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1. Introduction

The main problem of computational fluid dynamics (CFD) for configurations with complex geometry is mesh generation.
The structured grid methods have a disadvantage for complex geometries [1]. The main advantage of the unstructured grid
methods is the facility of grid generation for complex configurations [2]. However, the computational costs and memory
requirements are generally higher than for their structured grid counterparts.

The original characteristic-based method (CB) for the artificial compressibility approach [3] for solving the incompressible
flow equations was proposed by Drikakis et al. [4]. Then the revised CB method was used on unstructured grids for
incompressible flow solutions by X. Su et al. [5]. The multidimensional upwind characteristic-based (MCB) method was
proposed by Zamzamian and Razavi [6] for solving the incompressible flow equations on a structured grid; it is based on the
artificial compressibility method. They showed that the MCB scheme is robust and powerful for modeling incompressible
viscous flows and for achieving high accuracy and remarkable advantages in convergence rate with respect to the
conventional CB scheme. The main objective of the present paper is to use the efficient MCB method on an unstructured grid.

2. The governing equations

The Navier-Stokes equations for two-dimensional incompressible flows modified by artificial compressibility can be
expressed as
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Here W is the vector of primitive variables, and F/, G and F, G” are convective and viscous flux vectors, respectively.
The artificial compressibility parameter and Reynolds number are shown as 8 and Re, respectively. The above equations
have been nondimensionalized on the basis of the following scalings:
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The discretized form of Eqs. (1) at cell i is obtained:
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where A; is the cell area and m is the number of edges for any cells. Examples of computational unstructured grids that are
used for finite-volume MCB flow solvers are shown in Fig. 3.

3. The solution algorithm

3.1. The two-dimensional characteristic structure for artificial compressibility equations

To derive the characteristic relations of incompressible flows, their corresponding “Euler equations” are considered [7].
These equations modified by artificial compressibility for deriving two-dimensional characteristic structures are
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To obtain the characteristic structure of equations, a characteristic surface in the form of f (x, y, t) = 0 is assumed. Using
the kinematics relations for relating the partial derivatives to exact derivatives corresponding to the assumed surface, one
gets the following system of equations [8,9]:
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For compatibility requirements of Egs. (6), the determinant of the coefficient matrix is set to zero; hence,
_ _ B
V=0 yv==(F+f). (8)

fe



754 M.Y. Hashemi, K. Zamzamian / Journal of Computational and Applied Mathematics 259 (2014) 752-759

We assumed the pseudo-velocity vector V.= (u, v, 1) and the normal vector to the characteristic surface n =
(cos(g), sin(¢), n;) like for the compressible Euler equations [10], in which ¢ shows the wave direction. Expressing Eq. (8)
in terms of vectors V and n, two types of characteristic surface corresponding to the following relations are obtained:

Ven=0, v.n:é 9)
ng

where n, = f;/\/f? + f? denotes the t-component of the normal vector. By some mathematical operations, n; takes the
following forms:

— (ucos(p) + vsin(p)) £ \/(u cos(g) + vsin(g))? + 48
ng = > = Ny, Ny. (10)

Regarding the dual roots of the second relation in Eqs. (9) as a function of n¢, like for the compressible Euler equations, dual
characteristic surfaces would exist. With straightforward mathematical operations it can be proven that the roots always
have different signs. This depicts the growth of zones of influence and dependence around the pseudo-streamlines. It can
be shown that the characteristic path equations are given by

dx B dy B .

— =u— — cos(p), — = v — —sin 11

I n (®) ” n (9) (11)
where ¢ is the wave angle. As is seen in Fig. 1, for any angle in the range 0 < ¢ < 27 there exist two bicharacteristics. The
compatibility relations corresponding to characteristic paths (Eq. (9)) are obtained as

Edu + cos(p)dp = 0, Edv + sin(¢p)dp = 0. (12)
ne ne

Egs. (12) are valid for both n; = ny, n,, showing the governing compatibility relations along bicharacteristics. For more
details see [6,11].

3.2. The numerical scheme for the evaluation of convective fluxes on unstructured grids

Using the compatibility equations (12), a new multidimensional characteristic-based upwind scheme has been presented
here. As seen in Fig. 2, four characteristic paths corresponding to four wave angles ¢1, @2, @3, ¢4 have been selected and the
compatibility equations (12) along them are used for evaluating convective fluxes between two cells “R” and “L”. When
angle “p;"” (Fig. 2) is smaller than 7 /4, discretization is done by using the first relation of Egs. (12) for “¢s3, ¢4” and the
second one for “¢1, ¢,”, and when “¢;” is bigger than 7 /4 vice versa. For example, in the case of ¢; < 7 /4, the discretized
equations are in the following form:

p—p1+AW —u)) =0, p*—p,+BU —uy) =0,

13
p*—=p3+C —v3) =0, p*"—ps+D*—v4) =0 (13)
where p*, u* and v* are the values at the cell interface and A, B, C, D can be obtained from Eqgs. (10)-(12) as follows:
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p*, u* and v* are calculated with Eq. (13) using flow properties at points 1, 2, 3 and 4 in the previous time level. Then they are
used to determine convective fluxes at the cell interface. The value of u* is determined from the first and second equations
of Eq.(13) and v* is determined from the third and fourth ones. The final value of p* is assumed to be the arithmetic average
of values obtained from two sets of equations (first-second and third-fourth in Eq. (13)). Flow properties at points 1, 2 are
set to neighborhood cell values and for points 3, 4, interpolated from two cells containing the assumed face (cells “L, R” in
Fig. 2). By using the flow values at points 3 and 4 in order to evaluate the interface values at face j, we take into account the
real two-dimensional nature of the flow and do not assume any one-dimensional assumptions.
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Fig. 1. Characteristic structure for incompressible flow defined by artificial compressibility equations.

