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Abstract

For some nonlinear evolution equations which describe pseudo-spherical surfaces two new exact solution classes are generated
from known solutions: either the seed solution is constant or a traveling wave. Exact traveling wave and solitary wave solutions for
Burgers’ equation and also for a fifth-order evolution equation containing the fifth-order Korteweg—de Vries equation and also the
Sawada—Kotera equation, are obtained by using an improved sine—cosine method and the Wu’s elimination method. We also apply
Bicklund transformations to these solutions and generate new soliton solution classes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Bicklund transformations (BTs) have been useful in the calculation of soliton solutions of certain nonlinear evolution
equations (NLEEs) of physical significance [9,37,26,36] restricted to one space variable x and a time coordinate .
The classical treatment of the surface transformations which provide the origin of Bicklund theory was developed in
[12]. BTs are local geometric transformations, which construct from a given surface of constant Gaussian curvature
—1 a two parameter family of such surfaces. To find such transformations, one needs to solve a system of compatible
ordinary differential equations (ODEs) [10].

Khater et al. [19,20] used the notion of a differential equation (DE) for a function u(x, ¢) that describes a pseudo-
spherical surface (pss), and they derived some BTs for NLEEs which are the integrability condition of s/(2, R)-valued
linear problems [37,14-18,22-24].

The method of characteristics is used (see discussion after Eq. (86)) and BT's are employed to generate new solutions
from a known solution for some NLEEs (see, for example [37]). Previously, Konno and Wadati [25], for example,
had derived some BTs for NLEEs of the AKNS class. These BTs explicitly express the new solutions in terms of the
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known solutions of the NLEEs and corresponding wave functions which are solutions of the associated Ablowitz, Kaup,
Newell, Segur (AKNS) system [49,1].

Wahlquist and Eastbrook [41,42] have also devised a method which can be applied to the construction of BTs and Lax
formulations. The Wahlquist—Eastbrook procedure has the advantage that it highlights the roles of various Lie groups
associated with DEs that admit BTs. Moreover, the method has a natural formulation within a jet-bundle context. The
latter paper [41] was concerned with obtaining the prolongation structure of the Korteweg—de Vries (KdV) equation,
and illustrating its relation to the many known techniques for treating this equation. It also serves to relate the KdV
equation to a number of other nonlinear partial differential equations (NLPDEs). A BT for the KdV and the potential
KdV equations were derived by Wahlquist and Eastbrook [40]. Among the numerous BTs found after the work [40]
(see, for example [37,36] for detailed discussions), a BT for the modified Korteweg—de Vries (mKdV) equation was
also found by Lamb [26].

In the present paper, we use BTs derived in [19,20] in the construction of exact soliton solutions for some NLEEs
describing pss [4-8,32,34,2,13,38] which are beyond the AKNS class: the (—) and (4) Beals—Rabelo—Tenenblat (BRT)
equations [2] (which include the sine-Gordon, sinh-Gordon and Liouville’ equations [see, Egs. (15) and (33)]), the
Cavalcante-Tenenblat (CT) equation [3] (the first example for a nongeneric case in the classification given in [4] [see,
Eq. (21)]), mKdV and Burgers’ equations. In addition, we use other solution techniques (the sine—cosine and Wu’s
elimination methods) to obtain new soliton solutions for Burgers and the generalized fifth-order Korteweg—de Vries
(gfKdV) equations.

The soliton phenomena and integrable NLEEs represent an important and well-established field of modern physics,
mathematical physics and applied mathematics. Solitons are found in various areas of physics: hydrodynamics and
plasma physics, nonlinear optics, solid-state physics, field theory and gravitation.

In [30,35], Reyes showed that if an equation describes nontrivial one-parameter families of pss, its conservation laws,
nonlocal symmetries, and BTs, can be studied by geometrical means. The special case of the Camassa—Holm equation
isin [33]. It is also shown in [35] that there exist correspondences between arbitrary solutions (which satisfy genericity
conditions) of any two equations describing pss. The relation between the above papers and the present paper is in the
use of the geometrical properties of NLEEs which describe pss to obtain an analytic information, in our case explicit
solutions and BTs.

We also point out that in [39], Schiff obtained a unified and simplified understanding of symmetries of KdV equation.
A direct connection between nonlocal symmetries and BTs is made by him. He explained how the known symmetries,
including BTs, of KdV equation arise from simple, field independent, actions on the loop group. A variety of issues in
understanding the algebraic structure of BTs are thus resolved.

