
Accepted Manuscript

Parallel accelerated cyclic reduction preconditioner for three-dimensional
elliptic PDEs with variable coefficients

Gustavo Chávez, George Turkiyyah, Stefano Zampini, David Keyes

PII: S0377-0427(17)30595-2
DOI: https://doi.org/10.1016/j.cam.2017.11.035
Reference: CAM 11407

To appear in: Journal of Computational and Applied
Mathematics

Received date : 15 May 2017
Revised date : 3 November 2017

Please cite this article as: G. Chávez, G. Turkiyyah, S. Zampini, D. Keyes, Parallel accelerated
cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients,
Journal of Computational and Applied Mathematics (2017),
https://doi.org/10.1016/j.cam.2017.11.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cam.2017.11.035

Parallel accelerated cyclic reduction preconditioner for three-dimensional
elliptic PDEs with variable coefficients

Gustavo Cháveza,∗, George Turkiyyahb, Stefano Zampinia, David Keyesa

aKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia
bAmerican University of Beirut, Beirut, Lebanon

Abstract

We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise

from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on

hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases

of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and

numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed

memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry,

definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability

and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of

the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility

condition parameter. Together, these parameters allow for optimization of the memory requirements and

performance of the preconditioner.

Keywords: Preconditioning, Cyclic reduction, Hierarchical matrices.

1. Introduction1

This work focuses on the iterative solution of large-scale block tridiagonal linear systems of equations2

that arise from the discretization of elliptic partial differential equations on structured grids. Specifically, we3

demonstrate a parallel and scalable preconditioner based on an approximate factorization generated by the4

cyclic reduction algorithm [1]. Cyclic reduction uses a sequence of Schur complement reduction steps, with5

each step eliminating half of the unknowns. While an exact cyclic reduction would result in prohibitively6

expensive dense matrix blocks, we exploit the data-sparsity of these resulting blocks by approximating them7

in a hierarchically low-rank form featuring log-linear storage. This work builds on [2, 3], where a fast direct8

solver was introduced based on the synergy of parallel cyclic reduction and hierarchical matrices, and named9

accelerated cyclic reduction (ACR).10

Iterative methods are advantageous for large-scale scientific computing since they feature tractable com-11

plexity and scalability, but their convergence is problem dependent. Direct methods, in contrast, guarantee12

∗Corresponding author
Email address: gustavo.chavezchavez@kaust.edu.sa (Gustavo Chávez)

Preprint submitted to Journal of Computational and Applied Mathematics November 2, 2017

Manuscript
Click here to view linked References

a solution at the expense of higher complexity. Similar to the way in which incomplete factorizations such as13

the incomplete Cholesky factorization [4] or the incomplete LU factorization [5] accelerate the convergence, of14

Krylov methods, we propose a variable-accuracy ACR factorization that serves as a preconditioner to Krylov15

methods.16

Since ACR is entirely algebraic, its range of applicability extends to problems with arbitrary coefficient17

structure, up to the amenability of rank compression. Furthermore, the ACR factorization and solve stages18

require only log-linear work and memory, which is particularly beneficial at large-scale. In addition, ACR19

exhibits substantial concurrency due to two separate characteristics: hierarchical matrix arithmetic operations20

expose substantial concurrency at the node level [6, 7], and the amount of distributed memory concurrency in21

cyclic reduction, which is based on red/black ordering of the block rows of the linear system, is proportional22

to the square root of the problem size in two-dimensions and to the cube root of the problem size in three-23

dimensions.24

Numerical experiments document the robustness, performance, and memory consumption of the ACR25

preconditioner on a set of elliptic PDEs with heterogeneous coefficients. In particular, we study the variable-26

coefficient Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heteroge-27

neous media. For these equations, the numerical results show that ACR is a broadly applicable preconditioner28

that, without any equation-specific customizations. can be used to accelerate the convergence of Krylov meth-29

ods very effectively even as the size of the linear system increases, the contract in the coefficients gets more30

pronounced, or the eigenvalue structure of the matris becomes more irregular.31

This rest of this paper is organized as follows. Section 2 reviews the literature on hierarchical matrices32

for the solution of elliptic PDEs. Section 3 reviews the basic elements of hierarchical matrix representations.33

Section 4 describes the accelerated cyclic reduction algorithm for the generation of the preconditioner, where34

hierarchical matrix representations are used for storing and manipulating the formally dense blocks that arise35

in the factorization process and shows the effect of tuning parameters on the hierarchical matrix structure.36

Section 5 describes the parallel version of the algorithm including the distributed memory parallelism of37

the overall factorization process and the shared memory parallelism of the inner arithmetic operations on38

hierarchical matrices, and shows the weak and strong scalability of resulting algorithm. Sections 6 through39

8 present detailed performance results on the effectiveness and near-optimal complexity of the ACR pre-40

conditioner on three problem categories of engineering interest: a variable coefficient Poisson problem, a41

non-symmetric convection-diffusion problem, and an indefinite Helmholtz equation. Section 9 presents the42

key conclusions.43

2. Literature review44

The last two decades have witnessed an increasing interest in the use of data-sparse approximations45

for the solution of linear systems. Leveraging an underlying hierarchically low-rank structure has been a46

successful strategy for improving the arithmetic complexity and memory footprint of direct solvers. As a47

2

result, direct solvers—as well as the closely related preconditioners obtained by aggressively truncating the48

rank of low-rank blocks—are becoming feasible candidates for tackling large-scale problems that traditional49

direct solvers are not able to handle due to memory requirements. In this section, we briefly discuss the two50

major directions towards fast direct solvers and preconditioners for the solution of sparse linear systems.51

2.1. Compression of dense frontal matrices52

The seminal work of Chandrasekaran et al. [8] showed that the off-diagonal blocks of the Schur complement53

of discretized elliptic PDEs can be efficiently represented with a hierarchical low-rank approximation. Using54

this property, methods such as the multifrontal solver [9], and other variants based on Schur complementation,55

can represent and perform arithmetic operations—of otherwise dense frontal matrices—using data-sparse56

formats.57

An instance of the synergy of the multifrontal method with the hierarchical semiseparable (HSS) format58

[10] can be found in [11, 12, 13, 14, 15, 16]. However, other formats can be used to accelerate the multifrontal59

method, such as the hierarchical off-diagonal low rank (HODLR) format [17] which lead to the multifrontal-60

HOLDR solver [18], or the block low-rank (BLR) format [19] which lead to the multifrontal-BLR solver [20],61

among others. For further discussion of the differences of each variant, we refer the reader to [21].62

2.2. Compression of the entire triangular factors63

An alternative technique that, rather than compressing individual blocks within the decomposition pro-64

cess, focuses on approximating the entire triangular factors as one hierarchical matrix has also been proposed.65

Instances of such strategy can be seen in the work of what is known as H-Cholesky by Ibragimov et al. [22]66

and H-LU by Grasedyck et al. [23, 24]. The main idea is to create an H-Matrix approximation of the sparse67

system with a clustering based on a nested dissection ordering of the unknowns. The nonzero blocks are68

approximated with a low-rank approximation, and an LU factorization is performed under the appropriate69

H arithmetic operations.70

As with the previous section, different hierarchical formats can be used to approximate dense blocks.71

The work of Xia et al. [25] also proposes the construction of a rank-structured Cholesky factorization via72

the HSS hierarchical format, whereas the work of Pouransari et al. [26] approximates fill-in via low-rank73

approximations with the H2 format. We refer the reader to [21] for a discussion of the differences of each74

strategy and a discussion of the implications of the choice of different hierarchical format regarding arithmetic75

operations count and memory requirements.76

3. Hierarchical matrix representations77

A hierarchical matrix is a data-sparse representation that enables fast linear algebraic operations by using78

a hierarchy of off-diagonal blocks, each represented by a low-rank approximation or a small dense matrix, that79

can be tuned to guarantee a desired precision. The approximation, sometimes referred to as compression, is80

3

performed via singular value decomposition, or related methods that deliver low-rank approximations with81

fewer arithmetic operations than the traditional SVD method. For the representation to be effective in terms82

of arithmetic operations and memory requirements, the numerical rank must be significantly smaller than83

the sizes of the various matrix blocks that they replace.84

3.1. Overview of the H-matrix format85

Formally, a hierarchical matrix in the H-format [27, 28, 29], can be constructed from four components:86

an index set, a cluster tree, a block cluster tree, and the specification of an admissibility condition.87

3.1.1. Index set88

The index set I = {0, 1, . . . , n − 1} represents the the nodal points of the grid under a certain ordering,89

such as the natural ordering.90

3.1.2. Cluster tree91

The cluster tree, denoted by TI , recursively subdivides the index set I×I until exhaustion. For simplicity,92

consider a binary cluster tree of cardinality 8 as shown in Figure 1.93

I1:8

I1:4

I1:2

I1 I2

I3:4

I3 I4

I5:8

I5:6

I5 I6

I7:8

I7 I8

Figure 1: Binary cluster tree TI of cardinality 8.

