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a b s t r a c t

For Toeplitz system of weakly nonlinear equations, by using the separability and
strong dominance between the linear and the nonlinear terms and using the circulant
and skew-circulant splitting (CSCS) iteration technique, we establish two nonlinear
composite iteration schemes, called Picard-CSCS and nonlinear CSCS-like iteration
methods, respectively. The advantage of thesemethods is that they do not require accurate
computation and storage of Jacobian matrix, and only need to solve linear sub-systems of
constant coefficient matrices. Therefore, computational workloads and computer storage
may be saved in actual implementations. Theoretical analysis shows that these new
iteration methods are local convergent under suitable conditions. Numerical results show
that both Picard-CSCS and nonlinear CSCS-like iteration methods are feasible and effective
for some cases.
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1. Introduction

Consider iterative solution of the following large Toeplitz system of weakly nonlinear equations

Ax = φ(x), or F(x) := Ax − φ(x) = 0, (1.1)

where A ∈ Cn×n is a large, nonsymmetric and positive definite Toeplitz matrix, φ : D ⊂ Cn
→ Cn is a continuously

differentiable function defined on the open convex domain D in the n-dimensional linear space Cn. Here, the system of
nonlinear equations (1.1) is said to be Toeplitz weakly nonlinear if the linear term Ax is strongly dominant over the nonlinear
term φ(x) in certain norm and A is a Toeplitz matrix; see [1–3].

The system of weakly nonlinear equations (1.1) may arise in many areas of scientific computing and engineering
applications. For example, in finite-difference or sinc discretizations of nonlinear partial differential equations [4–7], in
collocation approximations of nonlinear integral equation [8] and in saddle point problems from image processing [9,10].

A matrix A is said to be Toeplitz if

A =


a0 a−1 · · · a2−n a1−n
a1 a0 a−1 · · · a2−n
...

. . .
. . .

. . .
...

an−2 · · · a1 a0 a−1
an−1 an−2 · · · a1 a0

 ,
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i.e.,A is constant along its diagonals; see [11]. A ToeplitzmatrixApossesses a circulant and skew-circulant splittingA = C+S,
where

C =
1
2


a0 a−1 + an−1 · · · a2−n + a2 a1−n + a1

a1 + a1−n a0 · · · · · · a2−n + a2
...

. . .
. . .

. . .
...

an−2 + a−2 · · · · · · a0 a−1 + an−1
an−1 + a−1 an−2 + a−2 · · · a1 + a1−n a0

 (1.2)

and

S =
1
2


a0 a−1 − an−1 · · · a2−n − a2 a1−n − a1

a1 − a1−n a0 · · · · · · a2−n − a2
...

. . .
. . .

. . .
...

an−2 − a−2 · · · · · · a0 a−1 − an−1
an−1 − a−1 an−2 − a−2 · · · a1 − a1−n a0

 . (1.3)

Note that C is a circulant matrix and S is a skew-circulant matrix. A circulant matrix can be diagonalized by the discrete
Fourier matrix F and a skew-circulant matrix can be diagonalized by a discrete Fourier matrix with diagonal scaling,
i.e., F̂ = FΩ . That is to say, it holds that

F∗CF = ΛC , F̂∗SF̂ = ΛS, (1.4)

where

F = (F)j,k =
1

√
n
e

2π i
n jk, 0 ≤ j, k ≤ s, Ω = diag


1, e−

π i
n , . . . , e−

(n−1)π i
n


,

and i is the imaginary unit [12,13]. ΛC and ΛS are diagonal matrices formed by the eigenvalues of C and S, respectively,
which can be obtained in O(n log n) operations by using the fast Fourier transform (FFT).

As is known, the Newtonmethodmay be themost popular, classic and important solver for a general system of nonlinear
equations F(x) = 0, where F : D ⊂ Cn

→ Cn is a continuously differentiable function. However, at each iteration step, the
Newton method requires not only the computation of F(x(k)) and F ′(x(k)), but also the exact solution of the corresponding
Newton equation F ′(x(k))∆x(k) = −F(x(k)), which are very costly and complicated in actual applications [14,15]. In order to
overcome these disadvantages and improve the efficiency of the Newton iteration method, a large number of modifications
have been proposed to simplify or avoid computation of the Jacobian matrix and reduce the cost of the function evaluation;
see [3,14,16–19].