The paper is organized as follows: in Section 2, the AKNS system and the general form of the BTs for some NLEEs
are illustrated. In Section 3, a new exact soliton solution class from a known constant solution is obtained for the (—) and
(+) BRT equations, the CT equation, mKdV and Burgers’ equations. In Section 4, in the case that the known solution
is a traveling wave, we construct new traveling wave solutions for the mKdV, the (+) BRT, sine-Gordon, sinh-Gordon
and Liouville’s equations. On the other hand, exact traveling wave and solitary wave solutions for Burgers’ equation are
obtained by using an improved sine—cosine method, the Wu’s elimination method and BTs to generate a new soliton
solution class. The latter method is used to obtain traveling wave solutions for the gfKdV equation. Finally, we give
some conclusions in Section 5.

2. The AKNS system for some NLEEs which describe pss
We recall the definition [4,38] of a DE that describes a pss. Let M 2 pe a two-dimensional differentiable manifold
with coordinates (x, ¢). A DE for a real function u(x, t) describes a pss if it is a necessary and sufficient condition for
the existence of differentiable functions
fij, 1<i<3, 1<j<2, (D

depending on u and its derivatives such that the one-forms

o) = fiidx + fiodt, 2= fordx + faodt, 3= f31dx + f3dt, (2)
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satisfy the structure equations of a pss, i.e.,

doi =w3 Awy, dwr=w; Aw3, dw3=awyAwj. 3)

As a consequence, each solution of the DE provides a local metric on M 2 whose Gaussian curvature is constant, equal
to —1. Moreover, the above definition is equivalent to saying that DE for u is the integrability condition for the problem
[41,42,2,38]:

a0 o=(4'). @

where d denotes exterior differentiation, ¢ is a column vector and the 2 x 2 matrix Q (€; j»1, ] =1, 2)is traceless

Q_l ) w] — w3
T2\ o+ w3 —wy )’

Take
Tdx+Adt  gdx+ Bdr
Q=12 0 =Pdx+ Qdt (5)
rdx + Cdr —de — Adr
from Eqgs. (4) and (5), we obtain
b.=Pd, ¢, =009, (6)
where P and Q are two 2 x 2 null-trace matrices
1 q
N )
=2 %) g
Foo—_
2
A B
0= ( . A) : ®)

Here # is a parameter, independent of x and #, while ¢ and r are functions of x and . Now
0=d’¢=dQ¢p — QAdp=(dQ — QA Q)¢,
which requires the vanishing of the two form
O=d2-QAQ2=0 (©))
or in component form
Ay =qC—rB, q —2Aq—B,+nB=0, Cy=r+2Ar —nC, (10)

Chern and Tenenblat [4] obtained Eq. (10) directly from the structure equations (3). By suitably choosing r, A, B and
C in (10), we shall obtain various NLEEs which ¢ must satisfy. Konno and Wadati introduced the function [25]

_h
Ry
this function first appeared and explained the geometric context of pss equations in [31,29], see also the classical papers
by Sasaki [38] and Chern-Tenenblat [4]. Then Eq. (6) is reduced to the Riccati equations:

or
Ox
or

—t:2AF—CF2+B (13)

r (11)

:11F—rF2+q, (12)

and the BT we obtain is of the form

w=u+ f,n). (14)
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Chern and Tenenblat [4] introduced several examples of (14) for pss equations. For use in the sequel, we list the NLEEs
and their corresponding BT in the following.

2.1. The (—) BRT equation

Beals, Rabelo and Tenenblat (BRT) [2] introduced the family of equations as follows:

dg

W 15)

[u; — (g (u) + Puyl, = —g'(w), where g" +pug=10, g'=
where g (u) is a differentiable function of u (x, t), with o, 8, i and 6 are real constants, such that (:2 = oc172 + u. This family

includes the sine-Gordon, sinh-Gordon and Liouville” equations. For any solution u(x, #) of the (—) BRT equation
(15), the matrices P and Q are [19]

