
Journal of Computational and Applied Mathematics 43 (1992) 231-242 
North-Holland 

231 

CAM 1251 

e role of orthogonal polvnomials in 
numerical ordinary differeitial equations 

J.C. Butcher 
Department of Mathematics and Statistics, University of Auckland, New Zealand 

Received 28 October 1991 
Revised 24 January 1992 

Abstract 

Butcher, J.C., The role of orthogonal polynomials in numerical ordinary differential equations, Journal of 
Computational and Applied Mathematics 43 (1992) 231-242. 

Orthogonal polynomials have many applications to numerical ordinary differential equations. Sofne of these, 
especially those connected with the quadrature formulae on which many differential equation methods are 
based, are to be expected. On the other hand, there are many surprising applications, quite unlike traditional 
uses of orthogonal polynomials. This paper surveys many of these applications, especially those telated to 
accuracy and implementability of Runge-Kutta methods. 

Keywords: Orthogonal polynomials; ordinary differential equations; Lcgendre polynomials; Jacobi polynomials; 
Laguerre polynomials; Chebyshev polynomials; Runge-Kutta methods; Gaussian quadrature; Radau quadra- 
ture; Lobatto quadrature; stiff problems; implementation costs. 

1. Introduction 

It is not surprising that orthogonal polynomials have a place in numerical ordinary differen- 
tial equations. This is not only because orthogonal polynomials have an all-pervasive role in 
applied mathematics generally, but also because differential equation solutions are closely 
related to quadratures where the particular significance of orthogonal polynomials is well 
known. What is surprising, however, is that various classical orthogonal polynomial systems 
have a particular place because of special properties not directly related to orthogonzlity. 

In this review we will concentrate our attention on the choice of abscissae in the construction 
of implicit Runge-Kutta methods. The choice of the zeros of shifted Legendre polynomials 
leads to methods with optimal order of accuracy. However, various other choices, all related to 

‘% .the zeros of particular orthogonal polynomial sequences, have some interesting properties and 
k$rne specific computational advantages. 
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In Section 2 we will establish a notation for the polynomial sequences that we will consider 
in this survey. Much of the notation is standard but, because some polynomials are written in 
different ways by different authors, we are specifying some terminology of our own, but only for 
the purposes of this paper. 

In Section 3 we will discuss implicit Runge-Kutta methods based on shifted Legendre 
polynomials and on some closely related Jacobi polynomials. These Runge-Kutta methods 
have excellent stability but do have some shortcomings in practical computation because of 
their implementation costs when used for the solution of stiff problems. 

In Section 4 differential equation methods based on the zeros of Laguerre and generalized 
Laguerre polynomials are discussed. These methods seem to be credible competitors to 
standard linear multistep methods because they have acceptable stability, relatively low imple- 

entation costs and some other desirable properties. 
The use of Chebyshev polynomials in the selection of abscissae for implicit Runge-Kutta 

methods is discussed in Section S and, finally, in Section 6, a numbzr of miscellaneous 
applications of orthogonal polynomials in this subject are briefly introduced. 

2. Some orthogonal polynomial sequences 

Let I be an interval on the real line and let w denote a “weight function” on I. Under 
certain conditions, it is possible to define a sequence of polynomials pO, pl, p2, . . . of degrees 
0, 1, 2, . I. such that they are orthogonal in the sense that ~,&x)&x)w(x) dx = 0 if i #j. In 
all the examples discussed in this section, I = [0, l] or I = [0, 00). Note that the formula given 
for T,“(x> applies only when n > 0 and that T”*(K) = 1. 

