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Abstract

In this paper, we consider a numerical scheme for a class of non-linear time delay fractional diffusion

equation with distributed order in time. This study covers the unique solvability, convergence and stability

of the resulted numerical solution by means of the discrete energy method. The derivation of a linearized

difference scheme with convergence order O(τ + (∆α)4 + h4) in L∞-norm is the main purpose of this study.

Numerical experiments are carried out to support the obtained theoretical results.

Keywords: Distributed order fractional partial differential equations, Difference scheme, Discrete energy

method, Delay partial differential equations, Convergence, Stability.

1. Introduction

In the past few decades, high and rapid growing attention related with partial differential equations which

contain fractional derivatives and integrals occurred. The ability of the models which contain non-integer

orders comparing with integers order models in describing some certain phenomena is more accurate. The

need of many scientific areas for the use of fractional partial differential equations (FPDEs) to describe

their processes has been widely recognized. Nowadays, the interest of scientists with FPDEs in fields of

finance [31], engineering [21], viscoelasticity [6], control systems [23], diffusion procedures [7] and many

other scientific areas has no limit. Many anomalous diffusion processes which existed in some physical and

biological areas can be modeled by the time fractional reaction diffusion wave equation [33, 36]. Recently,

distributed order fractional differential equations can model perfectly some different problems in mathemat-

ical physics and engineering [9, 19]. As one of the realistic models of these equations, the authors in [1]

transfer the multi-term fractional derivative viscoelastic model to a derivative model of distributed order and

checked its effect on several systems such as the fractional distributed order oscillator and the distributed

Email addresses: vladimir.pimenov@urfu.ru (V. G. Pimenov), ahmed.hendy@fsc.bu.edu.eg (A. S. Hendy),
rob.destaelen@ugent.be (R. H. De Staelen)

Preprint submitted to Computational and Applied Mathematics – Special Issue CMMSE 2015 February 26, 2016



order fractional wave equation. Also, in [34] a distributed-order fractional diffusion-wave equation is used

to describe radial ground water flow to or from a well, and three sets of solutions are obtained for flow from a

well for aquifer tests: one for pumping tests, and two for slug tests. In the simulation of dynamical systems,

two effects (distribution of parameters in space and delay in time) are often existed. Due to that, we study

the effect of entering a delay term in the source function of distributed order fractional diffusion equations.

The existence and the uniqueness of mild and classical solutions for a class of distributed order fractional

differential equations had been studied in [2]. Some authors extended the multi-term fractional derivative

models to models with distributed orders and as a result of these generalizations, some new systems such

as the distributed order fractional wave equation [3] and fractional distributed order oscillator [4] were pre-

sented. A fundamental solution of a distributed order time fractional diffusion wave equation as probability

density appeared in [15]. The time fractional diffusion wave equation has the following form

∂αu(x, t)
∂tα

= K
∂2u(x, t)
∂x2

+ f (x, t, u(x, t)), t > 0, 0 ≤ x ≤ L, (1)

with the fractional order α ∈ (0, 1]; if α = 1, the classical diffusion equation is recovered. The numerical

solutions of such equations were proposed in literature by means of finite difference methods [25, 32],

spectral collocation methods [20, 28] and others. In literature, a considerable attention to deal with the

general class (distributed order form) of (1) is discussed in [24, 26]. The distributed order in time fractional

diffusion equation can be written in the following form
∫ 1

0
ω(α)

∂αu(x, t)
∂tα

dα = K
∂2u(x, t)
∂x2

+ f (x, t, u(x, t)), t > 0, 0 ≤ x ≤ L, (2)

The demand of obtaining numerical solutions, such as in [12, 22, 26, 29], to treat these equations aims to

overcome the mathematical complexity of analytical solutions. For the two dimensional form of (2), the

authors in [17, 18] derived high order difference schemes. Also, time delay differential equations are widely

used in many fields (economics, medicine, physics, etc) [13, 35]. The theory of delay differential equations

has a great interest and is developing rapidly [8]. We are concerned with a generalization of (2) to include a

non-linear delayed source function, more specific we consider
∫ 1

0
ω(α)

∂αu(x, t)
∂tα

dα = K
∂2u(x, t)
∂x2

+ f (x, t, u(x, t), u(x, t − s)), t > 0, 0 ≤ x ≤ L, (3a)

with the following initial and boundary conditions

u(x, t) = ψ(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0), (3b)

u(0, t) = φ0(t), u(L, t) = φL(t), t > 0, (3c)

where s > 0 is the delay parameter, K is a positive constant, and ω(α) > 0 is a weight function. The

fractional derivative is introduced in Caputo sense, that is

C
0 Dα

t u(x, t) ≡ ∂αu(x, t)
∂tα

:=
1

Γ(1 − α)

