(z1 − z2),
α0 ≤ x2 ≤ x1 ≤ β0, Tα0 ≤ y2 ≤ y1 ≤ Tβ0, Sα0 ≤ z2 ≤ z1 ≤ Sβ0, t ∈ J,

where M > 0, N(t),N1(t) are non-negative bounded integrable functions;
(A∗4) The inequalities (2.2) and (2.7) hold.
Then the result of Theorem 3.1 also holds.

The proof is almost similar to that of Theorem 3.1 and we omit it.

4. Examples

Example 1. Consider the following problem
y′(t) = −2y(t)+

1
12

∫ t

0
e−2(t−s)y(s)ds−

2
15

∫ 1

0
y(s)ds, t ∈

[
0,
1
2

)⋃(
1
2
, 1
]

1y
(
1
2

)
= −L1y

(
1
2

)
,

y(0) = −y(1).

(4.1)

Let f (t, x, y, z) = −2x+ 1
12y−

2
15 z, L1 = −

1
8 , M = 2, N =

1
10 , N1 =

2
15 , J = [0, 1], k(t, s) = e

−2(t−s), h(t, s) = 1, then for
t ∈ J , xi, yi, zi ∈ R, i = 1, 2, x1 ≥ x2, y1 ≥ y2, z1 ≥ z2,

f (t, x1, y1, z1)− f (t, x2, y2, z2) = −2(x1 − x2)+
1
12
(y1 − y2)−

2
15
(z1 − z2)

≥ −2(x1 − x2)−
1
10
(y1 − y2)−

2
15
(z1 − z2).

Thus the condition (A2) holds. Direct computation shows that∫ 1

0
q(s)ds ≤

∫ 1

0

(
N
∫ t

0
e−2(t−s)e2(t−s)(1− L1)ds+ N1

∫ 1

0
e2(t−s)(1− L1)ds

)
dt

=

∫ 1

0

(
7
80
t +

7
120
e2t(1− e−2)ds

)
dt

' 0.20496 < 1 = 1− L1,

sup
t∈J

∫ 1

0
G(t, s)

[
N
∫ s

0
k(s, τ )dτ + N1

∫ 1

0
h(s, τ )dτ

]
ds+

eM

eM + 1
|L1| ≤ sup

t∈J

∫ 1

0
|G(t, s)|

1
10
(1− e−2s)dt +

2
15
+
1
8

≤
43
120

< 1.

Therefore, the condition (A4) holds. It is easy to verify that (4.1) admits lower solution α0(t) and upper solution β0(t) given
by

α0(t) =


−
8
9
, t ∈

[
0,
1
2

]
,

−1, t ∈
(
1
2
, 1
]
,

β0(t) =


−t + 1, t ∈

[
0,
1
2

]
,

t
2
+
1
3
, t ∈

(
1
2
, 1
]
.

(4.2)

Obviously, α0(t) ≤ β0(t). And thus the conclusion of Theorem 3.1 holds for problem (4.1).

Remark 4.1. In Example 1, we remark that L1 = − 18 < 0 is different from the earlier results, where L1 was required to be
non-negative, so we improve the earlier results.

Example 2. Consider the following problem
y′(t) = −2y(t)+

t2

360

∫ t

0
e−2(t−s)y(s)ds−

1
45

[
t −

∫ 1

0
ty(s)ds

]3
, t ∈

[
0,
1
2

)⋃(
1
2
, 1
]

1y
(
1
2

)
= −L1y

(
1
2

)
,

y(0) = −y(1).

(4.3)
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Let f (t, x, y, z) = −2x+ t2
360y−

1
45 [t − z]

3, L1 = − 18 , M = 2, N =
t2
10 , N1 =

2t2
15 , J = [0, 1], k(t, s) = e

−2(t−s), h(t, s) = t .
It is easy to show that (4.3) admits lower solution α0(t) and upper solution β0(t) given by (4.2). It follows Sα0(t) < 1 and
Sβ0(t) < 1 that, for t ∈ J , xi, yi, zi ∈ R, i = 1, 2, β0 ≥ x1 ≥ x2 ≥ α0, Tβ0 ≥ y1 ≥ y2 ≥ Tα0, Sβ0 ≥ z1 ≥ z2 ≥ Sα0,

f (t, x1, y1, z1)− f (t, x2, y2, z2) = −2(x1 − x2)+
t2

12
(y1 − y2)−

t
45
[(t − z1)3 − (t − z2)3]

≥ −2(x1 − x2)−
t2

10
(y1 − y2)−

2t2

15
(z1 − z2).

Thus the condition (A∗2) holds. Now we verify the condition (A
∗

4). Note that t ∈ [0, 1], we have∫ 1

0
q(s)ds =

∫ 1

0

(
N(t)

∫ t

0
e−2(t−s)e2(t−s)(1− L1)ds+ N1(t)

∫ 1

0
e2(t−s)(1− L1)ds

)
dt

≤

∫ 1

0

(
N
∫ t

0
e−2(t−s)e2(t−s)(1− L1)ds+ N1

∫ 1

0
e2(t−s)(1− L1)ds

)
dt

< 1 = 1− L1,

sup
t∈J

∫ 1

0
G(t, s)

[
N(s)

∫ s

0
k(s, τ )dτ + N1(s)

∫ 1

0
h(s, τ )dτ

]
ds+

eM

eM + 1
|L1|

≤ sup
t∈J

∫ 1

0
|G(t, s)|

[
N
∫ s

0
k(s, τ )dτ + N1

∫ 1

0
h(s, τ )dτ

]
ds+

eM

eM + 1
|L1| < 1.

Therefore, the result of Corollary 3.1 holds.
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