
J-&g --
ED F

JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 50 (1994) 283-297

Techniques for the mathematical analysis of neural networks

S.W. Ellacott

Department of Mathematical Sciences, Uniuersity of Brighton, Moulsecoomb, Brighton BN2 4GJ, United Kingdom

Received 27 July 1992; revised 26 November 1992

Abstract

This expository paper covers the following topics: (1) a very brief introduction to neural networks for those
unfamiliar with the basic concepts; (2) an equally brief survey of various mathematical approaches to neural systems
with an emphasis on approximation theory; (3) an algorithmic approach to the analysis of networks developed by this
author using the tools of numerical linear algebra. This approach is novel and was first proposed by the author in
(1990).

A detailed analysis of one popular algorithm (the delta rule) will be given, indicating why one implementation
leads to a stable numerical process, whereas an initially attractive variant (essentially a form of steepest descent)
does not. Similar considerations apply to the backpropagation algorithm. The effect of filtering and other
preprocessing of the input data will also be discussed systematically, with a new result on the effect of linear filtering
on the rate of convergence of the delta rule.

Key words: Neural networks; Numerical linear algebra; Numerical analysis

1. An introduction to neural networks

1.1. A network to compute “xor”

A neural network is a model of computation based loosely on the mammalian brain. Rather
than give a formal definition, we illustrate by a simple example. Fig. 1.1 shows a network
designed to compute the “exclusive-or” function. Each input unit takes a single scalar input. In
general these may take any real value, but for this particular example the inputs are restricted
to the values 0 or 1. Thus the set of possible input vectors is

((0, qT, (0, qT, (1, qT, (1, 1,‘).
The network is required to compute the output “0” if the two inputs are the same, or “1” if
they are different. It does this in the following way. The vertices of the graph shown as circles
are called units or neurons. The input units shown with no inscribed numbers simply pass their
inputs to their output edges, which in this context are called links or synapses. They are

0377.0427/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved
SD1 0377.0427(93)E0149-G

284 S. W. Ellacott /Journal of Computational and Applied Mathematics SO (1994) 283-297

,r

Xl XM

output 1

Hidden
units

Input 1

Fig. 1.1.
Fig. 1.2.
Fig. 1.3.

multiplied by the weights shown on these links and summed at the input to the next unit.
Suppose for instance the input vector is (1, O)T. The input to the unit inscribed “1.5” is thus
1 X 1 + 1 X 0 = 1. In this type of network, the “1.5” itself is a threshold value. Since the total
input 1 < 1.5, the output of the unit is 0. If the original input vector were (1, l)T, the input to
this unit would be 2 > 1.5, so this unit would output 1. The output of a unit as a function of the
given input is called the activation function of the unit. With the original input vector (1, O)T,
we see that the input to the unit inscribed “.5” is thus 1 x 1 - 2 x 0 + 1 x 0 = 1. Since 1 > 0.5,
the output of the whole network is 1 as required. The reader might like to verify in a similar
manner that the network correctly computes the exclusive-or of the other three possible input
vectors.

1.2. Perceptrons and multilayer perceptrons

There is a vast range of variations on this general idea: the reader should consult one of the
many textbooks available on this subject. For an introductory treatment, see [1,14,17]. A deeper
work, although now a little dated, is [13]. In this paper we shall concentrate on the simplest of
all neural networks, the perceptron, and an extension of this called the multilayer perceptron
(MLP) or semilinear feedforward network. The latter is the most popular of all neural network
architectures, probably because it is relatively easy to understand. However, many of the ideas
are much more widely applicable and the formulation of the backpropagation algorithm given
in Section 3.3 is certainly much more general than is required just for the MLP.

Fig. 1.2 shows a simple perceptron with a single output. The units are interpreted as in Fig.
1.1 with the input units having a identity activation function and the output unit having a simple
threshold. Thus denoting the input vector x and the weight vector by w (both in R”), it is easy

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 285

to see that the output is 1 if wTx > c and 0 if wTx G c. So for a fixed weight vector w and
threshold c, the network divides R! M into two half spaces separated by a hyperplane. For
obvious reasons, the perceptron is described as a linear network. Considering the case M = 2,
observe that the pairs of inputs required to produce outputs 1 or 0 for the exclusive-or function
are at diagonally opposite corners of a square, so they cannot be separated by a perceptron. This
simple observation delayed the development of neural networks for may years until tools for
handling nonlinear networks such as Fig. 1.1 became available.