Table 1 
-_ 
I w(x) Name Symbol Formula 

Eo.11 1 Shifted Legendre 

EWI x 

W 1 - x 

RN X(1 - x) 

ml (x _ $- I/’ 

ml (_r - _$)V’ 

[O. 2) expt- xl 

LO. x) exp(-- x) 

Jacobi I 

Jacobi II 

Jacobi III 

Shifted Chebyshev (1st kind) 

Shifted Chebyshev (2nd kind) 

Laguerre 

Generalized Laguerre 

G’“(x) II i c_l,“i(n~~:l)(q)_~i 

i=O 

G”‘(x) II 
2 (_l)n-i(“+j+l)(r)xi 

i = 0 

G”‘(x) fl 
i (_l),~-i(“+j+2)(r+i:)*i 

i=O 

T;(x) 2 c_lr~-~A__( 11Li)(4X)i 
i = 0 n+i 

u,;(s) 5 (_ !jt-i(“;l.yt 1 jtdX), 
I = 0 
‘I 1 

L,,(x) 
is] 

n C-x)’ z i ( ) 

L”‘(X) II 
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The polynomials that we need to consider are displayed in Table 1. 
Note that the names Jacobi I, II and III, togeiher wiG; the symbols used here for these 

polynomials, are not standard and Llf’(x) is oniy one of a family of generalized Laguerre 
polynomials. The names and symbols for the remaining polynomials given in the table are 
standard (see, for example, [ 11). 

Although we refer the reader to standard results on orthogonal polynomials, it is convenient 
to introduce in Theorem 2.1 below the famous Christoffel-Darboux formula. The proof of this 
makes use of the well-known three-term recurrence relation 

Yn 6 
P,(X)= c X 

n ( I - z P,_,(X) - yn 

n 
E y _*PAX)’ 

n n 
( 1) 3 

&. 

Yn = lIpn(X)‘W(x) dx, 6, =/Wn(x)‘w(x) dx, 
I 

En=/xpn(x)Pn-~(x)w(x) dx* 
I 

The identity (2.1) holds for rz = 1, 2, . . . where the convention is used that p_ I = 0. 

Theorem 2.1. Let pO, pl, p2, . . . be an orthogonal polynomial sequence. Then for n = 1, 2, 3,. . . 

and real x and y , 

*(pn(x)Pn-l(Y) -P,,(Y)p,_,(X)) = (X -yJnc’ Pk(X)Pk(Y). 
n II 1 k=O Yk 

Proof. Let p,(x) = cO, p,(x) = cIx + d so that 

~1 = /Xp,(X)p,(X)w(X) dX 
I 

= zp(x)‘w(x) dx - &X)P.(X)W(X) dX = :?I. 

To prove (2.2) for n = 1, we evaluate the left-hand side as 

E1 
-((c,x +d)c,- (C:Y +d)cOj 

C; 

YlYO 
= -$x _ Y) = (X _ y)pO(x)pO(y). 

Yo 

For n > 1, (2.2) is proved by induction. It must be shown that 

*(pn(x)pn-*(Y) -pn(Y)pn-l(x)) 
n’n 1 

- 
y ~~‘_2(pn-~(x)P~~-~(Y)~Pn-~(Y)pn-~(x))~(X~Y)p”~1(x)p~1~~(y)~ 

n n Y,, - 1 

(2 2) . 

and this is easily proved by substituting for p,J x) and p,,( y ) from (2.1). 0 
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Because the zeros of pn are real and distinct, it is possible to form a real matrix using the 
values of pu, PI,..., p,*_ , evaluated at these zeros. We now show how to form a useful 
orthogonal matrix using a modified form of this generalized Vandermonde matrix. 

Theorem 2.2. Lei- Q denote the n x n matrix with elements given by 

qii = dip.- l(‘i)’ 

wherex,, x2,. . . , x,, are the zeros of p,,. Then Q is an orthogonal matrix; that is, QTQ = QQT = I. 

f’. Let 8 and q be two distinct zeros of pn. The result is equivalent to 

n-1 PkWPkW 
c = o 

(2 3) . 
k=O Yk 

and 

n-1 Pk(# 
c 

%PtxS)P,-l(5) -= (2 41 
k=O Yk YnYn- 1 l 

. 