3.1.3. Block cluster tree94

Once the cluster tree is defined, the block cluster tree maps matrix sub-blocks over the partitioning of the95

index set I × I. An example of a clustering, frequently used by other data-sparse formats as we discuss in96

the next section, is a flat block-subdivision of the matrix in l levels, as depicted in Figure 2. The H-format,97

however, uses a discriminant to determine which blocks are further subdivided with the so-called admissibility98

condition.99

4

Figure 2: Flat block partitioning at different levels l, without admissibility condition.

3.1.4. Admissibility condition100

Besides determining which blocks are further partitioned, the admissibility condition also determines101

which blocks are represented as a low-rank block (green) or a dense block (red), see Figure 3.102

Figure 3: Hierarchical block partitioning with standard admissibility condition. Green blocks are represented by low-rank

approximations and red block with dense matrices.

A weak admissibility criterion results in a coarse partitioning of theH-matrix format where the off-diagonal

blocks at every level of the hierarchy are all represented as low rank blocks. A standard admissibility criterion

allows a more refined blocking of the matrix given by the inequality:

min(diameter(τ), diameter(σ)) ≤ η · distance(τ, σ) (1)

where τ and σ denote two geometric regions defined as the convex hulls of two separate point sets t and s103

(nodes in the cluster tree). A matrix block Ats satisfying the previous inequality is represented in a low-rank104

form. The tuning parameter η controls the weight of the distance function. Larger η values admit larger105

blocks in the off-diagonal regions of the matrix as we will illustrate in Section 4.106

3.1.5. Compression of low-rank blocks107

The last step for the construction of an H-matrix is the choice of an algorithm to compute low-rank108

approximations for each of the blocks tagged as low-rank blocks as the product of two matrices of the from109

UV T . Given a block of size n × n, an effective compression leads to a tall and narrow matrix U of size110

n × k, and a short and wide matrix V of size k × n, where k is the numerical rank of the block at some111

truncated accuracy Hε. An effective compression means that the numerical rank k is k � n. An efficient use112

5

of a hierarchical matrix to compress a given matrix has a balance between the numerical low-rank k and a113

moderate number of low-rank blocks.114

3.2. Benefits of H-matrix approximations115

H-matrix approximations are especially useful for the particular class of matrices that arise from the dis-116

cretization of elliptic operators with methods such as the boundary element method (BEM), finite-difference117

(FD), finite volumes (FV), or the finite element method (FEM). The resulting matrices and their Schur118

complements have blocks with bounded ranks that provide algorithmic gains while using H-matrix storage119

and the set of algebraic operations that are available within the H-format. In terms of storage, storing a120

dense matrix requires O(N2) memory footprint, while its H-matrix approximation counterpart can be stored121

in O(N logN) units of memory. For a comprehensive discussion of the construction of H-matrices and their122

arithmetic operations, we refer the reader to [29].123

4. Accelerated cyclic reduction124

In this section we briefly review the cyclic reduction algorithm and describe the tunable accuracy acceler-125

ated cyclic reduction variant that improves its arithmetic and memory complexity estimates to near-optimal126

complexity for the variable-coefficient case.127

4.1. Cyclic reduction128

Cyclic reduction was introduced by Hockney in 1965 [1], and then formalized by Buzbee and Golub in 1970129

[30]. Cyclic Reduction is a recursive algorithm for (block) tridiagonal linear systems. The algorithm consists130

of two phases: elimination and back-substitution. Elimination is equivalent to block Gaussian elimination131

without pivoting on a permuted system (PAPT)(Pu) = Pf . The permutation matrix P corresponds to a132

red-black ordering.133

The red-black ordering slices the domain into lines or planes, depending on whether the underlying134

problem comes from a 2D or 3D problem respectively, as depicted on Figure 4. This decomposition bears135

a similarity to the slice decomposition as reported in [31]. This decomposition is also used in the sweeping136

preconditioner [32, 33].137

Figure 4: Left: Grid; center: slice decomposition to the domain; right: resulting matrix structure. In 2D N = n2, each block

row represents a line of size n× n., whereas in 3D N = n3, each block row represents a plane of size n2 × n2.

6

Permutation decouples the system, and the computation of the Schur complement successively reduces138

the problem size by half. This process is recursive, and it finishes when a single block is reached, although the139

recursion can be stopped early if the system is small enough to be solved directly. The second phase performs140

a forward and backward substitution to find the solution. A graphical representation of the progression of141

elimination is shown in Figure 5. We refer to the reader to [2] for an extended description of the cyclic142

reduction method.143

Figure 5: Cyclic reduction preserves a block tridiagonal structure through elimination. Red blocks depict diagonal blocks, green

blocks depict the innermost of the bidiagonal blocks, and blue blocks depict the outermost of the bidiagonal blocks. Gray blocks

denote blocks in which elimination is completed.

4.2. Accelerated cyclic reduction (ACR)144

In [3], we proposed the use of hierarchical matrices and their corresponding algebraic operations to improve145

on the computational complexity and the memory requirements of the classical cyclic reduction method, and146

named the resulting method accelerated cyclic reduction (ACR).147

In generating the structure of the hierarchical matrix representations of the matrix blocks, we exploit the148

fact that, for a 3D problem, the domain is subdivided into n planes each consisting of n2 grid points. As149

a result, block rows of the matrix are identified with the planes of the discretization grid. We consider this150

geometry and use a two-dimensional planar bisection clustering when constructing each H-matrix. In other151

words, ACR deals with H-matrices with one dimension less than the original problem.152

A standard admissibility condition was chosen, as opposed to a weak admissibility condition that the153

H-matrix format also allows, because it provides the flexibility of selecting a range of coarser to finer blocks.154

4.3. Tuning parameters155

There are three tuning parameters in the construction of an H-matrix that can be leveraged to optimize156

memory requirements and performance: Hε, η, and nmin. These, in turn, allow for a tunable accuracy157

ACR factorization which we use in this work as a preconditioner to Krylov methods. The cyclic reduction158

method was originally conceived as a direct solver; however, extensions of the use of CR as preconditioner159

have appeared in the literature [34, 35], although to the best of our knowledge, none of them use hierarchical160

matrices.161

7

The first parameter Hε controls the specified block-wise relative accuracy of the H-matrix blocks tagged162

as low-rank. This parameter resembles the cut-off tolerance ε of the truncated SVD that disregards singular163

values to achieve an approximation accuracy of ε.164

The second parameter is η, from the admissibility condition criterion. The case for choosing a standard165

admissibility condition (small η) is that, by further refining off-diagonals blocks, it is possible to achieve the166

same relative accuracy as with a weak admissibility (large η) but with smaller numerical ranks, albeit with167

more off-diagonal blocks (see Figure 6a vs. 6d). Numerical low-ranks are crucial to ensure economic memory168

consumption and overall high-performance.169

Consider the computation of the approximate inverse in the H-matrix format of a 2D variable-coefficient170

Poisson problem, with an error tolerance of three digits of accuracy in the Frobenius norm (
∣∣∣∣AA−1 − I

∣∣∣∣
F

),171

and a fixed accuracy parameter Hε. The variable of interest in this experiment is the admissibility condition172

parameter η, which controls the block refinement as depicted in Figure 6.173

(a) η = 2 (Strong admissibility) (b) η = 64

(c) η = 128 (d) η = 256 (Weak admissibility)

Figure 6: H-matrix structure for different parameter η with fixed Hε and leaf size nmin=32. Matrix depicts a 2D variable

coefficient Poisson problem with four orders of magnitude of contrast in the coefficient discretized with N = 1282 degrees of

freedom. The numbers inside the green low-rank blocks denote the required numerical rank for the specified accuracy.