N
P= . i i (16)
2 2
1 (Pg—0 1[¢
> ( + /311) > [—g/ + {(0g + Pux
2 n 2107
0= ) , (17)
1 {, 1 ((fg—0
5|8 H g+ Pur| -3 +fn
21 n 2 n
the above matrices P, Q satisfy Eq. (10). Then Eq. (12) becomes
or
— =yl — gux(l +I?). (18)
Ox 2
If we choose I and u’ as [20]
-l (19)
==
1 4 -1
u:u—i—ztan I, (20)
then I'" and u’ satisfy Eq. (18) and u’ is a new solution of Eq. (15).
2.2. The CT equation
Cavalcante and Tenenblat [35] introduced a third-order evolution equation as follows:
-1/2 3/2
u = (ux %) 1, @1)
which is the first example for a nongeneric case in the classification for autonomous evolution equations of pseudo-
sphericaltype u; =F (u, iy, ..., t k) (U k =0k /0x"*) [4]. For any solution u(x, t) of the CT equation (21), the matrices
P and Q are [19]
L e
P=|,2 S (22)
— u [E—
2 2
1 —1/2 I —1/2 1/2 —1/2
_5772”)6 / 5’76 “[(uy / )x _”x/ + nuy / ]
0= (23)

1 - _ 1, - ’
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the above matrices P, Q satisfy Eq. (10). Then Eq. (12) becomes

— =l — Te_” — ge“F2.

If we choose I and u’ as [20]
I'=r,
W' =—u—2InTr,

then I and u’ satisfy Eq. (24) and u’ is a new solution to Eq. (21).

2.3. A mKdV equation
Consider a mKdV equation in the form [11]
Uy = Uy + (a + uz)ux, where a is a constant.

For any solution u(x, t) of a mKdV Eq. (27), the matrices P and Q are [19]

n u
2 6
r=li W)
N
1 2 1 3
5(113+”T+a17> —6<—11ux Uxx ?—nzu—au)
0= 1 u’ 5 L/, nu> ’
% —nux+uxx+?+i1u+au —E n +T+a11

the above matrices P, Q satisfy Eqs. (10). Then Eq. (12) becomes

or _,r \/T(1+F2)
6)6_17 6u ’

If we choose I"” and u’ as [20]

r=1

F b
/ 0 —1
u =u+2\/6—tan I,
Ox

then I'" and u’ satisfy Eq. (30) and u’ is a new solution to Eq. (27).
2.4. The (+) BRT equation

Beals, Rabelo and Tenenblat [2] introduced the family of equations as follows:

[, — (ag(u) + Puyl, = g’ (w), where g” + ug =0,

391

(24)

(25)

(26)

27)

(28)

(29)

(30)

(€19

(32)

(33)
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where g’ = dg/du, ({* = an? — p, also this family includes the sine-Gordon, sinh-Gordon and Liouville’ equations.
For any solution u(x, t) of the (4) BRT equation (33), the matrices P and Q are [19]

o
P=\, L (34)
2 2
1 [(g—0 17¢
2 ( U ﬁ”) 7 [+ s ]
0= ) , (35)
1 ¢, 1 (Fg—10
5|8 H g+ Pur| -3 +fn
20 7 2 n
the above matrices P, Q satisfy Eq. (10). Then Eq. (12) becomes
or {
—=nI'+ zu, (1 = T7). (36)
Ox 2
If we choose I'" and u’ as [20]
r— 1 (37)
==
i 4 -1
u :—u—l—ztanh I, (38)
then I'" and ' satisfy Eq. (36) and u’ is a new solution to Eq. (33).
2.5. Burgers’ equation
Consider the Burgers’ equation as follows:
2uy —2utty — Uyy =0 (39)
for any solution u(x, t) of the Burgers’ equation (39), the matrices P and Q are [19]
u
IERE:
P = u g g , (40)
2 2 2
un wp u? L ux
0= 4 4 4 4| 41)
—un Wl e
4 4 4 4
the above matrices P, Q satisfy Eq. (10). Then Eq. (12) becomes
or g b U ’
—=-14+2I'+I)+-1-TI"). (42)
ox 2 2
If we choose I'" and u’ as [20]
r— 1 (43)
==
l 0 —1
u =—u—+4—tanh™" I, (44)
Ox

then I'" and u’ satisfy Eq. (42) and u’ is a new solution to Eq. (39).