In spite of this restriction, it is worth studying the perceptron as it constitutes the simplest
case of many other network architectures and can give very useful insight into their behaviour.
The MLP shown in Fig. 1.3 is the most obvious and straightforward generalization. It consists
simply of layers of perceptrons connected together in cascade. In the diagram we have shown
just two neurons in each layer. In practice the input layer must match the dimension of the
input vectors and the output layer provides the number of desired outputs (usually small).
However, the number of units in the hidden layers may be chosen by the designer. For the
present we may still regard the units as having thresholds, although in fact this is not usually
the way they are implemented, as will be described in Section 2.1.

2. Analysis of neural networks

In this section we give a brief survey of some of the mathematical techniques that have been
used to analyse neural networks. In order to prevent the bibliography becoming inordinately
long, we shall as far as possible make reference to survey articles rather than original source
material. Thus we attempt a survey of surveys!

2.1. Classification and approximation properties

A natural question arising from the ideas developed in Section 1 is to consider what sets of
points a given network can classify. In fact it is not hard to see that an MLP can separate any
finite sets of points in [WM. For let A and B be two such sets. Suppose we wish the network to
produce output 1 for points in A and 0 for points in B. Clearly it is possible to construct a
finite set of polygons P,, . . . , Pk such that

Ace:= UP,. and BnP,=@, for j= l,...,k. (2.1)

Each Pi consists of a finite intersection of half spaces. It can thus be obtained by a network
computing the “and” function which is linearly separable. The union to include A can then be
obtained by a network computing the “or” function: also linearly separable.

This approach is natural and simple, but it is difficult to take it very far. Moreover, it only
applies to discrete logical functions. We would like our networks to be able to cope with
continuous problems such as the control problems involved in balancing a rocket or catching a
ball. A different viewpoint proves more fruitful.

As before, we regard our inputs as vectors in R M. The output y of the network is a vector in
RN where usually N -=K M. (In many cases N = 1.) The network thus computes a function
G:R”+RN which we regard as an approximation to some other function H : R”” + RN. The

286 S. W. Ellacott /Journal of Computational and Applied Mathematics SO (1994) 283-297

point classification problem discussed above can be put into this context by choosing N = 1 and
H to be the characteristic function of the set Q in (2.1) (i.e., H(x) = 1 if x E Q and 0
otherwise). This viewpoint means that neural networks can be discussed using methods derived
from approximation theory. The point sets A and B are conveniently regarded as interpolation
or sample points for approximation of the function G. (Sometimes networks are actually
constructed this way: radial basis function networks are of this type [lo]. As constructed here,
the function G is not continuous: however, since the point sets A and B are finite, it is clearly
possible to overcome this with some smoothing process.

The question of what a neural net can compute may thus be restated in approximation
theoretic terms. Specifically we wish to know if our set of possible functions G corresponding to
our particular class of network is dense in some suitable function space which includes our
target function H. Let us pursue this idea a little further.

In view of the difficulty of dealing with nondifferentiable and discontinuous functions, it is
usual to use a smooth activation function, instead of a threshold, for the units. (The activation
function was explained in Section 1.1. It is the function that relates the sum of the inputs to a
given unit to the output.) Note that the activation function f : R + R. Desirable activation
functions should have the property of being monotonic increasing, bounded and sigmoidal,
which means that simply the limits at +m are 0 and 1, respectively. The most popular choice in
practice is

f(x)= l
1 +exp(-x) *

Proposition 2.1. Zf the input
continuous function H : C + Ill

(2.2)

vectors are restricted to a compact subset C c R”, then any
can be approximated with arbitrary small uniform error by a

multilayer perceptron in which the input and output layers have identity activation functions, and
there is a single hidden layer of units for which the activation function is (2.2).

In fact the density theorems will work for activation functions chosen from much more
general classes of monotonic bounded sigmoidal functions, but with certain technical restric-
tions. The first result of this type appears to have been proved by Cybenko in 1989, but more
accessible approaches have followed. See [10,11,18] for recent work. From the practical
viewpoint, however, mere density is of limited usefulness. We need to know (or at least be able
to estimate) how many hidden units are required to give a particular error. In classical
approximation theory, results of this type are called Jackson Theorems. Reference [ll] has
some results of this type, although they are not yet sufficiently powerful to be really useful.

The density approach assumes that the weights can be evaluated to arbitrary precision. In a
practical network, especially if implemented in hardware, one may only be able to store them to
eight of sixteen bits. There may be no point in using a very accurate network if its realisation
introduces large errors. This problem has been addressed in [4].