Table 1 documents the memory requirements of each approximate inverse as a function of η. As shown,174

the optimal η parameter resides in between strong admissibility (η=2) and weak admissibility (η=256).175

This tuning is a significant advantage for data-sparse formats that are not limited to the choice of weak176

admissibility, such as the H-format. As the table shows, the most economic inverse regarding memory is not177

8

necessarily the representation with the smallest rank, since an aggressive refinement leads to a larger number178

of blocks and deeper cluster trees.179

N η
∣∣∣∣AA−1 − I

∣∣∣∣
F

Max. Rank Memory (Bytes)

1282 2 5.0e-3 16 6.76e+7

1282 64 7.2e-3 34 6.64e+7

1282 128 9.1e-3 64 8.64e+7

1282 256 9.1e-3 126 1.01e+8

Table 1: Memory consumption as a function of the tuning parameter η for the computation of the approximate inverse in the H-

matrix format of a 2D variable-coefficient Poisson problem with four orders of magnitude of contrast in the coefficient, discretized

with N = 1282 degrees of freedom. Parameter η=2 depicts strong admissibility, while η=256 depicts weak admissibility;

regarding memory requirements, η=64 is optimal.

Since the memory consumption of ACR is determined by the sum of the memory consumption of each180

H-matrix involved in elimination, an economical storage of each H-matrix directly translates into savings181

to the overall ACR memory footprint. As shown in Figure 7, tuning η across a range of problem sizes has182

nuanced benefits. For linear systems in the order of a few millions of degrees of freedom a coarse block183

partitioning (close to weak admissibility) minimizes the overall memory consumption. However, for problems184

larger than a dozen of millions of unknowns block partitioning closer to strong admissibility is optimal to185

reduce memory requirements.186

105 106 107

102

103

104

105

106

107

N

M
em

or
y
(M

B
)

Memory η = 2

Memory η = n/2
Memory η = 2n

Figure 7: Effect of tunable parameter η on total memory consumption of ACR for a 3D variable-coefficient problem. The

memory complexity estimate of O(N logN) is achieved for η = 2 which corresponds to strong admissibility. η = 2n which

correspond to weak admissibility uses the most memory asymptotically, and an intermediate value of η = n/2 achieves the least

amount of memory within the range of problem sizes considered.

The third tuning parameter determines which blocks with less than or equal to nmin rows or columns are187

stored as dense matrices, as it is more efficient to operate on them in dense rather than in low-rank form. It188

also alleviates unnecessarily deep binary trees in the structure of H-matrices. Figure 6 depicts these blocks189

9

in red.190

5. Hybrid distributed-shared parallelism191

The concurrency features of cyclic reduction have been evaluated in both distributed memory [36, 37, 38,192

39, 40], and shared memory environments [41, 42, 43], although to the best of our knowledge, none of them193

use hierarchical matrices. We propose a hybrid model with MPI across the nodes and task-based parallelism194

across the cores in a node.195

The distribution of parallel work was designed to accommodate the architecture of a modern super-196

computer, such as the Shaheen Cray XC40 supercomputer at the King Abdullah University of Science &197

Technology. Shaheen is composed of 6,144 compute nodes, with each node holding 128GB of RAM and two198

Intel Haswell processors with 16 cores clocked at 2.3Ghz. The nodes are connected with a Dragonfly network.199

All our reported numerical experiments were performed on this machine.200

Since the supercomputer architecture features multiple fast individual nodes, physically connected trough201

a high-speed network interconnect, we seek to maximize computation within nodes and minimize communi-202

cation across nodes. Schur complementation is calculated locally within the nodes with a task-based parallel203

programming model. Dependencies to perform elimination and solve are fulfilled via a distributed memory204

programming model in which only the missing matrix blocks or vectors are provided with the message passing205

interface (MPI).206

5.1. Distributed memory parallelism207

Each plane of the computational domain is assigned to an MPI rank, but to minimize communication208

within the nodes, we allocate as many planes per node as memory allows. Let p be the number of compute209

nodes and n be the number of planes; therefore each node stores n/p planes at the beginning of the factor-210

ization. Since ACR eliminates half of the planes at each step, after r steps each node holds n/(2rp) planes.211

At level r = log(n/p), every node holds a single plane only. In the multigrid literature, this level is known as212

the C-level, i.e. the coarse level, illustrated in blue in Figure 8. The remaining log p steps beyond the C-level213

leave some compute nodes idle; fortunately, most of the remaining block operations have been completed by214

this step.215

Distributed memory communication occurs only at inter-node boundaries, as the elimination of plane i216

only requires planes i−1 and i+1. Thus up to the C-level, there are O(p) messages per step, each transmitting217

planes of size O(k n2 log n). Beyond the C-level, there are O(p/2 + · · ·+ 1) ≈ O(p) communication messages,218

adding up to a total communication volume of O(k p n2 log n (log n
p + 1)), where n is the size of the linear219

dimension and k is the rank of the low-rank approximation.220

5.2. Shared memory parallelism221

We exploit the concurrency of hierarchical matrix algebra at node level [6], in particular, through a task-222

based programming model [7]. The HLibPro package relies on the Intel Threading Building Blocks library223

10

Figure 8: Distribution of multiple planes per node for an example with n = 16 planes and p = 4 nodes.

[44] to build directed acyclic graphs for the dependencies between tasks, which might involve recursion. The224

allocation of cores to perform hierarchical matrix algebra within the node depends on the number of planes225

per node.226

For instance, for a node with thirty-two processors and four planes per node, we set four MPI processes,227

and for each plane we allocate eight processors to perform task-based parallelism. Resource allocation for228

either block row processing (communication of planes) or parallel task-based hierarchical arithmetics (com-229

putation of Schur complement) can be tuned to maximize performance or memory availability.230

We refer to the reader to [3] for an extended discussion of the parallel features of ACR, and the derivation231

of its parallel complexity estimates.232

5.3. Parallel scalability233

The parallel scalability of the ACR preconditioner is demonstrated below on a constant-coefficient Poisson234

equation with homogeneous Dirichlet boundary conditions in the unit cube, discretized with the 7-point finite-235

difference star stencil. We use the conjugate gradient method [45] with a convergence criterion in the 2-norm236

of the relative residual down to 10−8. This problem results in a symmetric positive definite matrix whose237

factors exhibit rapid decay of the singular values of off-diagonal blocks and offers an ideal testbed to show238

the parallel scalability of the hierarchically low-rank algorithmic computations. The following experiments239

improve on previous timings for the setup phase performed at smaller accuracies [3], demonstrating that the240

use of ACR as a preconditioner with looser tolerances, i.e. smaller ranks, also benefits scalability.241

5.3.1. Strong scaling242

Figures 9a and 9b show the total time in seconds for the setup and solve per iteration of the ACR243

preconditioner in a strong scaling setting; dashed lines indicate ideal scaling, a reduction in time by a factor244

of two as we double the number of processors.245

11

32 128 512 2,048 8,192

101

102

103

104

Processors

S
et
u
p
ti
m
e
(s
)

N = 5123

N = 2563

N = 1283

N = 643

(a) Strong scaling of the preconditioner setup.

32 128 512 2,048 8,192

10−2

10−1

100

101

Processors

A
p
p
ly

ti
m
e
(s
)

N = 5123

N = 2563

N = 1283

N = 643

(b) Strong scaling of the preconditioner apply.

Figure 9: ACR preconditioner strong scalability for the solution of the constant-coefficient Poisson equation.

The most time-consuming phase of the ACR preconditioner benefits the most as the number of processors246

increases for a variety of problem sizes. Nonetheless, the ideal scaling of the solve stage deteriorates at large247

processor counts as factors such as hardware latency play a significant role in this computationally lightweight248

kernel solely based on H matrix-vector multiplications.249

5.3.2. Weak scaling250

Figures 10a and 10b depict the results of a weak scaling experiments for the ACR preconditioner fixing251

a different numbers of degrees of freedom per processor, along with the ideal weak scaling reference lines252

depicted as dashed curves considering that the estimates of setup is of O(k2N log2N) operations and the253

solve stage per iteration are of O(kN logN) operations.254

256 512 1,024 2,048 4,096 8,192
101

102

103

104

Processors

S
et
u
p
ti
m
e
(s
)

16,384 dof/processor

4,096 dof/processor

1,024 dof/processor

(a) Weak scaling of the preconditioner setup.

256 512 1,024 2,048 4,096 8,192

0.1

0.5

2.5

Processors

S
ol
ve

ti
m
e
(s
)

16,384 dof/processor

4,096 dof/processor

1,024 dof/processor

(b) Weak scaling of the preconditioner apply.

Figure 10: Weak scalability of the ACR preconditioner application for the solution of the constant-coefficient Poisson equation.