Now we shall choose some known solutions of the above NLEEs and substitute these solutions into the corresponding
matrices P and Q. Next, we solve Eqgs. (6) for ¢; and ¢,. Then, by (11) and the corresponding BT we shall obtain the
new solutions for the NLEEs.
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3. The known solution is a constant
3.1. The (—) BRT equation

Substitute u = u,, into the matrices P and Q in (16) and (17), then by (6) we have

dp=¢, dx + ¢, dt = Ppdp, (45)
where
P= g 0,7 , (46)
72
px At k=§@%23+ﬁ @7)

The solution of Eq. (45) is

2P2

3p3
p p P
¢=ePP¢O=<I+pP+ TR +~-~>¢0, (48)

where ¢, is a constant column vector. The solution of Eq. (48) is

cosh gp + sinh ﬁp 0

¢= 2 o | (49)
0 cosh Ep — sinh 5'0

Now, we choose ¢, = (1, DT in (49), then we have
%
¢:(iw). (50)
e
Substitute (50) into (11), then by (20), we obtain the new solutions of the (—) BRT equation (15)
/ 4 —1,..np

u =u0+ztan (e"). (51)

In this case, we observe that taking o = f§ = 6 = 0, the sine-Gordon and sinh-Gordon equations are obtained from (15)

by considering appropriate values for .
(i) When p =1, g(#) = cos u, we obtain the sine-Gordon equation

Uy =SINU (52)

and its solution is

cos
W =uy+dtanT @), p=x4 g (53)
n
(i) When p = —1, g(u) = — cosh u, we obtain the sinh-Gordon equation
Uy = sinhu (54
and its solution is
4 h
u'=uy £ - tan” ' ("), p=x+ = 2”0 (55)
1 n
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3.2. The CT equation

Substitute # = u,, into the matrices P and Q in (22) and (23), then by (6) we have

d¢p =¢,dx + ¢,dt = P dx, (56)
where

P= ge"o _g . (57)
The solution of Eq. (56) is

¢=exp¢0=(1 erPerzZI;2 +x33f3 +> P,- (58)
then

o=\ xn 2 o $o- (59)

Choosing ¢, = (1, 0)T in (59), then, by (11) and (26), we obtain the new solutions of the CT equation which reads
u' =u, + 3 Inxn. (60)
3.3. A mKdV equation

Substitute # = u,, into the matrices P and Q in (28) and (29), then by (6) we have

ddp = ¢, dx + ¢, dr = P dp, (61)
where
T _Ho
2
P=| 4 ‘,/76 , (62)
J6 2
p=x+kt, k=0 +3ul+a. (63)
The solution of Eq. (61) is
2 p2 3p3
— PPy — - P e P
p=e ¢0_<I+pP+ o + 3 + by (64)

where ¢, = (1, 0)". According to the sign of the quantity n*/4 — ug /6, the solution (64) may take the following three
forms:

2 2 2
(1) ”T—%O>O,oc2=%—’%°,
no. u, .
coshop + — sinh op ———sinhop
_ 20 /6
¢= 0 0 By (65)
—2 sinhap coshap — — sinh ap
/6 2a

Uy

0 6
W = u, + 2\/6a |:tan_1£ (oc cothap + g)] . (66)
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2 uz u2 2
i) = _ 0 2_ 20 _ 1
(i) 3 o <0,07=+ T

no. uy, .
cosap + — sinop ——2_sinap
20 /6
(b = u, . n . d’o’
S1n o COSUp — — SIn o
e P P

0 6
W =u, _|_2\/6a |:tan_1£ (occotocp + g>j| .

Uy

2 uz
en n _ %
(i) 6

O,p:x+(u§+a)t,

1+ % _%
6 6
o= wd® | Y |
V6 V6
0 6
w =u, +2v6— |:tan_1 <£ + 1):| .
ox pu,

3.4. The (+) BRT equation

Proceeding as for the (—) BRT equation we obtain

4
u'=—u, + Ztanh*](e”p).

395

(67)

(68)

(69)

(70)

(71)

In this case, we observe that taking o = § = 0 = 0, the sine-Gordon and sinh-Gordon equations are obtained from (33)

by considering appropriate values for p.
(1) When p =1, g(u) = — cos u, we obtain the sine-Gordon equation

Uy =SINU

and its solution is

cos i,
’72

/

4
u'=—u, F Ttanh_1 €"”), p=x+

t.