For the weakly nonlinear system (1.1), based on the facts that the linear and the nonlinear terms Ax and φ(x) are well
separated and the former is strongly dominant over the latter, Bai and Yang [3] presented the Picard-HSS and the nonlinear
HSS-like iteration methods. The advantage of these methods over the Newton iteration method is that they do not require
explicit construction and accurate computation of the Jacobianmatrix, and only need to solve linear sub-systems of constant
coefficient matrices. Hence, computational workloads and computer memory may be saved.

In this paper, based on the circulant and skew-circulant splitting (CSCS) of the Toeplitzmatrix, we establish two classes of
nonlinear composite splitting iteration schemes, called Picard-CSCS and nonlinear CSCS-like iterationmethods, respectively,
for solving the large scale Toeplitz systemofweakly nonlinear equations (1.1). Comparedwith theNewton iterationmethod,
both Picard-CSCS and nonlinear CSCS-like iteration methods neither require explicit form and accurate computation of
Jacobianmatrix, nor require solution of the changeable-coefficient linear sub-systems,which is similar to the Picard-HSS and
the nonlinear HSS-like iteration methods initially introduced in [3]. Moreover, as the circulant and skew-circulant matrices
can be diagonalized by the discrete Fourier matrix and diagonally scaled discrete Fourier matrix, respectively, the solutions
of the two linear sub-systems can be efficiently obtained by using FFT. In addition, FFT is highly parallelizable and has
been implemented on multiprocessors efficiently [20]. Hence, computational workloads may be further saved in actual
implementations.

The organization of this paper is as follows. In Section 2, we review the CSCS iteration and give the Newton-CSCS iteration
method. In Sections 3 and 4, we establish the Picard-CSCS and the nonlinear CSCS-like iteration methods, and discuss their
convergence properties. Numerical results are given in Section 5. Finally, in Section 6 we draw a brief conclusion and give
some remarks.

2. The CSCS and Newton-CSCS iteration methods

When the nonlinear term φ : D ∈ Cn
→ Cn is a constant vector, i.e., φ(x) = b, the Toeplitz system of weakly nonlinear

equations (1.1) reduces to the Toeplitz system of linear equations

Ax = b, A ∈ Cn×n and x, b ∈ Cn. (2.1)
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Many direct methods are prosed for solving this linear system in earlier, but now iteration methods have gained much
attention; see [11,21–25]. Based on the circulant and skew-circulant splitting (CSCS) of the Toeplitz matrix A, Ng established
in [20] the following CSCS iteration method for solving the positive definite system of linear equations (2.1).

The CSCS iterationmethod:Given an initial guess x(0) ∈ Cn, compute x(k+1) for k = 0, 1, 2, . . . using the following iteration
scheme until {x(k)} satisfies the stopping criterion:(αI + C)x


k+ 1

2


= (αI − S)x(k) + b,

(αI + S)x(k+1)
= (αI − C)x


k+ 1

2


+ b,

(2.2)

where α is a given positive constant and I denotes the identity matrix.
We remark that the CSCS iteration method is a special case of the NSS iteration method in [26], which generalizes the

HSS iterationmethod [27] to normal and skew-Hermitian splitting (NSS). For the convergence property of the CSCS iteration
method, Ng applied a general convergence theory for a two-step splitting iteration in [27] to obtain the following result.

Lemma 2.1 ([20]). Let C and S be the circulant and the skew-circulant matrices given in (1.2) and (1.3), and α be a positive
constant. If C and S are positive definite, then the iteration matrix T (α) of the CSCS iteration is given by

T (α) = (αI + S)−1(αI − C)(αI + C)−1(αI − S), (2.3)

and its spectral radius ρ(T (α)) is bounded by

σ(α) ≡ max
λj∈λ(C)

|α − λj|

|α + λj|
· max
µj∈λ(S)

|α − µj|

|α + µj|
.

And it holds that

ρ(T (α)) ≤ σ(α) < 1, ∀α > 0,

i.e., the CSCS iteration converges to the exact solution x∗ ∈ Cn of the system of linear equation Ax = b.

As the Newton method is the most classic and important iteration method for a general nonlinear system, we consider
using it to solve the weakly nonlinear system (1.1). When the Jacobian matrix of the nonlinear function F(x) at the solution
point x∗ ∈ D, denoted as F ′(x∗), is a Toeplitz matrix, following the construction of the Newton-HSS iteration scheme in
[18], we can use the CSCS iteration method to approximate the solution of the Newton equation instead of solving it exactly
(i.e., using the Newton iteration as the outer iteration and the CSCS iteration as the inner iteration), which is algorithmically
described as follows.