The setup stage follows the ideal trending line as we increase the number of processors. The solve phase255

deviates from the ideal scaling due to the communication latency which is more noticeable due to its lower256

arithmetic intensity, the scalability of the Krylov method (conjugate gradient in this case), and the load257

imbalance in the late stages of the recursive bisection of cyclic reduction.258

12

6. Variable-coefficient Poisson equation259

The solution of variable-coefficient PDEs is an essential engineering problem, as the coefficient structure260

typically corresponds to material properties of the problem under consideration. This section documents261

the behavior of the ACR preconditioner from an increasingly challenging coefficient structure with up to six262

orders of magnitude of contrast.263

The problem under consideration in this section is the symmetric positive definite discretization of the264

3D variable-coefficient Poisson equation with Dirichlet boundary conditions. In particular, the second-order265

accurate 7-point finite-difference star stencil with harmonic average of the coefficient κ(x) [46]:266

−∇ · κ(x)∇u = 1, x ∈ Ω = [0, 1]3, u(x) = 0, x ∈ Γ, (2)

6.1. Generation of random permeability fields267

The generation of random permeability field κ(x) that closely represents a porous medium for the modeling268

of water or oil flow is a well-defined task on its own. The experiments in this section are based on the parallel269

framework for the multilevel Monte Carlo approach (MLMC) described in [47], via the Distributed and270

Unified Numerics Environment DUNE [48]. The random permeability fields are defined with covariance271

function of the form:272

C(h) = σ2 exp(−||h||2/λ), h ∈ [0, 1]3 (3)

Gaussian random fields are set to a correlation length λ = 3h, where h = 1
n−1 and N = n3. The variance273

σ is set to deliver a particular contrast in the coefficient measured in orders of magnitude. Figure 11 depicts274

four random fields realizations at different number of degrees of freedom and contrast of the coefficient.275

(a) N = 323 One order of

magnitude of contrast.

(b) N = 643 Two orders of

magnitude of contrast.

(c) N = 1283 Four orders

of magnitude of contrast.

(d) N = 2563 Six orders of

magnitude of contrast.

Figure 11: Different realizations of random permeability fields κ(x) at different resolutions and contrast of the coefficient. Images

depict the middle slice of each 3D permeability field.

6.2. Tuning parameters276

The main parameter that controls the accuracy of the ACR preconditioner is Hε. As discussed in section277

3, Hε controls the accuracy of the H-matrix approximations and their arithmetic operations. This global278

threshold, in turn, controls the relative accuracy of the solution for a given right-hand side.279

13

It is expected that as we adjust Hε, we can control the required number of iterations to reach convergence280

with a Krylov method. One could set Hε to the sought after accuracy of the solution and not require281

any iteration at all. However, the performance and memory requirements, although asymptotically-optimal,282

become impractical at high-accuracy for 3D problems. For the ACR preconditioner, the sweet spot for283

achieving the fastest time to solution is not the one corresponding to the least number of iterations. It is284

generally the case that the inexpensive ACR preconditioners provide the fastest time to solution. There is285

a trade-off between the accuracy of the preconditioner and the number of Krylov iterations as numerical286

experiments show below.287

The effect on the required number of iterations as a function of the preconditioner accuracy Hε to solve a288

N = 1283 problem with coefficient contrast of four orders of magnitude can be seen in Figure 12a. The largest289

Hε requires the most number of iterations, while the smallest Hε requires the least number of iterations.290

As can be seen from Figure 12b, even though setting a large Hε required the greatest number of CG291

iterations, this is the recommended value ofHε to optimize for time to solution in our current implementation.292

Although there are more iterations than with a smaller Hε, the application of the preconditioner is fastest at293

large Hε since the ranks are the smallest, see Figure 13a. Figure 13b depicts how Hε directly determines the294

memory footprint of the preconditioner, and shows why it is desirable to set Hε as large as possible to also295

optimize for memory requirements. Larger values of the preconditioner accuracy could deliver better time296

to solution, although at the expense of more synchronizing iterations, which might be undesirable for some297

applications.298

0 10 20 30 40 50 60

10−7

10−5

10−3

10−1

101

103

CG iterations

||(
b
−
A
x
)P

(b
−

A
x
)||

2

Hε =1e-1
Hε =1e-2
Hε =1e-3
Hε =1e-4

(a) Number of CG iterations as a function of the precondi-

tioner accuracy Hε for the variable-coefficient Poisson equa-

tion. The preconditioner with the smallest Hε requires the

least number of iterations.

1e-1 1e-2 1e-3 1e-4
0

50

100

150

Preconditioner accuracy (Hε)

T
o
ta
l
ti
m
e
(s
)

Setup

Apply

(b) Time requirements while refining the preconditioner

accuracy Hε for the variable-coefficient Poisson equation.

The preconditioner with the largest Hε delivers the best

time to solution.

Figure 12: Number of iterations and preconditioning accuracy for the variable-coefficient Poisson equation with N = 1283

degrees of freedom and coefficient contrast of four orders of magnitude.

14

1e-1 1e-2 1e-3 1e-4
0

20

40

60

80

Preconditioner accuracy (Hε)

N
u
m
er
ic
al

ra
n
k

Largest rank in factorization

(a) Largest rank in the factorization at different precondi-

tioner accuracy Hε. The preconditioner with the largest

Hε requires the smallest numerical rank.

1e-1 1e-2 1e-3 1e-4
0

2

4

6

8

·104

Preconditioner accuracy (Hε)

M
em

o
ry

(M
B
)

Memory footprint

(b) Memory requirements at different preconditioner accu-

racy Hε. The preconditioner with the largest Hε requires

the least amount of memory.

Figure 13: Effect of the preconditioner accuracy Hε for the variable-coefficient Poisson equation with N = 1283 degrees of

freedom and coefficient contrast of four orders of magnitude.

6.3. Sensitivity with respect to high contrast coefficient299

As the problem difficulty increases, i.e. the contrast of the coefficient sharpens, there are cases for which300

the most economical preconditioner (e.g. Hε=1e-1) might not reach convergence within an acceptable number301

of iterations, see Table 2.302

N Hε CG Iterations

323 1e-1 27

643 1e-1 51

1283 1e-1 95

2563
1e-1 100+

1e-2 73

Table 2: Number of iterations required by CG for the variable-coefficient Poisson equation with coefficient contrast of six orders

of magnitude. The most economical preconditioner for the hardest problem did not reach convergence within 100 iterations,

thus requiring a more accurate version of the preconditioner to reach convergence.

Therefore, to reach convergence, a more accurate preconditioner is necessary. Figure 14 shows the required303

number of iterations to achieve convergence for a preconditioner with accuracyHε=1e-2 at increasing problem304

size and contrast of the coefficient. For comparison, the baseline case (zero contrast) depicts a constant-305

coefficient Poisson equation with κ(x)=1.306

15

0 2 4 6

0

20

40

60

80

Constrast of the coefficient (in orders of magnitude)

P
C

G
it

er
a
ti

on
s

N = 2563

N = 1283

N = 643

N = 323

Figure 14: Required number of iterations for an ACR preconditioner accuracy of Hε=1e-2 as both the problem size and the

contrast of the coefficient increases. A larger number of iterations is necessary as the contrast of the coefficient increases.

One of the established methods for the solution of these type of problems is algebraic multigrid. As307

the contrast of the coefficient changes, Table 3 shows the number of iterations required by the conjugate308

gradient method (CG) without preconditioning, and the preconditioned conjugate gradient method using309

algebraic multigrid (AMG) as a preconditioner, accessed here via the hypre library [49, 50]. To compare at310

a similar number of iterations, the ACR preconditioner was tuned to require less than ten iterations, in this311

case at Hε=1e-4. Experiments show that at moderate contrast of the coefficients and using 512 cores, the312

solve time of the ACR preconditioner is comparable to the AMG preconditioner, albeit at a large enough313

number of right-hand sides so that the setup time of ACR gets amortized since the preconditioner can be314

reused. Another dimension of comparison is a traditional direct solver, such as the LU factorization, here315

accessed through the SuperLU DIST package [51]. For instance, for the problem of four orders of magnitude316

of contrast, the LU factors are computed in 27.16 seconds and require 3.5E4 MB of memory, whereas the317

ACR preconditioner at Hε=1e-1 is computed in 27.71 seconds, but it only requires 1.7E4 MB of memory to318

store its factors.319

Coefficient

contrast

CG + No Prec. CG + AMG CG + ACR

Iterations Solve Iterations Solve Iterations Solve

0 257 0.10 6 0.53 3 0.30

2 975 0.24 6 0.35 4 0.34

4 2210 0.44 6 0.28 4 0.37

6 6968 1.35 7 0.26 7 0.59

Table 3: Number of iterations and solve time for the solution of a sequence of Poisson problems N = 1283 with a variable

coefficient at increasing order of magnitude of contrast of the coefficient. Methods under consideration include algebraic multigrid

(AMG), and accelerated cyclic reduction (ACR).