TO prove (2.31, substitute x = 5, y = q in (2.2) and note that the left-hand side is zero. To 
prove (2.41, substitute y = 5 and divide both sides of (2.2) by x - JJ. Evaluate the limit as x + 6 
using 1’Hopital’s rule. q 

3. Runge-Kutta methods based on Jacobi polynomials 

Consider the s-stage Runge-Kutta method with tableau 

c A 

-t bT 

where 

i 

a21 cI22 --’ cl25 

A= . . . 
. . . 
. . ” 

a Sl a,2 -- - a SS 

It is known that if c,, c2,. . . , c, are chosen as the distinct zeros of P,‘“, then it is possible to 
choose the elements of A and of bT in such a way that the resulting method has os.der 2s. 
Since such a method would include, as a special case, the Gaussian quadrature formui;: 

Cl 

C2 
= 

c . 11 . 
. 

Cs 

and 

I ‘I dt == ~ big, 
0 i= 1 

it is clear how the elements of bT must be chosen. It is also known that the elements in each 
row of A must also be chosen as weights for order s quadrature formulas with the same 
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abscissae but with different intervals of integration: 

That the order for these methods is as stated is shown, for example, in [5]. 
In a similar way, it is possible to construct methods whose abscissae are given by ci = 0 and 

- 1, 
a suitable IIA [8j and 

Lobatto IIIC [6] methods exist related to Jacobi II and Jacobi III polynomials. 
Because of the high orders of accuracy of these methods, and in particular when applied to 

the standard linear test problem 
y’=qY, 

with z = hq, it is possible to show that the rational function associated with the stability of the 
method, 

R(Z) = 1 +zbT(I-zA)-‘e, 

where e = [l, 1,. . . , llT, satisfies the approximation property 

R(Z) = exp(z) + O(Z*~+‘-~), 

where d = 0 in the Gauss case, d = 1 in the Radau IA and IIA cases and d = 2 in the Lobatto 
IIIC case. Furthermore, the degrees in R(z) are s - d for the numerators and s for the 
denominators. 

From this it follows that each of these RI _ .,z) functions is identical with the corresponding 
entry in the P 1 ads table of rational approximations to exp(z) and are thus known to correspond 
to A-stable, and in the cases that d > 0, L-stable Runge-Kutta methods. 

Some examples of Gauss, Radau IA, Radau IIA and Lobatto IIIC methods are given in the 
following tab! e. In each case, s is the number of stages, p is the order and R(z) is the stability 
function. 

Gauss method, s == 1, p = 2, R(z) = (1 + +z)/(l - $z> 
r 1. 
2 2 

+ 1 
Gauss method, s = 2, p = 4, R(z) = (1 + iz + &z’)/(l - tz + AZ*) 

1 1 
a 

I 

c 

1 1 --- _-- 
2 6 4 4 6 a- 

++@ ++#- 
1 
4 

1 1 
z 2 

Gauss method, s = 3, p = 6, R(z) = (1 + iz + $z* + &z3)/(1 - :Z + hz’- $z3) 

1 1 
--- 2 10 iiF 

5 2 1 5 1 
36 --_ d-G- 

--_ 
9 15 36 30 ii5 

1 $+&RF 2 5 1 
z 7 7i;-z m 

5 
36 

5 4 5 
iii 9 iii 
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Radau LA method, s = 2, p = 3, R(r) = (1 + +z,/W - $2 + iz2) 

Radau LA method, s = 3, p = 5, R(z) = (1 + $2 + $z’)/(l - SZ + $2 2 - &z3) 

Radau IL4 method, s = 2. p = 3, R(Z) = (1 + +z)/(l - fz A- it”) 

Radau IIA method, s = 3, p = 5, R(z) = (1+ $z + $,z2)/(1 - $z + $z2 - &z”> 

--- IfG 
11 7 37 169 

- _ -- 45 360 225 1800 IIG -- ,:,+a 

~+~~ +&jJG -&-gi? 

4 1 
--- IB 

1 
9 36 xi 

4 1 IfiT 1 _-- 
9 36 5 

Lobatto IIIC method, s = 2, p = 2, R(z) = l/(1 - z + iz’) 

Lobatto IIIC method, s = 3, p = 4, R(z) = (1 + iz)/( 1 - $2 + $z2 - $z’) 

0 i _$ i 

1 1 5 1 
7 6 i? 