The Newton-CSCS iteration method. Let F : D ⊂ Cn
→ Cn be a continuously differentiable function with the Toeplitz

Jacobian matrix F ′(x) at any x ∈ D, C(x) and S(x) be the circulant and skew-circulant parts of F ′(x) = C(x) + S(x),
respectively, and C(x) and S(x) be positive definite matrices. Given an initial guess x(0) ∈ D and a sequence {lk}∞k=0 of
positive integers, compute x(k+1) for k = 0, 1, 2, . . . using the following iteration scheme until {x(k)} satisfies the stopping
criterion:

(a) s(k,0) := 0;
(b) For l = 0, 1, 2, . . . , lk − 1, solve the following linear systems to obtain s(k, l+1):(αI + C(x(k)))s


k,l+ 1

2


= (αI − S(x(k)))s(k,l) − F(x(k)),

(αI + S(x(k)))s(k,l+1)
= (αI − C(x(k)))s


k,l+ 1

2


− F(x(k)),

where α is a given positive constant and I denotes the identity matrix;
(c) x(k+1)

:= x(k) + s(k, lk).

At each iteration step, say k, the Newton-CSCS iterationmethod requires to solve two linear sub-systemswith the shifted
circulant coefficient matrix αI + C(x(k)) and the shifted skew-circulant coefficient matrix αI + S(x(k)). The advantage of this
method is that the coefficient matrices of the two linear sub-systems can be diagonalized and well adapted for parallel
computing. But the disadvantages are that it requires the explicit form of the Jacobian matrix F ′(x(k)) at the current iterate
x(k) and that the coefficient matrices of the two linear sub-systems are varying with respect to the iteration index k, so the
computations of the Newton-CSCS iteration could be much more expensive. Moreover, it is not easy to ensure that F ′(x(k))
is a Toeplitz matrix. Therefore, this method is not always feasible.
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3. The Picard-CSCS iteration method

In order to overcome the above-mentioned disadvantages of the Newton-CSCS iterationmethod, recalling that the linear
and the nonlinear terms Ax and φ(x) are well separated and the former is strongly dominant over the latter, we can use the
Picard iteration method

Ax(k+1)
= φ(x(k)), k = 0, 1, 2, . . . ,

to solve the system of Toeplitz weakly nonlinear equations (1.1); see [3,14,16]. When thematrix A ∈ Cn×n is Toeplitz and its
circulant part C and skew-circulant part S are all positive definite, the next iterate x(k+1) may be approximately computed
by the CSCS iteration method. This naturally leads to a class of nonlinear composite iteration scheme, called Picard-CSCS
iteration method.
The Picard-CSCS iteration method. Let φ : D ⊂ Cn

→ Cn be a continuously differentiable function and A ∈ Cn×n be a
Toeplitz matrix. Suppose that A = C + S, where C and S are the circulant and skew-circulant parts of A given in (1.2) and
(1.3) and they are positive definite. Given an initial guess x(0) ∈ D and a sequence {lk}∞k=0 of positive integers, compute x(k+1)

for k = 0, 1, 2, . . . using the following iteration scheme until {x(k)} satisfies the stopping criterion:

(a) x(k,0) := x(k);
(b) For l = 0, 1, 2, . . . , lk − 1, solve the following linear systems to obtain x(k, l+1):(αI + C)x


k,l+ 1

2


= (αI − S)x(k,l) + φ(x(k)),

(αI + S)x(k,l+1)
= (αI − C)x


k,l+ 1

2


+ φ(x(k)),

where α is a given positive constant and I denotes the identity matrix;
(c) x(k+1)

:= x(k, lk).

Of course, the Picard-CSCS iteration method can be easily reformulated into residual-updating forms by replacing the
main steps (a)–(c) as follows.

(a′) s(k,0) := 0, b(k) := φ(x(k))− Ax(k);
(b′) For l = 0, 1, 2, . . . , lk − 1, solve the following linear systems to obtain s(k,l+1):(αI + C)s


k,l+ 1

2


= (αI − S)s(k,l) + b(k),

(αI + S)s(k,l+1)
= (αI − C)s


k,l+ 1

2


+ b(k),

where α is a given positive constant and I denotes the identity matrix;
(c′) x(k+1)

:= x(k) + s(k,lk).