16

6.4. Operation count and memory footprint320

The complexity estimates of the number of operations in the setup and application phases of the precon-321

ditioner are bounded by O(k2N log2N) and O(kN logN) respectively, while its memory footprint is bounded322

by O(kN logN); where N is the number of degrees of freedom and k is the numerical rank of the approx-323

imation. To demonstrate that these estimates hold for a variable-coefficient problem, Figure 15 shows the324

behavior of the preconditioner in terms of operations count and memory footprint as we increase the num-325

ber of degrees of freedom N for the variable-coefficient Poisson equation with a coefficient of four orders of326

magnitude of contrast.327

The vertical axis of Figure 15a, normalized by the number of processors used in each case, reports the328

measured performance of the setup and application phases of the preconditioner while comparing it with329

their theoretical complexity. Figure 15b reports the total memory requirements as the problem size increases330

and also compares it with the theoretical complexity demonstrating a fair agreement.331

105 106 107

10−5

10−3

10−1

101

103

105

N

T
im

e
N
o
d
es

(s
)

Setup

N log2 N
Apply
N logN

(a) Comparison of the preconditioner setup and application

with their corresponding theoretical estimates.

105 106 107

102

103

104

105

N

M
em

or
y
(M

B
)

Memory footprint
N logN

(b) Comparison of the preconditioner memory footprint

with its theoretical estimate.

Figure 15: Measured performance and memory footprint for the solution of an increasingly larger variable-coefficient Poisson

equation with a random field of four orders of magnitude of contrast in the coefficient. The preconditioner accuracy for this

experiments is set to Hε = 1e-1.

17

7. Convection-diffusion equation with recirculating flow332

In this section we show the effectiveness of the ACR preconditioner on the convection-diffusion equation333

with a variable and recirculating flow b(x), i.e. a flow with vanishing normal velocities at the boundary.334

−∇ · κ(x)∇u+ αb(x) · ∇u = f(x), x ∈ Ω = [0, 1]3,

b(x) =




sin(a 2πx) sin(a 2π(1/8 + y)) + sin(a 2π(1/8 + z)) sin(a 2πx)

cos(a 2πx) cos(a 2π(1/8 + y)) + cos(a 2π(1/8 + y)) cos(a 2πz)

cos(a 2πx) cos(a 2π(1/8 + z)) + sin(a 2π(1/8 + y)) sin(a 2πz)


 ,

bx + by + bz = 0.

(4)

The equation is discretized with a 7-point upwind finite difference scheme, which leads to a nonsymmetric335

linear system. When the convection term dominates, α > 1, this equation is known to be challenging for336

classical iterative solvers.337

7.1. Tuning parameters338

In a regime of convection dominance, Figure 16a shows how the ACR preconditioner can control the339

number of GMRES iterations by tuning the preconditioner accuracy Hε.340

Regarding absolute time to solution, experiments with our latest implementation show that the precon-341

ditioner with the largest Hε led to the best time to solution, albeit with the most iterations, as Figure 16b342

shows. As a result, this preconditioner configuration featured the lowest numerical rank, as shown in Figure343

17a, enabling a fast application at each iteration. Furthermore, the fastest preconditioner had the least344

memory requirements, as shown in Figure 17b.345

0 5 10 15 20 25 30

1

1e-2

1e-4

1e-6

1e-8

GMRES iterations

||A
x
−

b||
2
/
||b
|| 2

Hε =1e-1
Hε =1e-2
Hε =1e-3
Hε =1e-4

(a) Number of iterations as a function of the preconditioner

accuracy Hε. As Hε decreases, the preconditioner requires

fewer iterations.

1e-1 1e-2 1e-3 1e-4
0

50

100

150

200

Preconditioner accuracy (H✏)

T
o
ta
l
ti
m
e
(s
)

Setup

Apply

(b) Time requirements while refining the preconditioner ac-

curacy Hε. The largest Hε delivers the best time to solu-

tion.

Figure 16: This experiment depicts a convection-diffusion problem with recirculating flow with eight vortices, α = 8, discretized

with N = 1283 degrees of freedom.

18

1e-1 1e-2 1e-3 1e-4
0

20

40

60

80

100

Preconditioner accuracy (Hε)

N
u
m
er
ic
al

ra
n
k

Largest rank in factorization

(a) Largest rank in factorization at different Hε for the

convection-diffusion equation. The preconditioner with the

largest Hε features the lowest numerical ranks.

1e-1 1e-2 1e-3 1e-4
0

2

4

6

8

·104

Preconditioner accuracy (Hε)

M
em

o
ry

(M
B
)

Memory footprint

(b) Memory requirements while refining the preconditioner

accuracy Hε. The largest Hε delivers the preconditioner

with the least memory footprint.

Figure 17: Effect on the preconditioner accuracyHε for a convection-diffusion problem with recirculating flow with eight vortices,

α = 8, and discretized with N = 1283 degrees of freedom.

7.2. Sensitivity with respect to vortex wavenumber346

Consider an increasing number of vortices in the flow b(x), as Figure 18 shows. At the corners, and in347

center of each vortex, there are saddle points which are known to be challenging for multigrid methods to348

resolve [52]. Figure 19 demonstrates that the ACR preconditioner remains robust as the number of vortices349

increases.350

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Two vortices.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Four vortices.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Six vortices.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Eight vortices.

Figure 18: Increasing number of vortices in the flow b(x).

19

2 4 6 8
0

20

40

60

Number of vortices

T
o
ta
l
ti
m
e
(s
)

Setup

Apply

Figure 19: Time distribution of the preconditioner as the number of vortices in b(x) increases. Increasing the number of vortices

had a minor effect on the effectiveness of the preconditioner.

7.3. Sensitivity with respect to convection dominance351

Consider a fixed-accuracy ACR preconditioner with Hε =1e-1, and an increasingly convection dominated352

problem, achieved by gradually increasing α in Equation 4. As expected, Figure 20a shows that a low-353

accuracy preconditioner requires more iterations as the convective term dominates. Furthermore, given354

that the accuracy of the preconditioner is fixed, there is a noticeable effect on the application phase of the355

preconditioner, which is proportional to the number of iterations. A graphical representation of such behavior356

can be seen in Figure 20b. Evidently, as shown in the section 7.1, it is possible to control, and decrease,357

the number of iterations by building a more accurate preconditioner. But the key point here is that the358

ACR preconditioner in combination with GMRES is demonstrated to be robust for convection dominated359

problems.360

As a matter of comparison, Table 4 shows the number of iterations of GMRES without preconditioner, and361

GMRES in combination with the incomplete LU factorization. In this case, the problem with the strongest362

convection dominance did not reach a solution with the incomplete LU factorization as a preconditioner363

of GMRES. In terms of memory, the ACR preconditioner for the problem with the strongest convection364

dominance required 30.76 seconds and 2.3E4 MB of memory with Hε=1e-1, whereas SuperLU DIST required365

44.59 seconds and 3.7E4 MB of memory.366

20

2 4 8 16
0

20

40

60

80

100

α

G
M
R
E
S
it
er
a
ti
o
n
s

Iterations

(a) Number of iterations as the convection term gains dom-

inance. An increase in the dominance of the convection

term requires mores iterations.

2 4 8 16
0

20

40

60

α

T
o
ta
l
ti
m
e
(s
)

Setup

Apply

(b) Time requirements as the convection term gains dom-

inance. The overall time to solution has a moderate in-

crease.

Figure 20: Effect on the preconditioner accuracy Hε for the convection-diffusion equation with recirculating flow discretized

with N = 1283 degrees of freedom as the convective becomes more significant than the diffusion term.

α
GMRES + No Prec. GMRES + ILU(0) GMRES + ACR

Iterations Solve Iterations Solve Iterations Solve

0 1,132 0.38 201 0.20 26 2.93

2 1,242 0.51 226 0.22 27 3.10

4 1,765 0.60 368 0.30 30 4.02

6 100,000+ - 100,000+ - 77 8.94

Table 4: Number of iterations and solve time for the solution of a sequence of convection-diffusion problems with N = 1283 and

increasingly convection dominance. Methods under consideration include the incomplete LU factorization (ILU), and accelerated

cyclic reduction (ACR).

7.4. Operation count and memory footprint367

Figure 21 presents a comparison between the measured performance and memory requirements of the368

preconditioner, and their corresponding theoretical complexity estimates for the convection-diffusion problem369

described in Equation 4, as the problem size increases.370

The vertical axis of Figure 21a, normalized with the number of compute nodes used in each case, reports371

the measured performance of the setup and application phases of the preconditioner while demonstrating a372

fair agreement with the asymptotic complexity estimates for the large-scale experiments.373

Figure 21b reports the total memory requirements as the problem size increases and also compares it with374

its corresponding theoretical complexity demonstrating a fair agreement across all experiments.375

21

105 106 107
10−4

10−2

100

102

104

N

T
im

e
N
o
d
es

(s
)

Setup

N log2 N
Apply
N logN

(a) Comparison of the preconditioner setup and application

with their corresponding theoretical estimates.