∫ t

0
(t − ζ)−α

∂u(x, ζ)
∂ζ

dζ, 0 < α < 1. (4)
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We have two degrees of complexity, the distributed order and the non linear delay source function. We seek

to obtain a numerical solution for (3). Throughout this work, like in [39], we suppose that the function

f (x, t, µ, ν) and the solution u(x, t) of (3) are sufficiently smooth in the following sense:

• Let m be an integer satisfying ms ≤ T < (m + 1)s, define Ir = (rs, (r + 1)s), r = −1, 0, . . . ,m − 1,

Im = (ms,T ), I =
⋃m

q=−1 Iq and assume that u(x, t) ∈ C(6,4)([0, L] × (0,T ]),

• The partial derivatives fµ(x, t, µ, ν) and fν(x, t, µ, ν) are continuous in the ε0-neighborhood of the solu-

tion. Define

c1 = sup
0<x<L, 0<t≤T
|ε1 |≤ε0,|ε2 |≤ε0

∣∣∣ fµ(x, t, u(x, t) + ε1, u(x, t − s) + ε2)
∣∣∣ ,

c2 = max
0<x<L, 0<t≤T
|ε1 |≤ε0,|ε2 |≤ε0

| fν(x, t, u(x, t) + ε1, u(x, t − s) + ε2)| .

Difference schemes can be applied to solve numerically and study some different sorts of differential equa-

tions [5, 10, 11, 16]. Numerical studies for fractional functional differential equations with delay based on

BDF-type shifted Chebyshev polynomials are exhibited in [30]. In [14], Ferreira introduced energy esti-

mates for delay diffusion-reaction and studied the following nonlinear delay partial differential equations

∂u
∂t
− α∂

2u
∂x2

= f (u(x, t), u(x, t − s)), a < x < b, t ∈ [0,T ], (5a)

u(a, t) = ua(t), u(b, t) = ub(t), t ∈ [0,T ], (5b)

u(x, t) = ρ(x, t), x ∈ [a, b], t ∈ [−s, 0), (5c)

The author gave a backward Euler scheme with L2-convergence order O
(
τ + h2

)
. Zhang and Sun [38] in-

troduced a linearized compact difference scheme for a class of nonlinear delay partial differential equations

with initial and Dirichlet boundary conditions. The unique solvability, unconditional convergence and sta-

bility of the scheme are proved. The convergence order is O
(
τ2 + h4

)
in the L∞-norm. In [27], Kartary and

his group obtained an approximation for the time Caputo fractional derivative at time tk+1/2 with fractional

order 0 < α < 1 and they extend the idea of the Cranck-Nicholson method to time fractional heat equations

with convergence order O
(
τ2−α + h2

)
. Based on the ideas in [27] and [38], we construct a linearized differ-

ence scheme for (3). The structure of this paper is arranged in the following way: we present the derivation

of the difference scheme in the following section. Next, in the third section, the solvability, convergence

and stability for the difference scheme are discussed. In the fourth section, numerical examples are given to

illustrate the accuracy of the presented scheme and to support our theoretical results. Finally, the paper ends

with a conclusion and some remarks.
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2. Derivation of the difference scheme

We seek to obtain a numerical solution based on the Crank-Nicholson method. First we transform the

distributed order diffusion equation (3a) into a multi-term fractional differential equation with delay by

using a numerical quadrature formula. We briefly recall Simpson’s rule (also known as the three-point

Newton-Cotes quadrature rule).

Lemma 2.1. Consider an equidistant partition of the interval [0, 1] into 2J subintervals, let ∆α = 1
2J and

denote αl = l ∆α, 0 ≤ l ≤ 2J. Then, the composite Simpson’s rule reads

∫ 1

0
f (α)dα = ∆α

2J∑

l=0

γl f (αl) − (∆α)4

180
f (4)(ζ), ζ ∈ [0, 1], (6)

where

γl =



1
3 , l = 0, 2J,

2
3 , l = 2, 4, . . . , 2J − 4, 2J − 2,

4
3 , l = 1, 3, . . . , 2J − 3, 2J − 1.

We fix some further notations. Take two positive integers M and n, let h = L
M , τ = s

n and denote xi = i h,

tk = k τ and tk+1/2 =
(
k + 1

2

)
τ = 1

2 (tk + tk+1). Cover the space-time domain by Ωhτ = Ωh × Ωτ, where

Ωh = {xi | 0 ≤ i ≤ M}, Ωτ = {tk | −n ≤ k ≤ N}, N =
⌊

T
τ

⌋
. LetW = {ν | ν = vk

i , 0 ≤ i ≤ M,−n ≤ k ≤ N} be a

grid function space on Ωhτ. For ν ∈ W we denote vk+1/2
i = 1

2

(
vk

i + vk+1
i

)
and δ2

xvk
i = 1

h2

(
vk

i+1 − 2vk
i + vk

i−1

)
.