2.2. Dynamic behaviour

Up to now we have considered networks as essentially static entities, unchanging over time.
However, there are many ways in which dynamic ideas can be introduced. For the simple

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 287

multilayer perceptrons discussed so far, we need to consider how the weights are chosen via
learning algorithms. This topic forms the subject of Section 3. However, it is worth noting at this
point that dynamic behaviour can be introduced into networks in many different ways. Some
network architectures are recursive (consider the output of an MLP being fed back in as part of
the input). Others are defined by or approximated by differential equations. Some authors,
particularly those interested in modelling biological systems, have considered architectures
involving coupled oscillators and/or chaos theory [9]. In fact the whole panoply of dynamical
systems and control theory underlies the study of neural networks in a manner too pervasive to
be adequately surveyed here. Equally, insights from statistical physics have been introduced
[15]. Differential topology has its adherents [16]. The structure of the classification space can be
analysed using statistical decision theory [2]. Indeed the theory of neural networks would
appear to be almost as chaotic as their dynamic behaviour. It seems certain that many of the
results must be duplicated in different papers under different names and using different
languages. There is a real need for the subject to develop its own coherent structure, rather
than borrowing from a host of other disciplines. Notwithstanding this remark, we will now
proceed to investigate how machine learning can be considered as a numerical algorithm!

3. Numerical analysis of learning algorithms

3.1. The delta rule

We begin by considering the simplest of all neural models, the simple perceptron. Fig. 1.2
shows a perceptron with a single output. We will briefly consider the case of a multiple output
perceptron, so the output is a vector and the weights form a matrix. Denote the training vectors
(generically) by x and desired output vectors by y. As in Section 2, we will ignore the threshold
c and instead treat the problem as one of approximation. (It is possible to make c learnable as
well by including an extra input fixed at 1, but we need not consider this here.) If we can
approximate y sufficiently well by the network, then obviously a suitable choice of c will solve
the classification problem. W is the weight matrix. In summary, then, we wish to find IV such
that y = II% for all pairs (x, y) of patterns and corresponding outputs. In general it is
impossible to satisfy this exactly, so we seek a W for which the result holds approximately. The
idea of a learning algorithm is as follows: we supply a set (x1, x2,. . . , xt} of input patterns and
for each xi we supply the corresponding output yi. The system uses these pattern pairs to
update its estimate of the desired weight matrix W. At heart, a learning algorithm is thus
simply an optimisation process, but it has the special feature that the patterns are supplied
serially rather than simultaneously as in standard least-squares approximation and optimisa-
tion.

We assume initially that W is updated after each training pattern. The change in IV when
the pattern x is presented is given by [13, p.3321

where 7 is a parameter to be chosen, called the learning rate, and <WX)~ denotes the jth
element of IV__. Thus, if the error term in brackets is (say> positive, we will add a component of

288 S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297

x to each row of W, increasing the output of the network for this pattern. Actually, we can
simplify matters here by observing that there is no coupling between the rows of W in this
formula: the new jth row of W depends only on the old jth row. This enables us to drop the
subscript j, denoting yj just by y, and the jth row of W by the vector wT. Hence without loss of
generality we return to the single-output perceptron (Fig. 1.2). We get

6Wi = q(y - WTX)Xi, so SW = 77(y - wr+.

Thus given a current iterate weight vector wk,

wk+I = Wk + 6w, = Wk + v(y - Wx’X)X = (I - v.mT)w, + qyx. (3.1)

The final equation is obtained by transposing the (scalar) quantity in brackets. Note the
subscript k here, denoting the kth iterate, not the kth element. Observe also that the second
equation makes clear what the delta rule actually does: it adds a suitable multiple of the
current pattern x to the current weight vector. It is usual to analyse this iteration in the
asymptotic case as q + 0, but it is not used this way in practice, so it is more relevant to
consider a fixed q [5]. We now prove some results about this iteration: the first lemma is a
special case of a well-known result (see, e.g., [12, p.181). The proof is a direct verification.

Lemma 3.1. Let B = (I - q.txT). Then B has only two distinct eigenvalues: 1 - 77 11 x 11: corre-
sponding to the eigenvector x and 1 corresponding to the subspace of vectors orthogonal to x.
(Here II . II 2 denotes the usual Euclidean norm.)

As an immediate consequence (see [7, p.10, Eq. (1111, we obtain the following lemma.

Lemma 3.2. Provided 0 < q < 2/II x II;, we have II B I(2 =p(B) = 1, where p(B) is the spectral
radius of B.

Now suppose we actually have t pattern vectors x1,. . . , x,. We will assume temporarily that
these span the space of input vectors, i.e., if the x’s are M-vectors, then the set of pattern
vectors contains M linearly independent ones. (This restriction will be removed later.)

Now for each pattern vector xp, we will have a different matrix B, say BP = (I - qx,xT). Let
A =B,B,_, ..+ B,.

Lemma 3.3. If 0 < 7~ < 2/II x, 11; holds for each training pattern xP, and if the xP span, then
II A II 2 < 1.