Fig. 2. MCB stencil for evaluating convective fluxes.

4. Time discretization

An explicit fourth-order Runge-Kutta scheme with modified coefficients [12] is used for time discretization of spatially
discretized equations as follows:
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at

Wi(O) _ Wi(n)

w =w® — At RW?)

+Ri(W)=0

(15)

W@ =w?® — At RW®)
W(H-H) — W(4)
a7 =0.333, o =02667, a3=05  as=1.0



756 M.Y. Hashemi, K. Zamzamian / Journal of Computational and Applied Mathematics 259 (2014) 752-759

a e

Fig. 3. Unstructured numerical grids used for a test cases (a: coarse grid of the cavity test case, b: grid over the circular cylinder and c: close view of the
grid over the circular cylinder).

where the R; are residuals that contain the convective and viscous flux as follows:

m m ] m m
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Local time stepping at any cells can be evaluated with a convective term as [13]
A:
Aty = CFL— (17)
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where CFL is the Courant number and u, = 0.5(u; +ug), ve = 0.5(v; + vg). To accelerate convergence, local time stepping is
used in any explicit iterations [ 14]. In addition, the original residuals may be replaced by the smoothed residuals by solving
the implicit equation [12]

J

ﬁi :R,‘—}—Evzﬁj. (18)

At each cell i, V2R, represents the undivided Laplacian of the most recent residuals, and is the smoothing coefficient that
is chosen equal to 0.5 in this research.

5. Results

To compare the accuracy of the newly proposed MCB scheme on unstructured grids, lid-driven cavity flow and flow over
the circular cylinder at different Reynolds numbers are reported in this paper.

5.1. Cavity flow

At first, to verify the ability of the MCB scheme on unstructured grids, incompressible steady flow at Re = 100, 400, 3200
(based on moving wall velocity and cavity length) are presented with 8088, 15243 and 22 469 triangular cells respectively.
Results obtained for the u-velocity profile along the vertical line and the v-velocity profile along the horizontal line passing
through the center of the cavity using the MCB scheme are presented in Fig. 4. As shown, the results obtained are in good
agreement with the Ghia et al. [15] benchmark solution.

A grid study is performed at Re = 10000 by using three computational unstructured triangular meshes including
8088, 22464 and 44082 cells, regarded as coarse, medium and fine grids, respectively. The coarse generated grid in the
cavity is shown in Fig. 3. There are 60 edges on any wall. Fig. 5 presents the u-velocity profile along a vertical line and the
v-velocity profile along a horizontal line passing through the cavity center. These profiles are in good agreement with the
well known benchmark results of Ghia et al. [15] that are shown by symbols in the figures. Fig. 6 shows streamlines of the
flow field for the different Reynolds numbers obtained using the MCB scheme.
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Fig. 4. Comparison of the predicted mid-plane velocity profiles for u and v at Re = 100, Re = 400 and Re = 3200.

5.2. A circular cylinder

A second test case is incompressible flow over the circular cylinder, to demonstrate the ability of the proposed method
in simulation of the separated steady and unsteady flows. The far field boundary is located at a distance of 30 radii from the
cylinder. The generated unstructured grid is shown in Fig. 3. The solid boundary includes 208 edges, and there are 82 edges
on the far field boundary. The computational domain includes 23 380 triangular cells. The streamlines over the cylinder are
shown in Fig. 7 for five Reynolds numbers. The computed drag coefficients are compared with the reliable numerical data
in Table 1. The results are in good agreement with other reported numerical solutions.

6. Conclusions

A new multidimensional characteristic-based scheme MCB was presented for numerical simulation of incompressible
flows on unstructured grids. The proposed MCB scheme is used to solve problems of steady incompressibility-driven cavity
flow and flow over circular cylinders at different Reynolds numbers. The capabilities of the method were demonstrated by
comparing the results with the available benchmark solutions from the literature and the results are in good agreement
with them.
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Table 1
Computed drag coefficients at different Reynolds numbers.

Re = (pVD)/u Drag coefficient (Cp)
Present results ~ Zamzamian and Razavi [6]  Ding et al. [16]

10 291 2.98 3.07
20 2.14 2.03 2.18
40 1.62 155 1.713
100 1.34 133
200 1.31 1.32
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Fig. 5. Comparison of the predicted mid-plane velocity profiles for u and v at Re = 10,000.
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Fig. 6. Streamlines of the flow field for the different Reynolds numbers.

7. Figures and drawings

See Figs. 1-7.
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Fig. 7. Streamlines around the circular cylinder for the different Reynolds numbers.
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