Lemma 2.2 ([38]). Let q(x) ∈ C6[xi−1, xi+1], then

1
12

(
q′′(xi−1) + 10q′′(xi) + q′′(xi+1)

) − 1
h2

(q(xi−1) − 2q(xi) + q(xi+1)) =
h4

240
q(6)(ωi),

where ωi ∈ (xi−1, xi+1).

Define the function G(α) = ω(α) ∂
αu
∂tα , α ∈ (0, 1]. Suppose that G(α) ∈ C4[0, 1], then using Lemma 2.1, we

approximate the distributed integral as

∫ 1

0
ω(α)

∂αu(xi, tk+1/2)
∂tα

dα = ∆α

2J∑

l=0

γl ω(αl) C
0 Dαl

t u(xi, tk+1/2) − (∆α)4

180
Φ(4)(α; xi, tk+1/2)

∣∣∣∣∣∣
α=ζk

i

,

= ∆α

2J∑

l=0

γlω(αl) C
0 Dαl

t u(xi, tk+1/2) + O (∆α)4 , (7)

where ζk
i ∈ [0, 1], and we defined Φ(α; xi, tk+1/2) = ω(α)∂

αu(xi,tk+1/2)
∂tα .

We define the grid function on Ωhτ: U(i, k) = u(xi, tk). In [27] an approximation for the time Caputo frac-

tional derivative at tk+1/2 with 0 < αl < 1 was given:

∂αlu(xi, tk+1/2)
∂tαl

= ωl
1Uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)um
i − ωl

kU0
i +

σl

21−αl

(
Uk+1

i − Uk
i

)
+ O

(
τ2−αl

)
, (8)
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where

ωl
i = σl


(
i +

1
2

)1−αl

−
(
i − 1

2

)1−αl
 , σl =

1
ταl Γ(2 − αl)

, 0 ≤ i ≤ M, 0 ≤ k ≤ N − 1. (9)

We are now in a position to apply and combine the above, that is (7) and (8), to (3a) at the points (xi, tk+1/2),

and arrive at

∆α

2J∑

l=0

γl ω(αl)

ω
l
1Uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)Um
i − ωl

kU0
i +

σl

21−αl

(
Uk+1

i − Uk
i

)
+ O

(
τ2−αl

)
 + O (∆α)4

= K
∂2u(xi, tk+1/2)

∂x2
+ f (xi, tk+1/2, u(xi, tk+1/2), u(xi, tk+1/2 − s)). (10)

Lemma 2.3. For g = (g0, g1, . . . , gM), let the linear operator A is defined as

Agi =
1
12

(gi−1 + 10gi + gi+1), 1 ≤ i ≤ M − 1.

Then, we obtain

∆α

2J∑

l=0

γl ω(αl)A

ω
l
1Uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)Um
i − ωl

kU0
i +

σl

21−αl

(
Uk+1

i − Uk
i

)


= Kδ2
xUk+1/2

i + A f

(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
+ Rk

i , (11)

where ∣∣∣Rk
i

∣∣∣ = O
(
(∆α)4 + h4 + τ

)
, 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1. (12)

Proof. We use the Taylor expansions

∂2u(xi, tk+1/2)

∂x2
=

1
2

(
∂2u(xi, tk)

∂x2
+
∂2u(xi, tk+1)

∂x2

)
+ O

(
τ2

)
,

u(xi, tk+1/2) = Uk+1/2
i =

3
2

Uk
i −

1
2

Uk−1
i + O

(
τ2

)
,

u(xi, tk+1/2 − s) = U
k−n+ 1

2
i =

1
2

Uk+1−n
i +

1
2

Uk−n
i + O

(
τ2

)
,

in (10) and obtain

∆α

2J∑

l=0

γl ω(αl)

ω
l
1Uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)Um
i − ωl

kU0
i +

σl

21−αl

(
Uk+1

i − Uk
i

)
+ O

(
τ2−αl

)
 + O (∆α)4

=
K
2

(
∂2u(xi, tk)

∂x2
+
∂2u(xi, tk+1)

∂x2

)
+ O

(
τ2

)
+ f

(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
,
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where we used the continuity of the derivatives of f in its third and fourth component. We rewrite this as

∆α

2J∑

l=0

γl ω(αl)

ω
l
1Uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)Um
i − ωl

kU0
i +

σl

21−αl

(
Uk+1

i − Uk
i

)
 + O(τ)

=
K
2

(
∂2u(xi, tk)

∂x2
+
∂2u(xi, tk+1)

∂x2

)
+ f

(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
+ O

(
τ2 + (∆α)4

)
,

(13)

because ∆α
∑2J

l=0 γl ω(αl) O
(
τ2−αl

)
= O (τ) ∆α

∑2J
l=0 γl ω(αl) and ∆α

∑2J
l=0 γl ω(αl) is bounded by Lemma 2.1.