Clearly, the Picard-CSCS iteration method uses a CSCS linear iteration method to approximate the solution of the linear
sub-system instead of solving it exactly. The advantages of this method are that it often requires only a small amount of
storage and that, when x(k) is near to x∗, it can take advantage of the fact that zeros is a good initial approximation to s(k,0).
The Picard-CSCS iteration method can be equivalently rewritten as

x(k+1)
= T (α)lkx(k) +

lk−1−
j=0

T (α)jG(α)φ(x(k)), k = 0, 1, 2, . . . , (3.1)

where

T (α) = (αI + S)−1(αI − C)(αI + C)−1(αI − S) (3.2)

and

G(α) = 2α(αI + S)−1(αI + C)−1. (3.3)

Here, T (α) is the iteration matrix of the inner CSCS method. The sequence of outer iteration {x(k)} depends upon the CSCS
inner iteration and the criteria used to stop the inner iteration.

Compared with the Newton-CSCS iteration method, the Picard-CSCS iteration method neither computes and stores the
actual Jacobian matrices, nor requires differentiability of the function φ(x), which are analogous the Picard-HSS iteration
method. In addition, the two linear sub-systems in all CSCS inner iterations have the same shifted circulant and shifted
skew-circulant coefficient matrices, which are constant with respect to the iteration index k. Moreover, the exact solutions
can be efficiently obtained by using fast Fourier transforms (FFTs). Hence, the computations of the Picard-CSCS iteration
could be much cheaper.

Now, we consider the local convergence, as well as the convergence rate and the convergence factor of the Picard-CSCS
iteration method. By utilizing the R-convergence concept and modifying Theorem 3.1 in [3], we can establish the following
local convergence theory for the Picard-CSCS iteration method.
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Theorem 3.1. Let φ : D ⊂ Cn
→ Cn be G-differentiable on an open neighborhood N0 ⊂ D of a point x∗ ∈ D at which φ′(x)

is continuous and F(x∗) := Ax∗ − φ(x∗) = 0. Suppose that C and S are the circulant and the skew-circulant parts of the matrix
A = C + S given in (1.2) and (1.3), and both C and S are positive definite matrices. Denote by

θ(α) = ‖T (α)‖, æ = ‖A−1
‖, β = ‖A−1φ′(x∗)‖. (3.4)

Then there exists an open neighborhood N ⊂ N0 of x∗ such that for any x(0) ∈ N and any sequence of positive integers
lk, k = 0, 1, 2, . . ., the iteration sequence {x(k)}∞k=0 generated by the Picard-CSCS iteration method is well defined and convergent
to x∗, provided β < 1 and l0 = lim infk→∞ lk ≥ ⌊ln( 1−β1+β )/ ln(θ)⌋ (where ⌊ · ⌋ is used to denote the smallest integer no less than
the corresponding real number).

Moreover, it holds that

lim sup
k→∞

‖x(k) − x∗‖
1
k ≤ β + (1 + β)θ(α)l0 .

In particular, if limk→∞ lk = ∞, then the rate of convergence is R-linear, with the R-factor being at most β , i.e.,

lim sup
k→∞

‖x(k) − x∗‖
1
k ≤ β.

Proof. The proof uses arguments similar to those in the proof of the convergence theorem of the Picard-HSS iteration
method; see [3]. In fact, we only need to replace theHermitianmatrixH and the skew-Hermitianmatrix S of the convergence
theorem of the Picard-HSS iteration method by the circulant matrix C and the skew-circulant matrix S, and then obtain the
convergence theorem of the Picard-CSCS iteration method. �

Theorem 3.1 shows that the Picard-CSCS iteration has the same convergence property as the Picard-HSS iteration, which
is essentially determined by the quantities β and θ(α). Small β and θ(α) will lead to fast convergence of the Picard-CSCS
iteration.