105 106 107

102

103

104

105

N

M
em

o
ry

(M
B
)

Memory footprint
N logN

(b) Comparison of the preconditioner memory footprint

with its theoretical estimate.

Figure 21: Measured performance and memory footprint for the solution of the convection-diffusion equation with recirculating

flow.

8. Indefinite Helmholtz equation in heterogeneous media376

The numerical solution of the indefinite Helmholtz equation offers one of the greatest challenges for it-377

erative and direct solvers at large-scale [53]. There is a significant interest in the development of optimal378

methods as several engineering applications use the Helmholtz equation to model time-harmonic propaga-379

tion of acoustic waves. Inversion techniques based on full-waveform inversion (FWI) for instance, involve380

heterogeneous velocity models and the solution of multiple right-hand sides at a wide range of frequencies.381

Therefore, the introduction of an efficient forward solver directly contributes to expanding the limits of what382

can be modeled computationally.383

Consider the indefinite Helmholtz equation in a variable velocity field c(x), at frequency f , and Dirichlet384

boundary conditions in the unit cube:385

−∇2u− (2πf)
2

c(x)2
u = f(x), Ω = [0, 1]3, x ∈ Γ,

c(x) = 1.25(1− 0.4e−32(|x−0.5|
2+|y−0.5|2))

u(x) = sin(πx) sin(πy) sin(πz)

(5)

The velocity field models a waveguide over the unit cube as proposed in [33], and depicted in 22. The386

forcing term f(x) is adjusted to satisfy the proposed exact solution u(x). The equation is discretized with387

the 27-point trilinear finite element scheme on hexahedra with the software library PetIGA [54]. Since the388

linear system arising from the discretization is indefinite in the high-frequency Helmholtz case, we use ACR389

to accelerate the convergence of GMRES.390

22

Figure 22: Wave velocity field c(x). The image depicts the middle slice of the 3D wave velocity field.

8.1. Tuning parameters391

We illustrate the effectiveness of the ACR preconditioner on a moderately high-frequency Helmholtz prob-392

lem as described in Equation 5, discretized with N = 1283 degrees of freedom and 12 points per wavelength.393

As Figure 23 shows, we can control the number of iterations that GMRES requires to reach convergence394

by adjusting the accuracy of the preconditioner Hε. Notice that the preconditioner accuracy Hε is smaller395

than what was chosen for diffusive problems. The need of higher relative accuracy is due to the fact that the396

Helmholtz equation, in the high-frequency regime, has off-diagonal block ranks that asymptotically grow with397

problem size (k ∼ O(n)). This theoretical estimate is reported in the literature [8]. Evidently, rank growth398

impacts hierarchical-matrix based solvers. Nonetheless, the complexity estimates of the ACR preconditioner399

are still lower than traditional exact sparse factorizations, as demonstrated in section 8.3.400

0 5 10 15 20 25 30

1

1e-2

1e-4

1e-6

1e-8

GMRES iterations

||A
x
−

b||
2
/
||b
|| 2

Hε =1e-6
Hε =1e-7
Hε =1e-8
Hε =1e-9

Figure 23: Number of iterations as a function of the preconditioner accuracy Hε. As Hε decreases, the preconditioner requires

fewer iterations.

Even though the timings of the preconditioner shows an increase in the setup time as compared to diffusive401

problems, it still features an economical solve stage (Figure 24b). As mentioned in the introduction of this402

section, for inverse problems which require the solution of a large number of right-hand sides (typically up to403

23

a few thousands), the setup phase (Figure 24a) is typically regarded as an off-line phase that gets amortized404

if the solve stage is relatively fast, which is the case for the ACR preconditioner.405

1e-6 1e-7 1e-8 1e-9
0

200

400

600

800

1,000

Preconditioner accuracy (Hε)

S
et
u
p
ti
m
e
(s
)

(a) Setup phase at increasing accuracy of the precondi-

tioner.

1e-6 1e-7 1e-8 1e-9
0

2

4

6

Preconditioner accuracy (Hε)

A
p
p
ly

ti
m
e
(s
)

(b) Application phase at increasing accuracy of the precon-

ditioner.

Figure 24: Time requirements while refining the preconditioner accuracy Hε. The loosest Hε delivers the fastest time to solution

for a single right-hand side, whereas the tightest Hε delivers the best time to solution for a large number of right-hand sides,

since the preconditioner setup is computed only once.

The growth in the setup phase as the accuracy of the preconditioner is tightened is due to increased406

numerical ranks, as shown in Figure 25a. Rank growth has a direct impact on the memory footprint of the407

preconditioner, as shown in Figure 25b. Once more, the preconditioner with the loosest Hε, i.e. the lowest408

numerical rank, is the preconditioner of choice to optimize for both memory and performance.409

1e-6 1e-7 1e-8 1e-9
0

50

100

150

200

Preconditioner accuracy (Hε)

N
u
m
er
ic
al

ra
n
k

Largest rank in factorization

(a) Largest rank in factorization. Factorizations with

smaller ranks lead to more iterations, but less time to so-

lution and memory footprint.

1e-6 1e-7 1e-8 1e-9
0

2

4

6

8

·104

Preconditioner accuracy (Hε)

M
em

or
y
(M

B
)

Memory footprint

(b) Memory requirements while refining the preconditioner

accuracy Hε. The most economical preconditioner regard-

ing memory footprint is delivered with the largest Hε.

Figure 25: Effect on the preconditioner accuracy Hε for the high-frequency Helmholtz equation in a heterogeneous medium

discretized with N = 1283 degrees of freedom and 12 points per wavelength.

24

8.2. Low to high frequency Helmholtz regimes410

Consider a sequence of Helmholtz problems, as described in Equation 5, at increasing frequency. If the411

frequency is set to f = 0 Hz, the zeroth-order term vanishes, and we are left with a constant-coefficient412

Poisson problem. At the other end of the spectrum, a frequency of f = 8 Hz corresponds to a moderately413

high-frequency Helmholtz problem at 12 points per wavelength, as the problem featured in the previous414

section. Table 5 shows the preconditioner accuracy chosen to require a maximum of 20 GMRES iterations415

to reach convergence.416

f
Points per

wavelength
Hε

0 - 1e-1

2 48 1e-3

4 24 1e-4

8 12 1e-6

Table 5: Tuning of the preconditioner to require at most 20 GMRES iterations for a sequence of Helmholtz problems at increasing

frequencies. The problem with f = 0 represents a constant-coefficient Poisson problem, while f = 8 represents a moderately

high-frequency Helmholtz problem.

Figure 26a shows an apparent increase in both the setup and application phases of the preconditioner as a417

function of the frequency f . The growth in the setup is mainly due to the higher numerical ranks required to418

meet the upper limit of 20 iterations, as shown in Figure 26b. The increase in the application phase is due to419

both an increase in ranks, and an increase in the indefiniteness of the problem due to a higher frequency; as420

is evident from the growth in the number of required iterations depicted in Figure 26c. Finally as illustrated421

in figure 26d, the memory footprint also increases with the frequency as a consequence of higher ranks.422

25

0 2 4 8
0

100

200

300

400

500

Frequency (Hz)

T
ot
a
l
ti
m
e
(s
)

Setup

Apply

(a) Time requirements as a function of frequency. The

high-frequency regime (f = 8) requires the most time in

both setup and application phases.

0 2 4 8
0

20

40

60

80

100

120

Frequency (Hz)

N
u
m
er
ic
al

ra
n
k

Largest rank in factorization

(b) Largest rank in factorization, the accuracy is adjusted

to require less than 20 GMRES iterations. The high-

frequency case (f = 8) requires the largest numerical rank.

0 2 4 8

0

5

10

15

20

Frequency (Hz)

G
M
R
E
S
it
er
at
io
n
s

(c) Number of iterations as a function of frequency. The

high-frequency regime (f = 8) requires the largest number

of iterations.

0 2 4 8
0

2

4

6

8
·104

Frequency (Hz)

M
em

or
y
(M

B
)

Memory footprint

(d) Memory requirements as a function of frequency. The

high-frequency regime (f = 8) exhibits the largest memory

footprint.