According to Lemma 2.2 we have

A
∂2u(xi, tk)

∂x2
= δ2

xUk
i +

h4

240
∂6u

∂x6
(θk

i , tk), θk
i ∈ (xi−1, xi+1),

so applying A to (13) we arrive at

∆α

2J∑

l=0

γl ω(αl)A

ω
l
1Uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)um
i − ωl

kU0
i +

σl

21−αl

(
Uk+1

i − Uk
i

)


= Kδ2
xUk+1/2

i + A f

(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
+ O

(
τ + (∆α)4 + h4

)

as u(x, t) ∈ C(6,4)(I × (0,T ]).

The final form of our difference scheme is obtained by neglecting Rk
i and replace Uk

i with uk
i in (11)

∆α

2J∑

l=0

γl ω(αl)A

ω
l
1uk

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)um
i − ωl

ku0
i +

σl

21−αl

(
uk+1

i − uk
i

)


= Kδ2
xuk+1/2

i + A f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)
, (14a)

and supplying appropriate initial and boundary conditions

uk
0 = φ0(tk), uk

M = φL(tk), 1 ≤ k ≤ N, (14b)

uk
i = ψ(xi, tk), 0 ≤ i ≤ M, −n ≤ k ≤ 0. (14c)

3. The solvability, convergence and stability for the difference scheme

Now, we introduce the uniqueness, stability and convergence theorems in L∞ norm using the discrete energy

method for the proposed difference scheme.

If the spatial domain [0, L] is covered by Ωh = {xi | 0 ≤ i ≤ M, } and let Vh = {v | v = (v0, . . . , vM), v0 =

vM = 0} be a grid function space on Ωh. For any u, v ∈ Vh, define the discrete inner products and corre-

sponding norms as
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〈u, v〉 = h
M−1∑

i=1

uivi, 〈δxu, δxv〉 = h
M∑

i=1

(δxui−1/2)(δxvi−1/2), 〈δ2
xu, v〉 = −〈δxu, δxv〉, δxui =

1
h

(ui − ui−1)

and

‖u‖ =
√
〈u, u〉, |u|1 =

√
〈δxu, δxu〉, ‖u‖∞ = max

0≤i≤M
|u|.

According to [38], the following inequalities are fulfilled

‖u‖∞ ≤
√

L
2
|u|1, ‖u‖ ≤ L√

6
|u|1. (15)

For the analysis of the difference scheme, we need to use the following inequality:

Lemma 3.1 (Gronwall inequality [38]). Suppose that {Fk | k ≥ 0} is a nonnegative sequence and satisfies

Fk+1 ≤ A + Bτ
∑k

l=1 Fl, k ≥ 0, for some nonnegative constants A and B. Then Fk+1 ≤ A exp(Bkτ).

We now prove that our difference scheme admits a unique solution. Next we show that the obtained solution

solves (3).

Theorem 1. The difference scheme (14) is uniquely solvable.

Proof. Suppose that uk
i , 0 ≤ i ≤ M is the solution for the obtained difference scheme (14). Using the

mathematical induction, the base step is fulfilled from the initial condition (14c) as the solution uk
i is deter-

mined for −n ≤ k ≤ 0. For the inductive hypothesis, let uk
i be determined when k = l, then from (14a) we

obtain a system of linear algebraic equations with respect to ul
i. The proof ends by the inductive step as the

coefficient matrix of this system is strictly diagonally dominant, so there exists a unique solution ul+1
i .

We can arrange the system (14) as follows

([∆α

12

2J∑

l=0

γl ω(αl)
σl

21−αl
− K

2h2

]
uk+1

i+1 +
[10∆α

12

2J∑

l=0

γl ω(αl)
σl

21−αl
+

K
h2

]
uk+1

i +
[∆α

12

2J∑

l=0

γl ω(αl)
σl

21−αl
− K

2h2

]
uk+1

i−1

)
+

([∆α

12

2J∑

l=0

γl ω(αl)(ωl
1−

σl

21−αl
)− K

2h2

]
uk

i+1+
[10∆α

12

2J∑

l=0

γl ω(αl)(ωl
1−

σl

21−αl
)+

K
h2

]
uk

i +
[∆α

12

2J∑

l=0

γl ω(αl)(ωl
1−

σl

21−αl
)− K

2h2

]
uk

i−1

)
+

A
( k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)um
i − ωl

ku0
i

)
= A f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)
.