4. The nonlinear CSCS-like iteration method

Since the Picard-CSCS and the Picard-HSS iteration methods share the same drawback, that is, the numbers of the inner
iteration steps lk, k = 0, 1, 2, . . ., are often problem dependent and difficult to be determined in actual computations, we
propose the following nonlinear CSCS-like iteration method to overcome this disadvantage.
The nonlinear CSCS-like iteration method. Let φ : D ⊂ Cn

→ Cn be a continuously differentiable function and A ∈ Cn×n

be a positive definite Toeplitz matrix. Suppose that C and S are the circulant and the skew-circulant parts of A = C +S given
in (1.2) and (1.3), C and S are positive definite matrices. Given an initial guess x(0) ∈ D, compute x(k+1) for k = 0, 1, 2, . . .
using the following iteration scheme until {x(k)} satisfies the stopping criterion:

(αI + C)x

k+ 1

2


= (αI − S)x(k) + φ(x(k)),

(αI + S)x(k+1)
= (αI − C)x


k+ 1

2


+ φ


x

k+ 1

2


,

where α is a given positive constant and I denotes the identity matrix.
In the following, we deduce the convergence property for the nonlinear CSCS-like iteration method. We define

U(x) = (αI + C)−1((αI − S)x + φ(x)),

V (x) = (αI + S)−1((αI − C)x + φ(x))
(4.1)

and

ψ(x) = V ◦ U(x) := V (U(x)),

then the nonlinear CSCS-like iteration scheme can be equivalently expressed as

x(k+1)
= ψ(x(k)), k = 0, 1, 2, . . . . (4.2)

Suppose that x∗ ∈ D is a solution of the system of weakly nonlinear equations (1.1). Then we can easily verify the
following fact by using the chain rule for derivative:

ψ ′(x∗) = V ′(x∗)U ′(x∗)

= (αI + S)−1(αI − C + φ′(x∗))(αI + C)−1(αI − S + φ′(x∗)).

By making use of the Ostrowski theorem [6], we know that if ρ(ψ ′(x∗)) < 1, then x∗ is a point of attraction of the
nonlinear CSCS-like iteration. Thenwe can obtain the following local convergence theory for the CSCS-like iterationmethod.
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Theorem 4.1. Assume that φ : D ⊂ Cn
→ Cn is F-differentiable at a point x∗ ∈ D such that Ax∗ = φ(x∗). Suppose that C and

S are the circulant and the skew-circulant parts of the matrix A = C + S given in (1.2) and (1.3), and C and S are positive definite
matrices. Denote by

T (α; x∗) = (αI + S)−1(αI − C + φ′(x∗))(αI + C)−1(αI − S + φ′(x∗)).

If ρ(T (α; x∗)) < 1, then x∗ ∈ D is a point of attraction of the nonlinear CSCS-like iteration method.

Now, we apply the above result to obtain the following theorem.

Theorem 4.2. Assume the conditions of Theorem 4.1 be satisfied. Denote by

δ = max{‖φ′(x∗)(αI + S)−1
‖, ‖φ′(x∗)(αI + C)−1

‖},

ξ = max{‖(αI − S)(αI + S)−1
‖, ‖(αI − C)(αI + C)−1

‖},

and the matrix T (α) is defined in (2.3). If δ < 1 − ξ , then ρ(T (α; x∗)) < 1.

Proof. Since

T (α; x∗) = (αI + S)−1(αI − C)(αI + C)−1(αI − S)+ (αI + S)−1(αI − C)(αI + C)−1φ′(x∗)

+ (αI + S)−1φ′(x∗)(αI + C)−1(αI − S)+ (αI + S)−1φ′(x∗)(αI + C)−1φ′(x∗)

and

‖T (α)‖ ≤ ‖(αI − C)(αI + C)−1
‖ ‖(αI − S)(αI + S)−1

‖ ≤ ξ 2,

we have

‖T (α; x∗)‖ = ‖(αI + S)T (α; x∗)(αI + S)−1
‖

= ‖(αI + S)T (α)(αI + S)−1
+ (αI − C)(αI + C)−1φ′(x∗)(αI + S)−1

+φ′(x∗)(αI + C)−1(αI − S)(αI + S)−1
+ φ′(x∗)(αI + C)−1φ′(x∗)(αI + S)−1

‖

≤ ‖(αI + S)T (α)(αI + S)−1
‖ + ‖(αI − C)(αI + C)−1φ′(x∗)(αI + S)−1

‖

+ ‖φ′(x∗)(αI + C)−1(αI − S)(αI + S)−1
‖ + ‖φ′(x∗)(αI + C)−1φ′(x∗)(αI + S)−1

‖

≤ ‖T (α)‖ + ‖(αI − C)(αI + C)−1
‖ ‖φ′(x∗)(αI + S)−1

‖

+ ‖φ′(x∗)(αI + C)−1
‖ ‖(αI − S)(αI + S)−1

‖ + ‖φ′(x∗)(αI + C)−1
‖ ‖φ′(x∗)(αI + S)−1

‖

≤ ξ 2 + 2ξδ + δ2 = (ξ + δ)2.