-- 
12 

l’f i 6 
1 2 1 
6 5 6 

Because it is possible to attain such highly stable and high-order methods using methods 
based on shifted Legendre and the three types of Jacobi polynomials we have discussed here, it 
would seem that they would be ideal in practical applications to stiff problems. That this is not 
the case is a consequence of the excessive cost of implementing them. 
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To solve the algebraic equation arising in a single step of an implicit s-stage method applied 
to an N-dimensional problem, an iterative method is normally used based on some variant of 
the Newton-Raphson procedure. Because for many problems arising in practice, the Jacobian 
associated with the differential system is slowly varying, it is appropriate to avoid, as much as 
possible, the evaluation of this Jacobian matrix and the refactorization of matrices depending 
on it which are used in the modified Newton iterations. Even if it is possible to reduce the 
number of times these factorizations are carried out, the task when it arises may be consider- 
able, since it involves a number of arithmetic operations equal to something like $s3N3. 
Furthermore, the cost of the back-substitutions required in each iteration of the Newton 
method is that of approximately 2s2N2 arithmetical operations. 

It was shown in [3] that these costs may be lowered considerably if the spectral structure of 
the A matrix is taken into account. Furthermore, if A has a one-point spectrum, the costs are 
cut down to approximately $N3 for the factorizations and 2sN * for the back-substitutions. 

We will discuss methods of this type in the next section. 

B. Runge-Kutta methods based on Laguerre polynomials 

Let 

piz)=z~-(yIz~-~+(Y2zs-*- .** +(-l)%Ys (4 I) . 

denote the polynomial with zeros equal to cl, c2,. . . , c, and let 

q(z) = zs - plz*s-l + p*zs-2 - l l l + (- l)sp, (4 2) . 

denote the characteristic polynomial of the A matrix of an implicit Runge-Kutta method. We 
will assume that the method in question has stage order equal to s. This means that 

i a;j4( Cj) = jci+( X) dx 9 

j=l 0 

for any polynomial 4 of degree less than s. Substitute in turn 4(x) = 1, x, x2,. . . , xsml, and we 
find that 

1 
~~‘-1 = _& 

i 
(4.3) 

for i=l, 2,..., s, where ci denotes a component-by-component power. From (4.3) it follows 
that 

A'e 
1 . 

=- 
i! “’ i=l,2 ,..., s. 

Because q(A) = 0, it follows that 

A”e - P,A”-‘e + P2A”-*e - l . . + (- l)‘&e = 0, 

and from (4.4) that 

W 

1 

zcs- 

Pl 
(s _ l)! CT1 A- 

P2 
(s _ 2)! cs-* - . . l -I- ( - l)S&e = 0. 
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Thus, under the assumptions that have been made, the components of c satisfy the equation 

1 B* s_l zzs - (s - qf 

I% 
+ (s_2)!2- --- +(-l)“p,=O. 

Comparing (4.5) with (4.I), we see that the coefficients cyi and Pi are related by 

s! 

(4 5) . 

(4 6) . 

Since there is an implementation cost advantage in all the zeros of the characteristic 
polynomial of A being equal (to A say), we consider the case that 

@- 0 
= E i A’, i= 1,2 ,..., s. 

From (4.6), it follows that 

s! 
’ *;= (s-i)! i ( 1 A’, i=l,2 ,..., s, (4 7) . 

so that, for i = 1, 2,. . ., s, Ci is a zero of 

It has been discussed in a number of papers [2,4] how this choice leads to a method which 
can be implemented cheaply. In this survey, we discuss the main ideas of this approach and 
explain how the matrix Q of Theorem 2.2 plays a role in the analysis of these methods. 

For convenience, write H = Ah and write the formulas for the Runge-Kutta method 
computation in terms of H rather than h. This means that the stage values Y,, Y2,. . . , Ys in the 
first step of a method for which the initial values are given by y(x,) = y, are approximations to 
_Y(X,+hCi)=y(x,,+HSi) for i= 1, 2,..., s. If the A matrix is similarly scaled so that its 
spectrum is the one-point set 1, then it is known that 

where 

T= 

45,) 
L”(5d 
L&3) 

. . 