According to the system above, the coefficient matrix A = (ai j) is strictly diagonally dominant because

aii ≥ ∑
j,i

∣∣∣ai j

∣∣∣;

aii =
10
12

2J∑

l=0

γlω(αl)
σl∆α

21−αl
+

K
h2
, ai+1,i =

1
12

2J∑

l=0

γlω(αl)
σl∆α

21−αl
− K

2h2
= ai−1,i,

σl

21−α > 0.

Therefore, the coefficient matrix is nonsingular and this proves the theorem.
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Theorem 2 (Convergence theorem). Let u(x, t) ∈ [0, L] × [−s,T ], be the solution of (3) such that u(xi, tk) =

Uk
i and uk

i (0 ≤ i ≤ M,−n ≤ k ≤ N) be the solution of the difference scheme (14), denote ek
i = Uk

i − uk
i , for

0 ≤ i ≤ M, −n ≤ k ≤ N, and

C =
3c3L

2

√
T

5K∆αω(1)
exp

(3L2(c2
1 +

c2
2

5 )T

4K∆αω(1)

)
,

then if

τ ≤ τ0 =

(
ε0

6C

)
, h ≤ h0 =

(
ε0

6C

) 1
4
, ∆α ≤

(
ε0

6C

) 1
4
, (16)

one has that

‖ek‖∞ ≤ C
(
τ + (∆α)4 + h4

)
, 0 ≤ k ≤ N. (17)

Proof. The error difference scheme can be obtained by subtracting (14a) from (11), the latter with u replaced

by U, as follows

∆α

2J∑

l=0

γl ω(αl)A

ω
l
1ek

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)em
i − ωl

ke0
i +

σl

21−αl

(
ek+1

i − ek
i

)
 = Kδ2

xek+1/2
i + Rk

i

+ A

[
f

(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
− f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)]
,

(18)

and

ek
0 = 0, ek

M = 0, 1 ≤ k ≤ N, (19)

ek
i = 0, 0 ≤ i ≤ M, −n ≤ k ≤ 0. (20)

By taking the inner product of each part of (18) with δte
k+1/2
i , this yields

∆α

2J∑

l=0

γl ω(αl)
〈
A

ω
l
1ek

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)em
i − ωl

ke0
i +

σl

21−αl

(
ek+1

i − ek
i

)
 , δte

k+1/2
i

〉

= K
〈
δ2

xek+1/2
i , δte

k+1/2
i

〉
+

〈
Rk

i , δte
k+1/2
i

〉

+

〈
A

[
f

(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)

− f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)]
, δte

k+1/2
i

〉
. (21)

We will prove (17) by strong mathematical induction. The base case is evident; following (20), it is clear

that ‖ek‖∞ = 0, −n ≤ k ≤ 0, so in particular we have ‖e0‖∞ = 0. Next, suppose that (17) is fulfilled for

0 ≤ k ≤ `, then we will show that (17) holds for k = ` + 1.

From the inductive hypothesis, and when τ and h satisfy (16), we obtain

‖ek‖∞ ≤ C
(
τ + (∆α)4 + h4

)
≤ ε0/2, 0 ≤ k ≤ `. (22)
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From (22), we conclude that | ek |≤ ε0/2, 0 ≤ k ≤ `, and so | Uk
i − uk

i |≤ ε0/2, | Uk−1
i − uk−1

i |≤
ε0/2, 0 ≤ k ≤ `, then | 3

2 (Uk
i − uk

i ) − 1
2 (Uk−1

i − uk−1
i ) |≤ ε0/2, then the following inequality is fulfilled

| (3
2

Uk
i −

1
2

Uk−1
i ) − (

3
2

uk
i −

1
2

uk−1
i ) |≤ ε0, 0 ≤ i ≤ M, 0 ≤ k ≤ `.

By the same way, we conclude that | 1
2 (Uk+1−n

i − uk+1−n
i ) + 1

2 (Uk−n
i − uk−n

i ) |≤ ε0/2, then the following

inequality is achieved

| (1
2

Uk+1−n
i +

1
2

Uk−n
i ) − (

1
2

uk+1−n
i +

1
2

uk−n
i ) |≤ ε0, 0 ≤ i ≤ M, 0 ≤ k ≤ `,

Consequently,

| f
(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
− f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)
|

≤ c1 | 3
2

ek
i −

1
2

ek−1
i | +c2 | 1

2
ek+1−n

i +
1
2

ek−n
i |, 0 ≤ i ≤ M, 0 ≤ k ≤ `,

and so

| A
[
f
(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
− f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)]
| (23)