Proof. By definition, there exists u such that 11 A 11 2 = 11 A v 2 and lI~ll~=l. Thus llA,lJ = 11

11 B,B,pl . . .Bpll2< IIB,B,_, -B211211B1 Y 2 II f rom the definition of the norm). We identify
two cases.

(Case 1) If oTx, f 0, 1) B,v II 2 < 1, since the component of v in the direction of x is reduced
(see Lemma 3.1: if this is not clear, write v in terms of x and the perpendicular component,
and apply B, to it). On the other hand, 11 B,B,_, - * - B, II 2 G II B, II 2 (I B,_, I(2 * * * II B, II 2 = 1.

(Case 2) If vTx, = 0, then BIy = v (Lemma 3.1). Hence, 11 A)I 2 = II B,B,_, - - - B,v II 2 and we
may carry on removing B’s until Case 1 applies. q

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 289

A common way to apply the delta rule is to apply patterns x1, x2,. . .,x, in order, and then
to start again cyclically with x1. The presentation of one complete set of patterns is called an
epoch. Assuming this is the strategy employed, iteration (3.1) yields

wk+t = nw, + qh,
where A is as defined above and

h =y@?,B,_, . . . B,)x, + . . . +Y,_~B,x,_~ +ytx,.

(3.2a)

(3.2b)

Here, of course, yp denotes the target y-value for the pth pattern, not the pth element of a
vector. Note that the B’s and hence h depend on 71 and the x’s, but not on the current w.

Since 6W in the delta rule is proportional to the error in the outputs, we get a fixed point of
(3.1) only if all these errors can be made zero, which obviously is not true in general. Hence the
iteration (3.1) does not in fact converge in the usual sense. On the other hand, we have shown
(Lemma 3.2) that provided the xP span the space of input vectors, then for sufficiently small q,
]I A I(2 < 1. Hence the mapping F(w) =Aw + yh satisfies

II J’(w) -F(u) II 2 = II A(w - u) II 2 G II A II 2 II w - v II 2, (3.3)
i.e., it is contractive with contraction parameter)I A II 2. It follows from the Contraction
Mapping Theorem that the iteration (3.2a) does have a fixed point. The theorem also
guarantees that the fixed point is unique. Now if there exists a w that makes all the errors zero,
then it is easy to verify that this w is a fixed point of (3.1) and hence also of (3.2a). Otherwise,
(3.1) has no fixed points, and the fixed point of (3.2a) depends on 7: we denote it by w(q). In
the limit, as the iteration (3.1) runs through the patterns, it will generate a limit cycle of vectors
wk returning to w(q) after the cycle of t patterns has been completed.

Again assuming that the xP span, it can be shown using standard results on the continuity of
solutions of linear equations that as 7 + 0, w(v) tends to the weight vector w, which gives the
least-squares error over the patterns [5,6]. Unfortunately the rate of convergence is proportional
to the norm of the autocorrelation matrix occurring in the normal equations, and, as we shall
see in the next section, this can be large.

Finally, we need to consider what happens when the x, do not span the input pattern space.
In this case it follows from Lemma 3.1 that the iteration (3.1) leaves the orthogonal comple-
ment of the span invariant. By decomposing the input space into the span and its orthogonal
complement, a straightforward modification of the argument above shows that (3.2) is contrac-
tive on the span of the input patterns, so we still get convergence to a limit cycle.

3.2. The “epoch method”

Since we are assuming that we have a fixed and finite set of patterns xP, p = 1,. . . , t, an
alternative strategy is not to update the weight vector until the whole epoch of patterns has
been presented. This idea is initially attractive since it can be shown that this actually generates
the steepest-descent direction for the least-squares error. We will call this the “epoch method”
to distinguish it from the usual delta rule. This leads to the iteration

t

wk+l=wk - 77 c (xpx;)wk + 17 h (Yp”p) =Owk - 7 c (Ypx,), (3 4
p=l p=l p=l

where 0 = (I - 7XXT) = (I - qL), say. (Here X is the matrix whose columns are the X,‘s.)

290 SW. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297

Formula (3.4) is, of course, the equivalent of (3.2a), not (3.11, since it corresponds to a
complete epoch of patterns. There is no question of limit cycling, and indeed a fixed point will
be a true least-squares minimum. Unfortunately, however, there is a catch! To see what this is,
we need to examine the eigenvalues of a.

Clearly L =XXT is symmetric and positive semi-definite. Thus it has real nonnegative
eigenvalues. In fact, provided the xP span, it is (as is well known) strictly positive definite.