Li5, ) . . 

1 0 0 .*- 
-1 1 0 ..I 

0 -I I ..I 
. . . a . . 
0 ;,;,... 

W,) U5,) -*- 
L,(h) M,) --- 
wh) LA43 --- 
. . . . 

L,k,) Lzia x -- 

Ls- 1(h) 
Ls- i(tZ) 

Ls- ,ISJ 
. . . 

I (5 ) “s-l s 

and that the various quantities occurring in the computation may be transformed to corre- 
sponding quantities in which Atakes the place of A in the transformed version of the implicit 
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algebraic equations for the Runge-Kutta method. In particular, if W denotes the vector made 
up of the s subvectors of Newton updates for the various stages and w is the vector of 
transformed updates, then 

w= (T-l @ I)W. 

Since the cost of the transformations is given approximately by 2s*N (additions and 
multiplications), negligible for large N, the cost of the whole problem of carrying out modified 
Newton updates is effectively reduced from 2s2N2 to 2sN*. Furthermore, the cost of carrying 
out the LU factorizations, in preparation for later iterations, is reduced from $s3N3 to $N3. 

Because of Theorem 2.2, it is a simple matter to write down the elements of T- ’ in terms of 
the values of the elements of T itself. It is also possible, through the use of appropriate norms, 
to evaluate a measure of the size of w which transforms to a corresponding measure of the size 
of W. This further consequence of the orthogonal nature of Q in Theorem 2.2 enables 
convenient convergence testing to be performed during the iterations in the evaluation of the 
stage values of these methods. 

It has been pointed out that many implicit Runge-Kutta methods, specifically those with 
order equal to at least s and stage order equal exactly to s, can be interpreted as collocation 
methods [14]. This applies, for example, to the Gauss and Radau IIA methods discussed in the 
previous section, and to the methods we arc discussing in this section, as long as it is agreed to 
compute the final result for the step using the interpolational quadrature formula based on the 
given abscissae. One consequence of the collocation nature of singly-implicit methods based on 
Laguerre zeros is that the collocation polynomial is given explicitly and can be used for 
interpolation and extrapolation purposes. In particular, the final output from a step is given by 
the value of this polynomial at some appropriate point. 

Because such a choice leads to methods with strong stability at infinity, it is desirable to 
choose the output point to correspond to one of the stage values. If such a choice is made, 
there may be a hope of achieving an L-stable method. The stability functions which arise in this 
way are exactly those for which Wolfbrandt investigated possible stable behaviour [13] and it is 
known that A-stability (and hence L-stability) arises for orders up to 8 ibut with order 7 
missing). Amongst other important contributions to the study of these approximations and to 
stability questions related to them is [ll]. 

Because it is always possible to base collocation methods on nonconfluent choices of 
abscissae, the use of the zeros of various orthogonal polynomials naturally arises. The 
consequences of selecting Chebyshev polynomials is considered in the next setion. 

5. Methods based on Chebyshev polynomials 

In addition to their orthogonality properties, Chebyshev polynomials have some special 
optima!ity properties. In pmcCkir, we 5ave the f&owing four theorems. The first two are well 
known and no proof is given here. Theorems 5.3 and 5.4 are less known and outline proofs are 
given for these. 

Theorem 5.1. Let p be a polynomial of degree s such that 1 p(x) 1 < 1 for all x E [0, 11; then the 
coefficient of xs is no more than 2*“- ’ and equals this va!ue only if p = Ts*. 



J.C. But&r / Orthogonal polynomials in ODES 

Theorem 5.2. Let p be a polynomial of degree s such that /(: 1 p( x ) 1 d x \< 1; then the coefficient of 
.C is no more than 2’” and equals this ryalue only if p = Us”. 

Theorem 53. Let cl, cz,=. l , c, denote a set of s real numbers in the interval [0, l] and let t be 
some real number not in this interbal. Let li( t ), i = 1, 2, . . . , s, denote the Lagrange interpolation 

polynomials for computing &( t ) as a linear combination of &Cc, 1, t)(cz ), . . . , c#I(c,). Then the 
value of Cf=, 1 ii(t) ] is minimized when c, = 0, c, = 1 and c2, c3,. . . , c,_ , are the zeros of US*_2. 