≤ A
(
c1 | 3

2
ek

i −
1
2

ek−1
i | +c2 | 1

2
ek+1−n

i +
1
2

ek−n
i |

)
, 0 ≤ i ≤ M, 0 ≤ k ≤ `,

using (23), we can predict that

〈A
[
f
(
xi, tk+1/2,

3
2

Uk
i −

1
2

Uk−1
i ,

1
2

Uk+1−n
i +

1
2

Uk−n
i

)
− f

(
xi, tk+1/2,

3
2

uk
i −

1
2

uk−1
i ,

1
2

uk+1−n
i +

1
2

uk−n
i

)]
, δte

k+ 1
2

i 〉 (24)

≤ 〈A
(
c1

3
2

ek
i −

1
2

ek−1
i | +c2 | 1

2
ek+1−n

i +
1
2

ek−n
i

)
, δte

k+ 1
2

i 〉.
For simplicity, the inner product in the r.h.s of (24) will be denoted by 〈ξ1, ξ2〉. The use of the holder

inequality gives 〈ξ1, ξ2〉 ≤ 1
2θ ‖ ξ1 ‖2 + θ

2 ‖ ξ2 ‖2, and by taking θ =
5∆αω(1)

18 , we obtain

R.H.s ≤ 18
10∆αω(1)

‖ A
(
c1 | 3

2
ek

i −
1
2

ek−1
i | +c2 | 1

2
ek+1−n

i +
1
2

ek−n
i |

)
‖2 +

5∆αω(1)
36

‖ δte
k+ 1

2
i ‖2, (25)

also,

〈Ag, g〉 ≤ 〈Ag, g〉, ∀g ∈ V,

then

R.H.s ≤ 18
10∆αω(1)

‖ c1 | 3
2

ek
i −

1
2

ek−1
i | +c2 | 1

2
ek+1−n

i +
1
2

ek−n
i |‖2 +

5∆αω(1)
36

‖ δte
k+ 1

2
i ‖2, (26)

=
18

10∆αω(1)
h

M−1∑

i=1

(
c1 | 3

2
ek

i −
1
2

ek−1
i | +c2 | 1

2
ek+1−n

i +
1
2

ek−n
i |

)2
+

5∆αω(1)
36

‖ δte
k+ 1

2
i ‖2, (27)

≤ 18
10∆αω(1)

[
hc2

1

M−1∑

i=1

(3
2

ek
i −

1
2

ek−1
i

)2
+ c2

2h
M−1∑

i=1

(1
2

ek+1−n
i +

1
2

ek−n
i

)2]
+

5∆αω(1)
36

‖ δte
k+ 1

2
i ‖2, (28)

≤ 18
10∆αω(1)

[5
2

hc2
1

M−1∑

i=1

(
(ek

i )2 + (ek−1
i )2

)
+

1
2

c2
2h

M−1∑

i=1

(
(ek+1−n

i )2 + (ek−n
i )2

)]
+

5∆αω(1)
36

‖ δte
k+ 1

2
i ‖2,(29)
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L.H.s ≤ 9
∆αω(1)

c2
1

(
‖ ek

i ‖2 + ‖ ek−1
i ‖2

)
+

9
5∆αω(1)

c2
2

(
‖ ek+1−n

i ‖2 + ‖ ek−n
i ‖2

)
+

5∆αω(1)
36

‖ δte
k+ 1

2
i ‖2 .

(30)

Also, for the second inner product in the r.h.s of (21) and using Holder inequality in the same way as before,

we obtain 〈
Rk

i , δte
k+1/2
i

〉
≤ 18

10∆αω(1)
‖ Rk

i ‖2 +
5∆αω(1)

36
‖ δte

k+ 1
2

i ‖2 . (31)

For the first inner product in the r.h.s of (21),

K
〈
δ2

xek+1/2
i , δte

k+1/2
i

〉
=
−K
2τ

(| ek+1
i |21 − | ek

i |21). (32)

As, see (9), we have

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m) = ωl
k − ωl

1 > 0, ωl
1 > 0⇒ ωl

k > 0, k > 1. (33)

With the aid of (33), we have the following estimate for the l.h.s. of (21),

∆α

2J∑

l=0

γl ω(αl)
〈
A

ω
l
1ek

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)em
i − ωl

ke0
i +

σl

21−αl

(
ek+1

i − ek
i

)
 , δte

k+1/2
i

〉

≥ ∆α

2J∑

l=0

γl ω(αl)
〈
A

ω
l
1e0

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)e0
i − ωl

ke0
i +

σl

21−αl

(
ek+1

i − ek
i

)
 , δte

k+1/2
i

〉

= ∆α

2J∑

l=0

γl ω(αl)
〈
A

[
σl

21−αl

(
ek+1

i − ek
i

)]
, δte

k+1/2
i

〉
= ∆α

2J∑

l=0

γl ω(αl)
τ1−αl

21−αlΓ(2 − αl)

〈
A


ek+1

i − ek
i

τ

 , δte
k+1/2
i

〉

≥ γ2J ω(α2J)
τ1−α2J

21−α2J Γ(2 − α2J)