The eigenvalues of 0 are 1 - q(the corresponding eigenvalues of L), and for a strictly
positive definite matrix all the eigenvalues must be strictly positive. Thus we have, for 7
sufficiently small, ~(01 = II R (I 2 < 1.

Hence the iteration (3.4) will converge, provided the patterns span and q is sufficiently
small. But how small does q have to be? (Recall that for the usual delta rule we need only the
condition of Lemma 3.3.) To answer this question, we need more precise estimates for the
spectrum of L and the norm of 0. From these we will be able to see why the epoch algorithm
does not always work well in practice.

Suppose L = XYT has eigenvalues Aj, j = 1,. . . , M, with

O,<A,<A,_,< -*. < A, = p(xxT) = II XX= II 2 = II XT 1122.

The cigenvalues of R are 1 - 17 A, < 1 - qh, < . . . <~-VA,, and p(&!n)=maxIll-qA,I,
11 - VA, I}. (Observe that &? is positive definite for small 7, but ceases to be so when q
becomes large.) Now,

A = II XT IIf= ,,DrnZax 1 II XTu 11; = max u~XX~V
Il42=l

(3.5)

G i llx,ll22.
p=l

On the other hand, we can get a lower bound by substituting a particular v into the expression
on the right-hand side of (3.5). For instance, we have for any k, k = 1,. . . , t,

Now consider a particular case. Suppose the X, cluster around two vectors u and Y which
are mutually orthonormal. If these represent two classes which are to be separated, we are in
the ideal situation for machine learning. However, even in this case the behaviour of the epoch
method is not good. If the clusters are of equal size, we have from the first inequality in (3.6)

and since the rank of L =XXT collapses to 2,

lim A, = 0.
e-0

Thus, unlike the ordinary delta rule for which the convergence condition depends only on the
norm of the individual patterns, for the epoch method we may require an arbitrary small 77 to
get convergence.

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 291

3.3. Generalisation to nonlinear systems

As we saw in Section 1, the usefulness of linear neural systems is limited, since many pattern
recognition problems are not linearly separable. We need to generalise to nonlinear systems
such as the backpropagation algorithm for the MLP. Clearly we can only expect this type of
analysis to provide a local result: global behaviour is likely to be more amenable to dynamical
systems or control theory approaches. Nevertheless, a local analysis can be useful in discussing
the asymptotic behaviour near a local minimum.

The obvious approach to this generalisation is to attempt the “next simplest” case, i.e., the
backpropagation algorithm. However, this method looks complicated when written down
explicitly: in fact much more complicated than it actually is! A more abstract line of attack
turns out to be both simpler and more general. We will define a general nonlinear delta rule, of
which backpropagation is a special case. For the linear network the dimension of the input
space and the number of weights are the same: A4 in our previous notation. Now we will let M
denote the total number of weights and yt the input dimension.

So the input patterns x to our network are in Iw”, and we have a vector w of parameters in
OX”” describing the particular instance of our network, i.e., the vector of synaptic weights. For a
single-layer perceptron with m outputs, the “vector” w is the m X n weight matrix, and thus
M = mn. For a multilayer perceptron, w is the Cartesian product of the weight matrices in each
layer. For a general system with m outputs, the network computes a function G : RM x R" + R".

Say

u = G(w, x),

where Y E 1w”. We equip [W”, [w” and aB” with suitable norms II . II. Since these spaces are
finite-dimensional, it does not really matter which norms are adopted, but it is convenient to
use the Euclidean norm II * II 2. For pattern xp, denote the corresponding output by up, i.e.,

up = G(w, x,).

We assume that G is Frechet differentiable with respect to w, and denote by D = D(w, x), the
m x A4 matrix representation of the derivative with respect to the standard basis. Readers
unfamiliar with Frechet derivatives may prefer to think of this as the gradient vector: for m = 1
it is precisely the row vector representing the gradient when G is differentiated with respect to
the elements of w. Thus, for a small change 6w and fixed X, we have (by the definition of the
derivative)

G(w + 6w, X) = G(w, x) +D(w, x)6w + o(II 6w II). (3.7)

On the other hand, for given w, corresponding to a particular pattern xp, we have a desired
output yp and thus an error ep given by

•~=(~,-~~)~(~,--~)=q~q~, say.

The total error is obtained by summing the E~‘S over the t available patterns, thus

(3.8)

292 S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297

An ordinary descent algorithm will seek to minim&e l 2. However, the class or methods we are
considering generate not a descent direction for e2, but rather successive steepest-descent
directions for $. Now for a change 6q, in 4, we have from (3.8)

se; = (4, + 6qJT(4, + &I,) - 4& = 264,T + GQ&.

Since yP is fixed,

64, = -6Yp = -D(w, x,)~w + o(II 6~ II), by (3.7).