Now, under the condition δ < 1 − ξ , we easily obtain ρ(T (α; x∗)) ≤ ‖T (α; x∗)‖ < 1. �

Theorem 4.2 shows that ρ(T (α; x∗)) < 1 is valid if φ′(x∗) is reasonably small compared with the matrix A. Otherwise,
the nonlinear CSCS-like iteration may be convergent slowly or even divergent.

5. Numerical results

In this section, we illustrate the effectiveness of our Picard-CSCS and nonlinear CSCS-like iteration methods by solving
the model problem (5.1).

All tests are stared from the zero vector, performed in MATLAB R2009a with machine precision 10−16, and terminated
when the current iteration satisfies

‖F(x(k))‖2

‖F(x(0))‖2
≤ 10−6.

In addition, the stopping criteria for the inner iterations of the Picard-HSS, the Picard-CSCS and the Newton-GMRES (5)
methods are set to be

‖F ′(x(k))s(k, lk) + F(x(k))‖2

‖F(x(k))‖2
≤ ηk,

where lk is the number of the inner iteration steps and ηk is the prescribed tolerance for controlling the accuracy of the inner
iterations at the k-th outer iterate. In our test, ηk is fixed for all k, which is simply denoted as η.

The two sub-systems of linear equations involved are solved in the way if Ax = b, then x = A−1b. Moreover, if the two
sub-systems of linear equations involved in the Picard-CSCS and the nonlinear CSCS-like iteration methods are solved by
making use of the method presented in [28] and using parallel computing, the numerical results of the Picard-CSCS and the
nonlinear CSCS-like iteration methods must be better.

In actual computations, we adopt the optimal parameters αHSS =
√
λminλmax given in [27] for the Picard-HSS and the

nonlinear HSS-like methods, where λmin and λmax are the lower and the upper bounds for the eigenvalues of the Hermitian
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Table 1
The optimal values α for Example 1.

N 10 20 40 80 160

αCSCS 45.4545 23.8095 12.1951 6.1728 3.1056
αHSS 25.0486 6.7992 1.7140 0.4012 0.0822

part H of the coefficient matrix A, and adopt the optimal parameters αCSCS given in Theorem 2 in [20] for the Picard-CSCS
and the nonlinear CSCS-like methods. Note that they only minimize the bound of the convergence factor of the iteration
matrix, but not the spectral radius of the iterationmatrix. Admittedly, the optimal parametersα∗ are crucial for guaranteeing
fast convergence speeds of these parameter-dependent iteration methods, but they are generally very difficult to be
determined.

Example 1 ([29]). Consider the nonlinear two-point boundary-value problem with a convective dominated term in one-
dimensional setting:−ε

d2u
dx2

+ b(x)
du
dx

= f (u, x), x ∈ (0, 1),
u(0) = u(1) = 0,

(5.1)

with ε = 1, b(x) = 1000 and f (u, x) = 10 sin(u + 1). The problem (5.1) is a singularly perturbed problem.

By applying the central difference formula to approximate the second order derivation d2u
dx2

, and the backward difference
formula to approximate the first order derivation du

dx , with the step size ∆x = 1/(N + 1), xj = j∆x. We obtain a system of
weakly nonlinear equations of the form (1.1).

Table 1 lists the optimal parameters αCSCS and αHSS for Example 1. We note that with the increase of the numbers of the
mesh point N , the optimal values αCSCS and αHSS are decreasing quickly, and the former is larger than the latter.

Table 2 lists numerical results corresponding to five iteration methods for Example 1. The Picard-CSCS and the nonlinear
CSCS-like methods are compared with the Picard-HSS, the nonlinear HSS-like and the Newton-GMRES (5) methods with
different N (N = 10, 20, 40, 80, 160) and tolerance η (η = 0.1, 0.01, 0.001) on aspects of numbers of outer, inner and total
iteration steps (denoted as ITout, ITint and IT, respectively) and total CPU times (denoted as CPU), where ITint denotes the
average number of inner iteration steps at each outer iterate. From this table, we can see that all the experimentedmethods
can successfully produce approximate solutions to the system of weakly nonlinear equations for all of the numbers of mesh
point N .