(i) When p = —1, g(u) = cosh u, we obtain the sinh-Gordon equation
Uys = sinh u,

and its solution is

cosh u
u/=—u0:|:4tanhflenp, p=x+ 5 ¢
n
3.5. Burgers’ equation

Substitute u = u,, into the matrices P and Q in (40) and (41), then by (6) we have

dp =, dx + ¢, di = P dp,

(72)

(73)

(74)

(75)

(76)
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where
u
P= w T , (77)
2 2 2
Uy
p=x+ot, azg. (78)
The solution of Eq. (76) is
2 p2 3p3
P P
¢=(exppP)¢0=<I+pP+p2| +p3' +-~-)¢0, (79)
where ¢, is a constant column vector. The solution (79) takes the following form:
n . ny .
coshop + — sinh ap (1 + —) sinh op
¢ — 20, 20 o (80)

(1 - l) sinh ap coshap — a sinh orp
20 20

Now, we choose ¢, = (1, 0)T in (80) and use (6) and the BT (44); we obtain the new solution class of the Burgers’
equation (39) corresponding to the known constant solution u, as follows:

) _ 90

— . (81)
20 sinh”(ap/2) + 1 2

u=-—u,

If we choose ¢, = (0, DT in (80), we shall obtain another solution. Obviously all of these solutions are traveling waves
with velocity o = u, /2.

4. The known solution is a traveling wave

In this section, we shall find new traveling wave solutions u’(x, t) of the mKdV equation, the (+) BRT equation,
sine-Gordon, sinh-Gordon, Liouville, Burgers and gfKdV equations.

4.1. A mKdV equation

Uy = Uyyy + (a + uz)ux, where a is a constant (82)

we shall choose a known solution of the above mKdV Eq. (82) as a traveling wave u(x, ) and substitute these solution
into the corresponding matrices P and Q. Next we solve Eq. (6) for ¢; and ¢,. Then by (11) and the corresponding
BTs (32) we shall obtain the new solution classes. By direct calculation we take

u = —2~/61 sech 25p, (83)

as a traveling wave solution class of the mKdV Eq. (82). The traveling wave known solution of the mKdV equation
takes the form

u=u(p), p=x—kt, k=—An +a). (84)

In this case the AKNS system (6)—(8) has a general solution. Let us consider the more general case. Suppose that the
components of the matrices P and Q are function of p only [21,18]. Under these assumptions, the following result
holds, which is crucial in the subsequent exact solution. The quantity

B = (A + Skn)* + (B +kq)(C + kr), (85)

is constant.
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From (6)—(8), after inserting the known solution u(x, ¢) of the NLEE into the corresponding matrices P and Q, we
will have the following system of PDEs for the unknowns ¢; and ¢,:

n
iy = §¢1 +q¢,,

oy =7 — g%,
¢, =Ad; + By,

¢y =Cohy — Agy,. (86)

Solve (86) for ¢; giving

! n
91 = (b2 +22).- (87)
r 2
Substituting this ¢ into (86) together with (10) we get
Coyy — 1y = 5(Cx — 1)y (83)
The PDE (88) possesses the following characteristic equations:
dr d 2d
dr _dv _ 2ddp (89)

—r C  (Cx—r)$y
Using (84) and C = C(p), r =r(p), we have

c € 8 et 90)
— = — _—= r’
o dp dp dp

substituting (90) into (89) gives
dr dp 2d¢,

—r  (C+kr) (C+kr),o, ©b
These equations yield the following system of ODE’s:
d(l (C +kr),
Wy _ 2, ©2)
dp 2(C +kr)
d —(C+k
@ _ g 93)
dr r
Integrating Eq. (92) leads to
¢ =ka(C +kr)'/2, (94)
where k» is an integration constant. Integrating (93) we get
rdp
—t+k=| —, 95
h (C +kr) ©3)
where kj is another integration constant. From (94) and (95), we obtain the general solution of Eq. (88):
¢y = (C +kn)'/2F (&), (96)
where
d
f=t [ —F o)

(C + kr)
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and F(¢) is a differentiable function of &. Substituting (96) into (87) gives the general solution for ¢ : this can be done
by the following direct calculation:

1 "
b= - (¢2x + 5452)
from (96), we obtain
hay = 5(C+kr) " 2(C +kr), F (&) + (C +kr) P FLE,,

where &, =r/(C + kr), then
1
¢y =(C+kr)" V2| FL+ (—(c krY, + 2+ kr)) FO|. (98)
. 2r P or