Thus,

6~; = -2(D(w, +v)=(yp - G(w, x,)) + o(II 6~ II)

= -2W(D(w, X,))‘(YP - G(w, x,)) + o(II SW II).

Hence, ignoring the o(I] 6w I]> term, and for a fixed size of small change 6w, the largest
decrease in E: is obtained by setting

6~ = n(D(w, xp))=(yp - G(w, x,)).

This is the generalised delta rule. Compare this with the single-output linear perceptron, for
which the second term in this expression is scalar with

G(w, x,) = wTxP,

and the derivative is the gradient vector (considered as a row vector) obtained by differentiating
this with respect to w, i.e. xP. ’ Thus we indeed have a generalisation of (3.1). Given a kth
weight vector wk, we have

wk+l = wk + 6w, = wk ++(wk, Xp))=(Yp - G(‘+‘,, x,)). (3.9)

The backpropagation rule [13, pp. 322-3281 used in many neural net applications is a special
case of this.

To proceed further, we need to make evident the connection between (3.9) and the analysis
of Section 3.1. However, there is a problem in that, guided by the linear case considered above,
we actually expect a limit cycle rather than convergence to a minimum. Nevertheless, it is
necessary to fix attention to some neighbourhood of a local minimum, say w*, of the
least-square error E: clearly we cannot expect any global contractivity result, as in general E
may have many local minima, as is well known in the backpropagation case. Now from (3.8) and
(3.9) we obtain (assuming continuity and uniform boundedness of D in a neighbourhood of w”)

wk+l=wk++(wk, Xp))=(YP-G(w*, x,)--(w*, ~P)(wk-w*))+o(]]wk-w*]])

= I - qD(wk, X,)TD(w*, X,))Wk + n(D(wk, x,))T (

X(Y,-G(w*,x,)+D(w*,x,)w*)+o(IIw,-w*II). (3 .lO)

The connection between (3.9) and (3.1) is now clear. Observe that the iteration matrix
(I- qD(w,, xJTD(w*, x,)) is not exactly symmetric in this case, although it will be nearly so if

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 293

wk is close to w*. More precisely, let us assume that D(w, x) is Lipschitz continuous at w*,
uniformly over the space of pattern vectors X. Then we have

w/c+1 = (I- qqw*, .q=qw*, X,))WP + q(D(w*, x&J)’
X(Y~-G(w*,x,)+D(w*,x,)w*)+0(llw,-w*II). (3.11)

Suppose we apply the patterns x1,. . . , x, cyclically, as for the linear case. If we can prove that
the linearised part (i.e., what we would get if we applied (3.11) without O-term) of the mapping
wk + w~+~ is contractive, it will follow by continuity that there is a neighbourhood of w” within
which the whole mapping is contractive. This is because, by hypothesis, we have only a finite
number of patterns. To establish contractivity of the linear part, we may proceed as follows.

First observe that D(w*, xJTD(w*,x,) is positive semi-definite. Thus for q sufficiently
small, II Z - qD(w*, xJTD(w*, xp> 1) 2 G 1. We may decompose the space of weight vectors into
the span of the eigenvectors corresponding to zero and nonzero eigenvalues, respectively.
These spaces are orthogonal complements of each other, as the matrix is symmetric. On the
former space, the iteration matrix does nothing. On the latter space it is contractive, provided

1

We may then proceed in a similar manner to Lemma 3.3, provided the contractive subspaces
for each pattern between them span the whole weight space. If this condition fails, then a
difficulty arises, since the linearised product mapping will have norm 1, so the nonlinear map
could actually be expansive on some subspace. For brevity, we will not pursue this detail here.

4. The singular-value decomposition and principal components

Since we now know that the backpropagation rule can be realistically considered as behaving
locally like the delta rule, it makes sense to return to a closer study of the linear algorithm.
Several interesting results can be obtained from the singular-value decomposition (SVD). This
is unsurprising in view of the well-known connections between neural nets and statistical
decision theory. Unfortunately, they are easily obtained only for the algorithm in its “epoch”
form (3.4). This is a pity in view of the previous analysis, but since the algorithms are at least
asymptotically the same for small q, they seem nevertheless worth having. Not all of the results
in this section are really new, but it is difficult to find a formal and coherent exposition of them
in the literature. This attempt at a systematic description is thus worthwhile. Proposition 4.1 is,
to this author’s knowledge, original.