Figure 26: Preconditioner performance for the Helmholtz equation in a heterogeneous medium discretized with N = 1283 degrees

of freedom at increasing frequencies. The problem with f = 0 Hz represents a constant-coefficient Poisson problem, while f = 8

Hz represents a moderately high-frequency Helmholtz problem.

To give a comparison with traditional techniques, Table 6 shows the number of iterations that GMRES423

without preconditioner, the incomplete LU factorization, and algebraic multigrid as preconditioner require.424

For this problem type, the ACR preconditioner was the only method that was able to solve all the problems425

under consideration.426

26

Frequency
GMRES + No Prec. GMRES + ILU(30) GMRES + AMG GMRES + ACR

Iterations Solve Iterations Solve Iterations Solve Iterations Solve

0 582 0.30 207 201.97 7 0.86 8 0.93

2 100,000+ - 100,000+ - 80 7.22 10 1.55

4 100,000+ - 100,000+ - 100,000+ - 12 2.13

8 100,000+ - 100,000+ - 100,000+ - 16 3.70

Table 6: Number of iterations and solve time for the solution of a sequence of increasingly indefinite Helmholtz problems

N = 1283 with a variable coefficient. Methods under consideration include the incomplete LU factorization (ILU), algebraic

multigrid (AMG), and accelerated cyclic reduction (ACR).

8.3. Operation count and memory footprint427

As the previous experiments show, the high-frequency Helmholtz regime is where the highest numerical428

ranks are required. Therefore, it is of interest to show how the computations behave asymptotically as429

the problem size increases considering the estimate k ∼ O(n) [8]. Figure 27a shows a comparison of the430

preconditioner setup with the O(n2 N log2N) estimate, and the preconditioner application with respect to431

the O(n N logN) estimate. Figure 27b shows the memory footprint of the preconditioner with respect to the432

estimate O(n N logN). Table 7 shows a fair agreement to the Chandrasekaran et al. estimate on the largest433

rank growth of the factorization, however, the average rank on the low-rank blocks of the ACR preconditioner434

grows slower than k ∼ O(n), which is reflected by a slightly lower than predicted memory consumption and435

setup time. The ACR preconditioner does not use the HSS format or a weak admissibility condition which436

results in off-diagonal blocks with large rank, but rather a standard admissibility condition that allows a437

more refined structure of the H-matrix blocks, as discussed in Section 4.3, and shown in Figure 6.438

N Largest rank Average rank

323 25 16

643 59 32

1283 118 36

Table 7: Rank growth statistics for a sequence high-frequency Helmholtz problems in heterogeneous medium, discretized at 12

points per wavelength.

27

105 106

10−4

10−2

100

102

104

N

T
im

e
N
o
d
es

(s
)

Setup

n2 N log2 N
Apply
n N logN

(a) Comparison of the preconditioner setup and application

with their respective theoretical estimates.

105 106
101

102

103

104

105

N

M
em

o
ry

(M
B
)

Memory footprint
n N logN

(b) Comparison of the preconditioner memory footprint

with its theoretical estimate.

Figure 27: Measured performance and memory footprint for the solution of a sequence high-frequency Helmholtz problems

in heterogeneous medium, discretized at 12 points per wavelength. On average, the rank of the low-rank blocks of the ACR

preconditioner grows slower than O(n).

9. Concluding remarks439

We presented a robust and scalable preconditioner based on the cyclic reduction method and hierarchical440

matrices in a distributed memory environment. The preconditioner relies on a block tridiagonal structure441

that commonly arise from the discretization of elliptic operators with variable-coefficient.442

The preconditioner setup is based on a red-black ordering for which, if a 3D grid is considered, the443

ordering divides the grid into planes. These planes represent block rows of the original linear system, which444

are represented with a hierarchical matrix, in the H format, and its structure is defined using a binary spatial445

partitioning of the planar grid sections, employing a standard admissibility criterion that controls the rank446

of individual low-rank blocks.447

The concurrency features of ACR constitute one of its strengths. The regularity of the decomposition448

allows a predictable load balance. The parallel features are demonstrated via the companion implementation449

in a distributed memory environment with numerical experiments that study the strong and weak scalability450

of the method. In our current implementation, concurrency at node level involves task-based parallelism of451

the hierarchical matrix arithmetic operations involved in the computation of the Schur complement and its452

evaluation. In future work, we plan on developing a set of distributed-memory hierarchical matrix operations453

that can exploit a larger set of processors to accelerate the setup phase of the preconditioner.454

We demonstrated over a range of problem sizes and parameters that the preconditioner can tackle a455

broad class of problems that lack definiteness, such as the indefinite high-frequency Helmholtz equation in456

heterogeneous media, or lack symmetry, such as the convection-diffusion equation with a recirculating flow.457

Since the accuracy of the H-matrix approximations and their arithmetic operations can be tuned, it458

was demonstrated that the preconditioner could control the number of Krylov iterations. Furthermore, we459

28

discuss how these parameters can be used to optimize performance and memory consumption via comparisons460

with Krylov methods with established preconditioners such as algebraic multigrid and the incomplete LU461

factorization, and with direct solvers that perform a complete LU factorization.462

As expected from all hierarchical low-rank approximations methods, the key to performance, and memory463

economy, is largely based on achieving an approximation with low rank; i.e. an efficient compression into a464

data-sparse format where k (the rank) is much less than n (the size of the block to be approximated). Nu-465

merical examples demonstrate that the required ranks agree with theoretical estimates and that for problems466

larger than a dozen of millions of unknowns the strong admissibility condition required less memory than the467

alternative (weak) admissibility condition.468

10. Acknowledgements469

We thank the editors and the reviewers for their time and comments during the review process of this470

work. Support from the KAUST Supercomputing Laboratory and access to Shaheen Cray XC40 is gratefully471

acknowledged.472

References473

[1] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, Journal of the ACM474

12 (1) (1965) 95–113. doi:10.1145/321250.321259.475

[2] G. Chávez, G. Turkiyyah, D. Keyes, A direct elliptic solver based on hierarchically low-rank Schur476

complements, in: Proceedings of the 23rd International Conference on Domain Decomposition Methods477

in Science and Engineering XXIII (C.-O. Lee et al., eds.) Lecture Notes in Computational Science and478

Engineering, Springer International Publishing, 2017, pp. 135–143. doi:10.1007/978-3-319-52389-7_479

12.480

[3] G. Chávez, G. Turkiyyah, S. Zampini, H. Ltaief, D. Keyes, Accelerated cyclic reduction: a distributed481

memory fast direct solver for structured linear systems, arXiv preprint arXiv:1701.00182.482

[4] J. A. Meijerink, H. A. van der Vorst, An iterative solution method for linear systems of which the483

coefficient matrix is a symmetric M–matrix, Mathematics of Computation 31 (137) (1977) 148–162.484

[5] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.485

[6] R. Kriemann, Parallel H-matrix arithmetics on shared memory systems, Computing 74 (3) (2005) 273–486

297. doi:10.1007/s00607-004-0102-2.487

[7] R. Kriemann, H-LU factorization on many-core systems, Computing and Visualization in Science 16 (3)488

(2013) 105–117. doi:10.1007/s00791-014-0226-7.489

29

[8] S. Chandrasekaran, P. Dewilde, M. Gu, N. Somasunderam, On the numerical rank of the off-diagonal490

blocks of Schur complements of discretized elliptic PDEs, SIAM Journal on Matrix Analysis and Appli-491

cations 31 (5) (2010) 2261–2290.492

[9] I. S. Duff, J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM493

Transactions on Mathematical Software 9 (3) (1983) 302–325. doi:10.1145/356044.356047.494

[10] R. Vandebril, M. Barel, G. Golub, N. Mastronardi, A bibliography on semiseparable matrices, Calcolo495

42 (3-4) (2005) 249–270. doi:10.1007/s10092-005-0107-z.496

[11] S. Chandrasekaran, M. Gu, T. Pals, A fast ULV decomposition solver for hierarchically semiseparable497

representations, SIAM Journal on Matrix Analysis and Applications 28 (3) (2006) 603–622. doi:10.498

1137/S0895479803436652.499

[12] J. Xia, S. Chandrasekaran, M. Gu, X. Li, Superfast multifrontal method for large structured linear500

systems of equations, SIAM Journal on Matrix Analysis and Applications 31 (3) (2010) 1382–1411.501

arXiv:http://dx.doi.org/10.1137/09074543X, doi:10.1137/09074543X.502

[13] J. Xia, S. Chandrasekaran, M. Gu, X. S. Li, Fast algorithms for hierarchically semiseparable matrices,503