〈
Aδte

k+1/2
i , δte

k+1/2
i

〉
=
ω(1)∆α

3

〈
Aδte

k+1/2
i , δte

k+1/2
i

〉
,

as α2J = 1 and γ2J = 1
3 . Furthermore, using the definition of A, we have that

〈
Aδte

k+1/2
i , δte

k+1/2
i

〉
=

〈
1
12

(
δte

k+1/2
i−1 + 10δte

k+1/2
i + δte

k+1/2
i+1

)
, δte

k+1/2
i

〉
≥ 5

6

〈
δte

k+1/2
i , δte

k+1/2
i

〉
,

which means that the l.h.s. of (21) is bounded below by

∆α

2J∑

l=0

γl ω(αl)
〈
A

ω
l
1ek

i +

k−1∑

m=1

(ωl
k−m+1 − ωl

k−m)em
i − ωl

ke0
i +

σl

21−αl

(
ek+1

i − ek
i

)
 , δte

k+1/2
i

〉

≥ 5ω(1)∆α
18

∥∥∥∥δte
k+1/2
i

∥∥∥∥
2

(34a)

Substitute by Eqs.(30)-(32) and (34a) in (21), we obtain

K
2τ

(| ek+1
i |21 − | ek

i |21) ≤ 9
∆αω(1)

c2
1

(
‖ ek

i ‖2 + ‖ ek−1
i ‖2

)
+

9
5∆αω(1)

c2
2

(
‖ ek+1−n

i ‖2 + ‖ ek−n
i ‖2

)
(34b)

+
18

10∆αω(1)
Lc2

3

(
τ + h4 + ∆α4

)2
,
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multiply both sides by 2τ
K and summing up for k noticing (20), we get

| ek+1
i |21≤

9
K∆αω(1)

(c2
1 +

c2
2

5
)τ

k∑

m=1

‖ em ‖2 +
18kτ

10K∆αω(1)
Lc2

3

(
τ + h4 + ∆α4

)2
, 0 ≤ k ≤ `. (34c)

Eq. (34c) is ready to apply Gronwall inequality to obtain:

| e`+1 |21≤
9T Lc2

3

5K∆αω(1)
exp

(3L2(c2
1 +

c2
2

5 )T

2K∆αω(1)

)(
τ + h4 + ∆α4

)2
, (34d)

using eq.(15), we obtain

‖ e`+1 ‖∞≤
√

L
2
| e`+1 |1≤ 3c3L

2

√
T

5K∆αω(1)
exp

(3L2(c2
1 +

c2
2

5 )T

4K∆αω(1)

)(
τ + h4 + ∆α4

)
. (34e)

So, the inductive step is achieved and this completes the proof.

To discuss the stability of the difference scheme (14a)-(14c), we also use the discrete energy method in the

same way like the discussion of the convergence.

Let {νk
i | 0 ≤ i ≤ M, 0 ≤ k ≤ N} be the solution of

∆α

2J∑

l=0

γlω(αl)A
[
ω1ν

k +

k−1∑

m=1

(ωk−m+1 − ωk−m)νm − ωkν
0 + σ

(νk+1
i − νk

i )

21−αl

]

= Kδ2
xν

k+1/2
i + A f (xi, tk+1/2,

3
2
νk

i −
1
2
νk−1

i ,
1
2
νk+1−n

i +
1
2
νk−n

i ), (6)

νk
0 = φ0(tk), νk

M = φL(tk), 1 ≤ k ≤ N, (7)

νk
i = ψ(xi, tk) + ρk

i , 0 ≤ i ≤ M, −n ≤ k ≤ 0, (8)

where ρk
i is the perturbation of ψ(xi, tk).

Following the same steps as in the proof of convergence theorem, The following result is obtained.

Theorem 3. (Stability theorem)

Let θk
i = νk

i − uk
i , 0 ≤ i ≤ M, −n ≤ k ≤ N. And the existence of constants c4, c5, h0, τ0 which fulfill

‖ θk ‖∞≤ c4
√
τ

0∑

k=−n

‖ ρk ‖, 0 ≤ k ≤ N, ‖ ρk ‖=
√√√

h
M−1∑

i=1

(φk
i )2,

conditioned by

h ≤ h0, τ ≤ τ0, max
−n≤k≤0
0≤i≤M

| ρk
i |≤ c5.
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4. Numerical experiments

Let uk
i = u(kτ, h,∆α) is the solution of the constructed difference scheme (14a)-(14c) with the step sizes

τ, h,∆α. Define the maximum norm error by E(τ, h,∆α) = max
0≤i≤M
0≤k≤N

‖ Uk
i − uk

i ‖∞ .