4.1. Ouergeneralisation

Firstly, we can provide a simple explanation for the well-known phenomenon of overgenerali-
sation reported in many practical studies with neural networks. This is the observation that

294 S. W Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297

better results may well be obtained if the iteration is not continued to convergence. Recall
(3.4):

Wk+l= 0% - rl k (Y&J,
p=l

where R = (I - qXXT). We decompose X in singular-value form. (See, e.g., [3, Chapter 61, [8,
pp. 3-53, 269-3121.) Specifically we may write

X = PSQT, (4.1)
where P and Q are orthogonal and S is diagonal (but not necessarily square). Recall that in
this context y is not a single-output vector but the vector of single outputs over all the patterns.
We find

Wk+l = (I- qPSSTPT)w, - qxy = f’(I - +ST)PTw, - qPSQTy,

or with zk = PTw, and u = P’y,

Zktl = (I - qSST)z, - Tpsu. (4.2)
At this point the notation becomes a little messy: let us denote by (z~)~ the ith element of zk.
These elements are decoupled by the SVD. More specifically, if X has Y nonzero singular
values (the diagonal elements of S) vi 2 vq 2 * * . > v,., (4.2) when written elementwise gives

(z~+~)~ = (1 - ~z$)(z~)~ - nviui, for i = 1,. . . , r,

and

(z~+~)~=(z~)~, for i=r+l,..., M.

Assuming that n is sufficiently small to guarantee convergence (i.e., all terms (1 - 7~2) < l), it
is easy to see that convergence will be very much faster for the (z,Ji corresponding to the larger
singular values. This is exactly what we would like. Since P and Q are orthogonal matrices,
their rows and columns have norm 1. Thus we see from (4.2) that the large singular values
correspond to the actual information in the pattern data X. (This approach is called principal
component analysis.) The delta rule (in epoch form at least) has the nice property of converging
on the principal components of the data first. Unfortunately, it is very hard to tell from the
iteration when this has occurred, since small singular values can make a large contribution to
the least-squares error. Hence the phenomenon of overgeneralisation. Initially the iteration
picks out significant features in the variability of the data. Continued iteration makes it try to
separate insignificant features or noise.

4.2. Filters

Many authors have commented on the advisability of performing some preprocessing of the
input patterns before feeding them to the network. Often the preprocessing suggested is linear.
At first sight this seems to be a pointless exercise, for if the raw input data vector is x, with
dimension I, say, the preprocessing operation is represented by the n x 1 matrix T, W is the

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 295

input matrix of the net and we denote by the vector h the input to the next layer of the net,
then

h=Wx. (4.3)

Obviously, the theoretical representational power of the network is the same as one with
unprocessed input and input matrix WT. However, this does not mean that these preprocessing
operations are useless. We can identify at least the following three uses of preprocessing.

(i) To reduce work by reducing dimension and possibly using fast algorithms (e.g., the FFT
or wavelet transform). (So we do not want to increase the contraction parameter in the delta
rule iteration.)

(ii) To improve the search geometry by removing principal components of the data and
corresponding singular values that are irrelevant to the classification problem.

(iii) To improve the stability of the iteration by removing near zero singular values (which
correspond to noise) and clustering the other singular values near to 1: in the language of
numerical analysis to precondition the iteration.

We will not address all these three points here directly. Instead we will derive some
theoretical principles with the aid of which the issues may be attacked. The first point to
consider is the effect of the filter on the stability of the learning process. For simplicity, we
again consider only the linear epoch algorithm here.

We hope, of course, that a suitable choice of filter will make the learning properties better,
but the results here show that whatever choice we make, the dynamics will not be made much
worse unless the filter has very bad singular values. In particular, we show that if the filter is an
orthogonal projection, then the gradient descent mapping with filtering will be at least as
contractive as the unfiltered case.

We see from (3.4) that the crucial issue is the relationship between the unfiltered update
matrix

n=(1-?$0CT)

and its filtered equivalent

(4.4)

(I- q7XXTTT) = 0, say. (4.5)

Note that these operators may be defined on spaces of different dimension: indeed for a
sensible filtering process we would expect the filter T to involve a significant dimension
reduction. Note also that for purposes of comparison we have assumed the learning rates 77 are
the same.

A natural question is to try to relate the norms of these two operators, and hence the rate of
convergence of the corresponding iterations, As before, we suppose L = XXT has eigenvalues
Ai, j = 1,. . . , n, with

O<A,GA,-,< ... < A, =p(JLYT) = II xxT II 2 = II XT 1122.

(Note here we assume the x’s span, so A,, # 0. In terms of the singular values vi of X, 21: = A,.)
We need to relate the eigenvalues of XXT with those of TXXTTT = L’, say. Let L’ have

eigenvalues p, 2 p2 > * *. 2 pnJ > 0 and T have singular values (pi > g2 > * * . > a,,? > 0. Note
that we are assuming T has full rank n’.