Numerical Linear Algebra with Applications 17 (6) (2010) 953–976.504

[14] J. Xia, Randomized sparse direct solvers, SIAM Journal on Matrix Analysis and Applications 34 (1)505

(2013) 197–227.506

[15] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, A. Napov, An efficient multicore implementation of a novel507

HSS-structured multifrontal solver using randomized sampling, SIAM Journal on Scientific Computing508

38 (5) (2016) S358–S384.509

[16] S. Wang, X. S. Li, F.-H. Rouet, J. Xia, M. V. De Hoop, A parallel geometric multifrontal solver using510

hierarchically semiseparable structure, ACM Transactions on Mathematical Software 42 (3) (2016) 21:1–511

21:21.512

[17] S. Ambikasaran, E. Darve, An O(N logN) fast direct solver for partial hierarchically semi-separable513

matrices, Journal on Scientific Computing 57 (3) (2013) 477–501. doi:10.1007/s10915-013-9714-z.514

[18] A. Aminfar, E. Darve, A fast, memory efficient and robust sparse preconditioner based on a multifrontal515

approach with applications to finite-element matrices, International Journal for Numerical Methods in516

Engineering 107 (6) (2016) 520–540, nme.5196. doi:10.1002/nme.5196.517

[19] C. Weisbecker, Improving multifrontal solvers by means of algebraic block low-rank representations,518

Ph.D. thesis, Institut National Polytechnique de Toulouse-INPT (2013).519

30

[20] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, C. Weisbecker, Improving multi-520

frontal methods by means of block low-rank representations, SIAM Journal on Scientific Computing521

37 (3) (2015) A1451–A1474.522

[21] G. Chávez, Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the523

numerical solution of elliptic partial differential equations, Ph.D. thesis, King Abdullah University of524

Science and Technology (2017).525

[22] I. Ibragimov, S. Rjasanow, K. Straube, Hierarchical Cholesky decomposition of sparse matrices arising526

from curl-curl-equation, Journal of Numerical Mathematics 15 (1) (2007) 31–57. doi:10.1515/jnma.527

2007.031.528

[23] L. Grasedyck, R. Kriemann, S. Le Borne, Parallel black box H-LU preconditioning for elliptic bound-529

ary value problems, Computing and Visualization in Science 11 (4-6) (2008) 273–291. doi:10.1007/530

s00791-008-0098-9.531

[24] L. Grasedyck, R. Kriemann, S. Le Borne, Domain decomposition based H-LU preconditioning, Nu-532

merische Mathematik 112 (4) (2009) 565–600. doi:10.1007/s00211-009-0218-6.533

[25] J. Xia, M. Gu, Robust approximate Cholesky factorization of rank-structured symmetric positive definite534

matrices, SIAM Journal on Matrix Analysis and Applications 31 (5) (2010) 2899–2920. doi:10.1137/535

090750500.536

[26] H. Pouransari, P. Coulier, E. Darve, Fast hierarchical solvers for sparse matrices using extended sparsi-537

fication and low-rank approximation, arXiv preprint arXiv:1510.07363.538

[27] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices,539

Computing 62 (2) (1999) 89–108. doi:10.1007/s006070050015.540

[28] M. Bebendorf, Hierarchical matrices: A means to efficiently solve elliptic boundary value problems,541

Vol. 63, Springer, 2008, Lecture Notes in Computational Science and Engineering.542

[29] W. Hackbusch, Hierarchical matrices: Algorithms and analysis, Vol. 49, Springer Series in Computational543

Mathematics, 2015.544

[30] B. L. Buzbee, G. H. Golub, C. W. Nielson, On direct methods for solving Poisson equations, SIAM545

Journal on Numerical Analysis 7 (4) (1970) pp. 627–656.546

[31] R. Guivarch, L. Giraud, J. Stein, Parallel distributed fast 3D Poisson solver for meso-scale atmospheric547

simulations, International Journal of High Performance Computing Applications 15 (1) (2001) 36–46.548

[32] B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: hierarchical matrix repre-549

sentation, Communications on Pure and Applied Mathematics 64 (5) (2011) 697–735.550

31

[33] J. Poulson, B. Engquist, S. Li, L. Ying, A parallel sweeping preconditioner for heterogeneous 3D551

Helmholtz equations, SIAM Journal on Scientific Computing 35 (3) (2013) C194–C212.552

[34] G. Rodrigue, D. Wolitzer, Preconditioning by incomplete block cyclic reduction, Mathematics of Com-553

putation 42 (166) (1984) 549–565.554

[35] A. Reusken, On the approximate cyclic reduction preconditioner, SIAM Journal on Scientific Computing555

21 (2000) 565–590.556

[36] P. Amodio, I. Gladwell, G. Romanazzi, An algorithm for the solution of bordered ABD linear systems557

arising from boundary value problems, in: Multibody Dynamics 2007, ECCOMAS, Milano (Italy), 2007.558

[37] P. Amodio, M. Paprzycki, A cyclic reduction approach to the numerical solution of boundary value559

ODEs, SIAM Journal on Scientific Computing 18 (1) (1997) 56–68.560

[38] W.-Y. Lin, C.-L. Chen, A parallel algorithm for solving tridiagonal linear systems on distributed memory561

multiprocessors, International Journal of High Speed Computing 6 (03) (1994) 375–386.562

[39] G. Saghi, H. J. Siegel, J. L. Gray, Predicting performance and selecting modes of parallelism: a case563

study using cyclic reduction on three parallel machines, Journal of Parallel and Distributed Computing564

19 (3) (1993) 219–233.565

[40] R. A. Sweet, A parallel and vector variant of the cyclic reduction algorithm, SIAM Journal on Scientific566

and Statistical Computing 9 (4) (1988) 761–765.567

[41] D. Goddeke, R. Strzodka, Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision568

multigrid, IEEE Transactions on Parallel and Distributed Systems 22 (1) (2011) 22–32.569

[42] P. Quesada-Barriuso, J. Lamas-Rodŕıguez, D. B. Heras, M. Bóo, F. Argüello, Selecting the best tridi-570

agonal system solver projected on multi-core CPU and GPU platforms, in: International Conference on571

Parallel and Distributed Processing Techniques and Applications, 2011.572

[43] Y. Zhang, J. Cohen, J. D. Owens, Fast tridiagonal solvers on the GPU, ACM Special Interest Group on573

Programming Languages notices 45 (5) (2010) 127–136.574

[44] C. Pheatt, Intel R© threading building blocks, Journal of Computing Sciences in Colleges 23 (4) (2008)575

298–298.576

[45] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research577

of the National Bureau of Standards 49 (1) (1952) 409–436.578

[46] S. Y. Kadioglu, R. R. Nourgaliev, V. A. Mousseau, A comparative study of the harmonic and arithmetic579

averaging of diffusion coefficients for non-linear heat conduction problems, Tech. rep., INL/EXT-08-580

13999, Idaho National Laboratory, Idaho Falls, Idaho 83415 (2008).581

32

[47] J. Mohring, R. Milk, A. Ngo, O. Klein, O. Iliev, M. Ohlberger, P. Bastian, Uncertainty quantification582

for porous media flow using multilevel Monte Carlo, in: Lirkov I., Margenov S., Waniewski J. (eds)583

International Conference on Large-Scale Scientific Computing. Lecture Notes in Computer Science, vol584

9374. Springer, Cham, 2015, pp. 145–152.585

[48] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander, A generic grid586

interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing 82 (2-3)587

(2008) 103–119.588

[49] W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial, Second Edition, 2nd Edition, SIAM, 2000.589

doi:https://doi.org/10.1137/1.9780898719505.590

[50] R. D. Falgout, U. M. Yang, hypre: a library of high-performance preconditioners, Springer Berlin Hei-591

delberg, Berlin, Heidelberg, 2002, pp. 632–641.592

[51] X. S. Li, J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct solver for unsym-593

metric linear systems, ACM Transactions on Mathematical Software 29 (2) (2003) 110–140.594

[52] M. M. Gupta, J. Zhang, High accuracy multigrid solution of the 3D convection–diffusion equation,595

Applied Mathematics and Computation 113 (2) (2000) 249–274.596

[53] O. G. Ernst, M. J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative597

methods, in: Graham I., Hou T., Lakkis O., Scheichl R. (eds) Numerical Analysis of Multiscale Problems.598

Lecture Notes in Computational Science and Engineering, Vol. 83, Springer, 2012, pp. 325–363.599

[54] L. Dalcin, N. Collier, P. Vignal, A. Côrtes, V. M. Calo, PetIGA: High-performance isogeometric analysis,600

Computer Methods in Applied Mechanics and Engineering 308 (2016) 151–181.601

33