When the tolerance η for controlling the accuracy of the inner iterations becomes small and N is fixed, the number of
inner iteration steps, the number of total iteration steps and the amount of CPU times of the Picard-HSS and the Picard-CSCS
are increasing, but the number of outer iteration steps are decreasing. Of course, the computing efficiency of the Picard-HSS
and the Picard-CSCS methods depends on the tolerances used for controlling the accuracy of the inner iterations. Hence,
good choice of this quantity for the Picard-CSCS and the Picard-HSS methods should be an important and interesting topic
for future study.

When N is increasing, the number of outer iteration steps are fixed or increasing slightly, but the number of inner
iteration steps are increasing quickly. The number of total iteration steps and the total CPU times of all iteration methods
are increasing quickly, especially for the Picard-HSS and the nonlinear HSS-like iteration methods.

To show that the proposed iteration methods can also be applied to solve complex system of nonlinear equations (1.1),
we construct and test the following example, which is a Toeplitz systemofweakly nonlinear equationswith complexmatrix.

Example 2. A ∈ Cn×n is a nonsymmetric, complex, sparse and positive definite Toeplitz matrix with A(j, j) = 10, A(j, j +
1) = −2i, A(j + 1, j) =

1
2 + 2i, A(j, j + 2) = −3i, A(j + 2, j) =

1
2 + 3i, j = 1, 2, 3, . . . , n, and φ(x) = sin(x).

Table 3 lists the optimal parametersαCSCS andαHSS for Example 2.We note that with the increase of thematrix dimension
N , the optimal parameters αCSCS and αHSS are almost fixed or decreasing slightly.

In Table 4, we list numerical results corresponding to four iteration methods for Example 2, i.e., the Picard-HSS, the
nonlinear HSS-like, the Picard-CSCS and the nonlinear CSCS-like iteration methods. From this table, we see that all the
experimented methods can successfully produce approximate solutions to the system of weakly nonlinear equations for all
of the matrix dimensions.

When the matrix dimension N is increasing, the number of outer and inner iteration steps are almost fixed for all
iteration methods, and the number of total iteration steps show the similar phenomena. But the total CPU times for all
iteration methods are increasing quickly. Moreover, in terms of outer iteration steps, The Picard-HSS and the Picard-CSCS
have almost the same results, but in terms of inner iteration steps, the Picard-CSCS iteration method is better than the
Picard-HSS iteration method.

When the tolerance η becomes small and N is fixed, both numbers of inner iteration steps and total iteration steps of
the Picard-HSS and the Picard-CSCS are increasing, but the amount of CPU times of the Picard-CSCS is less than that of the
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Table 2
The numbers of iterations and total CPU times for Example 1.

N 10 20 40 80 160

η = 0.1 Picard-HSS ITout 6 6 6 6 6
ITinn 6.6667 13.8333 29.6667 62.6667 135.3333
IT 40 83 178 376 812
CPU 0.0012 0.0020 0.0056 0.0286 0.3408

Picard-CSCS ITout 5 5 5 6 6
ITinn 2.6 3.4 5.2 8 16.1667
IT 13 17 26 48 97
CPU 0.0007 0.0008 0.0015 0.0061 0.0527

Newton-GMRES ITout 4 4 4 6 8
ITinn 9 10.75 14.5 20.6667 23.75
IT 36 43 58 124 190
CPU 0.0138 0.0128 0.0192 0.0350 0.0804

η = 0.01 Picard-HSS ITout 3 3 3 3 4
ITinn 13 29.3333 61 137.3333 280.5
IT 39 88 183 412 1122
CPU 0.0010 0.0020 0.0055 0.0287 0.4648

Picard-CSCS ITout 3 3 3 3 3
ITinn 4.3333 7 10.6667 19.3333 37
IT 13 21 32 58 111
CPU 0.0005 0.0008 0.0016 0.0064 0.0576

Newton-GMRES ITout 3 3 3 4 6
ITinn 10 20 20.3333 29 28.3333
IT 30 60 61 116 170
CPU 0.0084 0.0148 0.0216 0.0321 0.0762