Proof. Without loss of generality, assume that t > 1. The sum in equations is bounded by the 
magnitude of the interpolational polynomial through data points of the form (Ci, yi), where 

< 1. Thus optimality is achieved when the values of Ci are at the extrema of the 
interpolational polynomial. By Theorem 5.1, this polynomial is T,T 1 and it is easy to verify that 
its extrema in the interval [0, l] occur at 0, 1 and at the zeros of U&. q 

Theorem 5.4. Let c,, c?,. . . , c, denote a set of s real numbers in the interual [0, I] and let t be 
some real number such that t > 1. Let Wi, i = i , 2, . . . , s, denote the weights in the interpolational 
quadrature formula 

I 
,~~(~) dx = ~ W,b(Ci). 

i=l 

Then the r*alue of Cf_ 1 1 Wi I is minimized when c, = 0, c, = 1 and c2, c3,. . . 9 c, _ , are the zeros of 
U,"p 

Proof. Recause the result in Theorem 5.3 is independent of the choice of t and because ii(U) 
does not change sign for N > 1, the same optimum will occur for the sum of the magnitudes of 
the integrals j,‘li(U) du. •I 

The applications of these results to the construction of Runge-Kutta methods lie in the 
desirability of a number of criteria for numerical behaviour. The first of these criteria is the 
obtaining of uniformly low truncation errors for interpolated results found within the step. If a 
suitable adjustment is made from a local error estimate for the completed step, it is possible, by 
using the zeros of Ts* as abscissae, to achieve this. 

The second application we consider is the design of Runge-Kutta methods which permit 
accurate extrapolation of the results computed in one step to obtain starting values for the 
iteration of the stage values in the following step. This extrapolation may be carried out in one 
of two ways. The first is the taking of a linear combination of the stage values, and in this case 
the Lagrange interpolation formula would be used. The second is the taking of a linear 
combination of the derivative values at the stages. This involves a quadrature formula for each 
of the stages in the succeeding step. If our aim is to minimize the sum of the magnitudes of the 
Lagrange coefficients in the first option and the sum of the magnitudes of the quadrature 
weights in the second option, the result in each is the same. In fact from Theorems 5.3 and 5.4, 
the lowest values of the sums in question are obtained when the abscissae are placed at 0, 1 and 
at the zeros of Us*_ 2. 
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6. Miscellaneous appiicatims 

In addition to the construction of implicit Runge-Kutta methods, orthogonal polynomials 
have found their ways into the literature of numerical ordinary differential equations in several 
surprising ways. 

In the proof of the “First Dahlquist Barrier” [7], which limits the possible order of stable 
linear multistep methods to k + 1 if k is odd and to k + 2 if k is even, orthogonal polynomials 
with respect to the weight function 

w(x)= v2+ (lnii!$)) 
on the interval [ - 1, l] arise. This approach to the proof of this fundamental result leads 
directly also to a proof that order 2k would always be possible if stability were not a constraint. 

A second application arises in the study of algebraically stable Runge-Kutta methods, where 
the W-transformation is used. This makes use of orthogonality with respect to a finite sum, 
rather than with respect to a continuous weight function and is used in investigations of the 
relationship between order, stability and implementability [9,10]. 

Finally, in the construction of explicit Runge-Kutta methods intended for the solution of 
mildly stiff problems, it is possible to extend the stability region so as to include a large interval 
of the negative real axis by limiting the order to p < s. If, for example, p = 1, then a stability 
function equal to T,*( 1 + 2/(2s2)) is possible. In this case the stability interval is [ - 2s2, 01. 
Although the result is more complicated for p = 2, an interval [ - 0.814 s2, 0] is found numeri- 
cally in this case. It is remarkable that a good approximation to this optimal result, given [12] by 
a stability function 

yields an interval approximately equal to [ - 0.810 s2, 01. 
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