Now from (90) and (10), we obtain
(c —i—kr):o =Cy—1=2rA—nC,
then Eq. (98) take the form
¢, =(C+ kr)_l/z(Fé + (A + Yk F). (99)

To determine the function F, Eqs. (96) and (99) are substituted into (86) (¢, = (11/2)p; + g ¢p,), by the same of direct
calculation we find that F must satisfy the following second-order ODE:

Fl, — By F =0, (100)

where f}; is a constant defined in (85). According to the sign of f8;, Eq. (100) will have the following three different
solutions:

F=cié+c2 whenf; =0, (101)
F =cysinho(é +¢2) when ff; >0, 0* =, (102)
F=cysino(¢+c) whenf; <0, 0> =—p, (103)

where c¢; and ¢, are integration constants. Substituting these solutions into (99) and (96), respectively, we obtain the
corresponding solutions of the AKNS system (6)—(8) are:

[dn] _ [<C +kr) T PIA + Sk (eré + e2) + il

by | (C + k' (c1E+ )

¢ ] _[e1(C+ k)™ 2UA + gkn) sinh (& + ¢2) + @ cosh o (& + ¢2)]
$r]| c1(C +kr)'/Zsinh (& + ¢2)

1| _[alC+ kr)*l/z[(A + %kn) sinw(& 4+ ¢p) + wcos w(é + )]
oy | c1(C + kY2 sinw(& + ¢2)

Now applying the results obtained here and the known traveling wave solutions for the mKdV equation, respectively,
to construct new solution class of the corresponding mKdV equation by means of the BTs. The constant §; and ¢
defined by (85), (97) can be determined by using (83)

i| when f; =0, (104)
i| when 8, >0, o?>=p, (105)

j| when f; <O0. (106)

1
E= ?[np —1In3/np + 31> (t + ¢3)], where c3 is an integration constant. (107)
n
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Consequently, we obtain I" from (105) for f; >0
I'=(C+kr) ' [(A+ Skn) + wcothw(E + )], (108)

then substituting this I" into the BTs (32) and using (83), we arrive at the new solution u’ of the mKdV Eq. (82)
corresponding to the known traveling wave solution class (83), then

0
u' = —2+/61 sech 2np + 2\/66— tan~! I, (109)
X

Now we shall find a traveling wave solution class u’(x, t) of the (+) BRT equation (33). From the known traveling
wave solutions of the (4) BRT equation obtained in Section 3, we construct a new solution of the latter Eq. (33) by
means of the BTs. In this case, the constant §; defined by (104) is zero and therefore the corresponding solution of the
AKNS system (6)—(8) is (104). By substituting (104) into (11) we get a common expression of I" for Eq. (33) (with
respect to p = x £ kt):

F=(C+kn) (A +Lkp + 1/E+ )1, ¢ =z—?. (110)

In the following, we omit some tedious calculations but only list the main results of the (+) BRT, sine-Gordon,
sinh-Gordon and Liouville’s equations.

4.2. The (+) BRT equation

[ur — (og(u) + Puxly = g'(w), where g" + pug =0, (111)

where g’ = dg/du, 2= an® — p, and the solution is

4 2 —0
u:—u0+ztanh*1e’”’, p=x+ kt, k:%—i—ﬁ, (112)
n
1
3,78/ w) sinhnp + (g (u) +k + f)
FZ(C-HCV)*I[(A#L%k’?)+1/(5+00)], COZ?, (114)
1
/ 4 —1
u =—u~|—Ztanh I. (115)

In this case, we observe that taking o = § = 0 =0, the sine-Gordon, sinh-Gordon and Liouville’s equations are obtained
from (111) by considering appropriate values for u.

4.3. Sine-Gordon equation

When u =1, g(u) = — cos u, we obtain the sine-Gordon equation
Uy = sinu. (116)

From a known traveling wave solutions of sine-Gordon equation obtained in Section 3 and choosing the constant
solution ug of Eq. (116) as ug =nmn, n =0, =1, £2, ..., then the solution of Eq. (116) takes the form

4 1 (="
u=-nnF —tanh™ e"’, p=x+—5—t, n=0£1,£2,..., (117)
1 n
we can calculate ¢ from (97) as follows:

1
(=1 / (/21 sinu sinh np + ((— 1))/

sdp=1—gul2np+e~2"), (118)
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consequently we obtain I" from (104) for f; =0