η = 0.001 Picard-HSS ITout 3 3 3 3 3
ITinn 21 44 96.6667 214.6667 463.6667
IT 63 132 290 644 1391
CPU 0.0021 0.0027 0.0082 0.0436 0.5733

Picard-CSCS ITout 3 3 3 3 3
ITinn 6 9 14.3333 24.6667 44.6667
IT 18 27 43 74 134
CPU 0.0014 0.0009 0.0019 0.0075 0.0678

Newton-GMRES ITout 3 3 2 3 5
ITinn 10 20 40 33 42
IT 30 60 80 99 210
CPU 0.0083 0.0148 0.0191 0.0309 0.0779

HSS-like IT 37 81 174 371 797
CPU 0.0026 0.0058 0.0148 0.0507 0.4330

CSCS-like IT 8 9 14 24 43
CPU 0.0008 0.0009 0.0018 0.0058 0.0352

Table 3
The optimal values α for Example 2.

N 40 80 160 320 640

αCSCS 3.2821 3.2771 3.2761 3.2759 3.2758
αHSS 7.9260 7.8866 7.8762 7.8735 7.8728

Picard-HSS, and they all reach the least when η = 0.01. Hence, good choice of the tolerance η for the Picard-CSCS and the
Picard-HSS methods should be also an important problem, which could decide the computing efficiency of the Picard-HSS
and the Picard-CSCS methods.

From Tables 2 and 4, we observe that the nonlinear CSCS-like and the Picard-CSCS iteration methods performs better
than the Newton-GMRES (5), the nonlinear HSS-like and the Picard-HSS iteration methods in terms of iteration steps and
CPU times for solving the Toeplitz system ofweakly nonlinear equations. In particular, the nonlinear CSCS-likemethod often
does better than the Picard-CSCS method in our implementations.

6. Conclusion and remarks

For large scale Toeplitz system of weakly nonlinear equations, we have established the Picard-CSCS and the nonlinear
CSCS-like iteration methods. They are all based on the separability and strong dominance between the linear and the
nonlinear terms and the circulant and skew-circulant splitting (CSCS) iteration technique. Both theoretical analysis and
numerical experiments have shown that the Picard-CSCS and the nonlinear CSCS-like iteration methods are feasible and



M.-Z. Zhu, G.-F. Zhang / Journal of Computational and Applied Mathematics 235 (2011) 5095–5104 5103

Table 4
The numbers of iterations and the total CPU times for Example 2.

N 40 80 160 320 640

η = 0.1 Picard-HSS ITout 6 7 7 6 6
ITint 2.1667 2.1429 2.1429 2 2
IT 13 15 15 12 12
CPU 0.0049 0.0102 0.0477 0.2732 1.7712

Picard-CSCS ITout 5 5 5 5 5
ITint 2 2 2 2 2
IT 10 10 10 10 10
CPU 0.0039 0.0086 0.0380 0.2399 1.6595

η = 0.01 Picard-HSS ITout 5 5 5 5 5
ITint 4 4 4 4 4
IT 20 20 20 20 20
CPU 0.0033 0.0089 0.0497 0.2922 1.9033

Picard-CSCS ITout 5 5 5 5 5
ITint 3 3 3 3 3
IT 15 15 15 15 15
CPU 0.0021 0.0077 0.0440 0.2467 1.7461

η = 0.001 Picard-HSS ITout 5 5 5 5 5
ITint 6 6 6 6 6
IT 30 30 30 30 30
CPU 0.0037 0.0096 0.0618 0.3426 2.0800

Picard-CSCS ITout 5 5 5 5 5
ITint 4 4 4 4 4
IT 20 20 20 20 20
CPU 0.0048 0.0080 0.0459 0.2770 1.8639

HSS-like IT 12 12 12 12 11
CPU 0.0020 0.0036 0.0154 0.0588 0.2362

CSCS-like IT 8 8 7 7 7
CPU 0.0012 0.0033 0.0078 0.0336 0.1566

efficient nonlinear solvers. In particular, the nonlinear CSCS-like method often does better than the Picard-CSCS method in
our implementations.

Since the matrix splitting among these iteration methods is a Toeplitz splitting, these new iteration methods can be
applied only to the Toeplitz system of weakly nonlinear equations whose linear terms Ax are strongly dominant over the
nonlinear term φ(x) in certain norm and the matrix A is Toeplitz.
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