296 S. W Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297

Proposition 4.1. With the notation above p, < a:A, and p,,, > a:A,.

Proof. The first inequality is straightforward. Since L and L’ are symmetric,

p1 = II TXXTTT II 2 G II T II 2 II XT Ii 2 II TT II 2 = @:A,.

The second inequality is slightly more difficult. Let u, be the normalised eigenvector of L’
corresponding to p,,. Then,

/_L,,, = u&,,u,, = u,TTXXTTTu, = II XTTTu, 11;.

But II XTTTu, II 2 > A’,/2u,,, as may be found by writing both matrices in terms of their
singular-value decompositions. q

This result means that II 0’ II 2 cannot be much larger than II R II 2 if T has singular values
close to 1.

Corollary 4.2. Let T be a truncated orthogonal expansion, or any other filter that is the restriction
of an orthogonal projection to the orthogonal complement of its kernel (e.g., unweighted local
averaging: see [6]). Then with filtering applied the epoch method will converge at least as fast (as
expressed by its contraction parameter) as the unfiltered version.

Proof. All the singular values of an orthogonal projection are either 0 (corresponding to the
kernel) or 1 (corresponding to the orthogonal complement). It follows from Proposition 4.1 that
the norm of R’ in (4.5) cannot be greater than that of R in (4.4). q

We observe in passing that the singular-value decomposition can also be used to study the
problem of preconditioning the iteration [6].

5. Concluding remark

Neural networks are studied not with the discrete mathematical tools of theoretical com-
puter science, but with the classical methods of dynamical systems, approximation theory,
statistical physics and numerical analysis. They are likely to prove a fruitful field of research for
specialists in these and other areas of applied mathematics.

References

[II
121
131
141

El

I. Aleksander and H. Morton, An Introduction to Neural Computing (Chapman & Hall, London, 1990).
S.-i. Arnari, Mathematical foundations of neurocomputing, Proc. IEEE 78 (9) (1990) 1143-1463.
A. Ben-Israel and T.N.E. Greville, Generulised Znuerses, Theory and Applications (Wiley, New York, 1974).
R.W. Brause, Performance and storage requirements for topology-conserving maps for robot manipulator
control, Report 5/89, Fachbereich Inform., Univ. Frankfurt, 1989.
SW. Ellacott, An analysis of the delta rule, in: Proc. Znternat. Neural Net Con&, Paris (Kluwer, Dordrecht, 1990)
956-959.

S. W. Ellacott /Journal of Computational and Applied Mathematics 50 (1994) 283-297 297

[6] S.W. Ellacott, The numerical analysis approach, in: J.G. Taylor, Ed., Mathematical Approaches to Neural
Networks, North-Holland Math. Library 51 (North-Holland, Amsterdam, 1993) 103-138.

[7] E. Isaacson and H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966).
[8] D. Jacobs, Ed., The State of the Art in Numerical Analysis (Academic Press, New York, 1977).
[9] A.J. Jones, Neural computing applications to prediction and control, Dept. Comput., Imperial College, London,

1992.
[lo] J.C. Mason and P.C. Parks, Selection of neural network structures - some approximation theory guidelines, in:

K. Warwick, G.W. Irwin and K.J. Hunt, Eds., Neural Networks for Control and Systems, IEE Control Engrg.
Ser. 46 (Peter Peregrinus, London, 1992) 151-180.

[ll] H.N. Mhaskar, Approximation properties of a multilayered feedforward artificial neural network, Dept. Math.,
California State Univ., Los Angeles, CA, 1991.

[12] E. Oja, Subspace Methods of Pattern Recognition (Research Studies Press, Letchworth, 1983).
[13] D.E. Rumelhart and J.L. McClelland, Parallel and Distributed Processing: Explorations in the Microstructure of

Cognition, Vols. 1 and 2 (MIT Press, Cambridge, MA, 1986).
[14] P.K. Simpson, Artificial Neural Systems: Foundations, Paradigms, Applications and Implementations (Pergamon,

New York, 1990).
[15] G. Venkataraman and G. Athithan, Spin glass, the travelling salesman problem, neural networks and all that,

Pramanu J. Phys. 36 (1) (1991) l-77.
1161 Z. Wang, M.T. Tham and A.J. Morris, Multilayer feedforward neural networks: a canonical form approximation

of nonlinearity, Dept. Chemical Process Engrg., Univ. Newcastle upon Tyne, 1992.
1171 P.D. Wasserman, Neural Computing: Theory and Practice (Van Nostrand Reinhold, New York, 1989).
[18] X. Yuan, W.A. Light and E.W. Cheney, Constructive methods of approximation by ridge functions and radial

functions, 1992.