—2nsinhnp cosu 1
= Z D7)+ 1
i sinu sinhpp — 2(—1)" 21 + 2( ')+ 1/(E+c) | (119)

then substituting this I" into the BTs (38) and using (117), we arrive at the new solution u’ of the sine-Gordon Eq. (116)
corresponding to the known traveling wave solution class (117), then

W =—u+4itanh' I (120)

4.4. Sinh-Gordon equation

When u = —1, g(u) = cosh u, we obtain the sinh-Gordon equation
Uy; = sinh u. (121)

From a known traveling wave solutions of sinh-Gordon equation obtained in Section 3 and choosing the constant
solution ug of Eq. (121) as up =nmni, n =0, £1, £2, ..., then the solution is

(=D"

w=-nmiF4tanh~ ", p=x+-——1  n=0%1,£2, ..., (122)
n

we can calculate & from (97) as follows:

1
(=1 / (1/202) sinh u sinh gp + (1)) /n?

consequently we obtain I" from (104) for f; =0

—2n sinh np |:(coshu

dp =1+ gn[2np + cosh 2np — sinh 2np], (123)

_ ﬂ _
= simhusinhnp — 22— |\ 2y T27D ) + 1/(5+c0)}, (124)

then substituting this I into the BTs (38) and using (122), we arrive at the new solution u’ of the sinh-Gordon Eq. (121)
corresponding to the known traveling wave solution class (122), then

u' =—uF4tanh~! I (125)

4.5. Liouville’s equation
When u= —1, g(u) = e", we obtain the Liouville’s equation
Uy =e'. (126)

We shall choose a known solution of the above Liouville’s equation (126) as a traveling wave u(x, t) and substitute
these solution into the corresponding matrices P and Q. Next we solve Eq. (6) for ¢»; and ¢,. Then by (11) and the
corresponding BTs (38) we shall obtain the new solution classes. Liouville’s equation has not a constant solution, but
by direct calculation we take (proceeding as for mKdV equation in Section 4.1)

2k
u=In=., p=x-+kt (127)
o

We can calculate & from (97) as follows:

0 1 1
§=t+/—d —t+-p——TIn(p—1), (128)
kp+ Gy LR T P
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consequently we obtain I" from (104) for f; =0

—_2'7’)2[(L+'—7)+1/< = =+ ke ))} (129)
Cltap [\np? 2 Py P o))

then substituting this I" into the BTs (38) and using (127), we arrive at the new solution u” of the Liouville’s equation
(126) corresponding to the known traveling wave solution: class (127), then

/

2k _1
u =—1n—2 F4tanh™ T (130)
0

4.6. Burgers’ equation

Now we shall find a traveling wave solutions u’(x, r) for Burgers’ equation
2u; — 2uuy — Uy =0. (131)

Wang [43] has found some exact solutions for compound KdV-Burgers equations by using the homogenous balance
method. In this section, we obtain traveling wave solution class for Burgers’ equation by using an improved sine—cosine
method [47,48] and Wu’s elimination method [45]. The main idea of the algorithm is as follows. Given a PDE of the
form

S, ux, up, Uy, e, Ugr, . ..) =0, (132)
where f is a polynomial. By assuming traveling wave solutions of the form
u(x, 1) =¢(p), p=nx—ki+o), (133)

where k, ) are constant parameters to be determined, and c is an arbitrary constant, from the two Eqs. (132) and (133)
we obtain an ODE

f((,b/, ¢//’ d)///’ .. ) = O’ (134)

where ¢’ = d¢/dp. According to the sine—cosine method [44,43,45,46,48,47,50], we suppose that Eq. (134) has the
following formal traveling wave solution:

n
$(p) =" sin’" (B siny + A; cos ) + A, (135)
i=1
and
d d
—lp =siny or _lﬁ =cosy, (136)
dp dp
where A, ..., A, and B, ..., B, are constants to be determined. Then we proceed as follows:

(1) Equating the highest-order nonlinear term and highest-order linear partial derivative in (134), yield the value of
n.
(ii) Substituting Eqs. (135), (136) into (134), we obtain a polynomial equation involving cos sin’ y, sin’ Y for
i=0,1,2,...,n (with n being positive integer)
(iii) Setting the constant term and coefficients of sin y, cos i, sin i cos ¥, sin® i, . . . , in the equation obtained in (ii) to
zero, we obtain a system of algebraic equations about the unknown numbers &, 1, B,, A;, B; fori=0,1,2,...,n.
(iv) Using the Mathematica and the Wu’s elimination methods, the algebraic equations in (iii) can be solved.