Define the following error rates, rate1 = log2

(
E(2τ,h,∆α)
E(τ,h,∆α)

)
, rate2 = log2

(
E(16τ,2h,2∆α)

E(τ,h,∆α)

)
. We just adapt some

numerical examples which appeared in [26].

Example. 1

∫ 1

0
Γ(3 − α)

∂αu(x, t)
∂tα

dα =
∂2u(x, t)
∂x2

+ f (x, t, u(x, t), u(x, t − s)), t ∈ (0, 1), 0 < x < 2, (9)

f (x, t, u(x, t), u(x, t − s) =
6(t2 − t)(2 − x)x

ln(t)
− u(x, t − s) + 2t2 + x(2 − x)(t − s)2,

with the following initial and boundary conditions

u(x, t) = t2(2x − x2), 0 ≤ x ≤ 2, t ∈ [−s, 0), s > 0, (10)

u(0, t) = u(2, t) = 0, t ∈ [0, 1]. (11)

The analytical solution of this problem is

u(x, t) = t2(2x − x2). (12)

Example. 2

∫ 1

0
Γ

(
7
2
− α

)
∂αu(x, t)
∂tα

dα =
∂2u(x, t)
∂x2

+ f (x, t, u(x, t), u(x, t − s)), t ∈ (0, 1), 0 < x < 1, (13)

f (x, t, u(x, t), u(x, t − s) =
15
√
π(t − 1)t

3
2 (x − 1)x

8 ln(t)
+ u2(x, t − s) − 2t

5
2 − (x2 − x)2(t − s)5,

with the following initial and boundary conditions

u(x, t) = t
5
2 (x − x2), 0 ≤ x ≤ 1, t ∈ [−s, 0), s > 0, (14)

u(0, t) = u(1, t) = 0, t ∈ [0, 1]. (15)

The analytical solution of this problem is

u(x, t) = t
5
2 (x2 − x). (16)

12



τ E(τ, h,∆α) rate1

1
10 0.00135
1

20 0.00068 0.9784
1

40 0.000344 0.9825
1

80 0.00017 0.9876
1

160 0.000087 0.9935
1

320 0.000044 0.9978
1

640 0.0000218 0.9996

Table 1.1 Errors and convergence orders of the difference scheme (14a)-(14c) in time variable with

h = 1/300 and ∆α = 1/300.

τ h ∆α E(τ, h,∆α) rate2

1
2(43)

2
8

1
4 0.000216

1
4(83)

2
16

1
8 0.0000130754 4.0521

1
8(163)

2
32

1
16 8.1371 × 10−7 4.0062

Table 1.2 Errors and convergence orders of the difference scheme (14a)-(14c) with an optimal step size

ratio.

τ E(τ, h,∆α) rate1

1
10 0.00123
1

20 0.00062 0.9853
1

40 0.0003 0.9931
1

80 0.00016 0.9952
1

160 0.000078 0.9976
1

320 0.000039 0.9985

Table 2.1 Errors and convergence orders of the difference scheme (14a)-(14c) in time variable with

h = 1/500 and ∆α = 1/400.

τ h ∆α E(τ, h,∆α) rate2

1
64

1
6

1
6 0.000135

1
124

1
12

1
12 8.69397 × 10−6 3.9568

1
244

1
24

1
24 5.48064 × 10−7 3.9876

Table 2.2 Errors and convergence orders of the difference scheme (14a)-(14c) with an optimal step size

ratio.
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In Tables 1.1 and 2.1, the error rates of the numerical solutions for test examples 1 and 2 are computed

with different time steps and fixed, sufficiently small h and ∆α and with delay parameters s = 1, s = 0.5

respectively. The approximation of time-fractional derivatives dominates the computational errors in view of

the sufficiently small step sizes in space and distributed-order variables. From these tables, one can conclude

that the convergence order in time is one in maximum norm. The computational results are in accordance

with the theoretical results. In Tables 1.2 and 2.2, the computational results are displayed with an optimal

step size ratio, i.e. N = M4 = (2J)4. One can conclude from these tables that reducing the spatial step size h

and the distributed-order step size ∆α by a factor of 2 corresponds to the decreasing of computational errors

in discrete maximum norm by a factor of 16 gives fourth order convergence approximately.

5. Conclusions

The major aim of this work which lies in building a linearized difference scheme to solve a class of dis-

tributed order fractional diffusion equation with non linear delay is achieved. The stability and convergence

analysis for the numerical solution are discussed. The proposed numerical test examples supported our

theoretical results. The resulted difference scheme can be easily applied for two dimensional delay prob-

lems with distributed orders. For future consideration, we will increase the time convergence order to two

by predicting another approximation for time Caputo fractional derivative at tk+1/2 with convergence order

3 − α.
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