These yield the solitary wave solutions for the system (134). We remark that the above method yield solutions that
includes terms sech p or tanh p, as well as their combinations. There are different forms of those obtained by other
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methods, such as the homogeneous balance method [44,43,45,46,48,47,50]. We assume formal solutions of the form

u(x, 1) =¢(p), p=nlx—ki+oc), (137

where k,  are constant parameters to be determined later, and c is an arbitrary constant. Substituting from (137) and
(131), we obtain an ODE

k¢ +Ld¢’ + tng” =0. (138)

(i) We suppose that Eq. (138) has the following formal solutions:

o(p) =A, + Arsiny + Ay cosy (139)
and

% =siny. (140)

dp

(i) From two Egs. (139) and (140), we get

k¢ + So¢' + tng” = LA + A1 Ag) sinyy + (kA1 + FA,Ay) siny cos
— (A A Ay + kA sin® Y + [—nAs — S(AF — AD)]
x cosy sin Y — (A1 Az + nA;)sin’ Y = 0. (141)

(iii) Setting the coefficients of sin/ ycos’ y for i =0, 1 and j = 1,2, 3 to zero, we have the following set of over
determined equations in the unknowns A,, A1, A2, n and k:

(kA1 + 5A A1) =0, (3A,A2+kA) =0, [nA2+ 3(A3—AD]=0,
(A1A2 +1nA1) =0, (A1 +A1A2)=0. (142)

(iv) We now solve the above set of equations by using Mathematica and the Wu’s elimination method, and obtain the
following solution:

A1 =0, A,=-2p, k=——-2 (143)
by integrating (140) and taking the integration constant equal zero, we obtain
sinyy =sechp, cosy = +tanhp. (144)

Substituting (143) and (144) into (139), we obtain

A
u(x,t)=A, £ 2ntanhp, p:n(x+70t+c>. (145)

Now we shall find a new traveling wave solutions u’(x, ) of the Burgers’ equation (131) and substitute these solution
into the corresponding matrices P and Q. Next we solve Eq. (6) for ¢; and ¢,. Then by (11) and the corresponding
BTs (44) we shall obtain the new solution for Burgers’ equations.

We use a known traveling wave solutions for the Burgers’ equation to generate a new solution for Burgers’ equation
by means of the BTs. In this case, the constant f5; defined by (104) is zero, we get the common expression of I” for the
Burgers’ equation (with respect to p = n(x £ kt + ¢)):

1
I'=—(C+kr) '[(A+kn*) +1/(E+¢c,)], where c, is a constant. (146)
n
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In the following, we omit some tedious calculations but only list the main results of the Burgers’ equation

E=t+ 2(172—_1402) ln[Ai —2A,n+ n* + 3nA,(tanh p) — 257 tanh p 4 7 tanh? p)
n nA, canh-] 3nA, — 2n% + 2% tanh p
(n* — A, /(4P A, — 512 A2) V@A, —5n2AY)
2n? tan-! 3nA, — 2n% + 25 tanh p
— an
(> — A2, /(43 A, — 5n2A2) V@A, —5n2A2)
1 1
— —— In(tanhp — 1) + ——— In(tanh p + 1), (147)
2n(n + Ay) 2n(A, — 1)
_ [(1/2A, + 1 tanh p) + (/2 Ay +1/(E +¢,)] (148)
nL((A2/2) +nA, + (12/2)) + ((3/2)nA, — n?) tanh p + (5 /2)tanh? p]’
/ a —1
u =-A, —2ntanhp+4a— tanh™ I (149)
X

4.7. A gfKdV equation
Now we shall find a traveling wave solutions u(x, t) for the gfKdV equation which can be shown in the form
Uz +au2ux + buyuyy + hutiyyy + dityyyry =0, (150)
where a, b, h and d are constants. This equation has been known as the general form of the fifth-order KdV equation.
Eq. (150) is known as Lax’s fifth-order KdV equation with a =30, » =30, h =10, d = 1 and the Sawada—Kotera

equation with a =45, b =15, h =15, d =1 [28,27]. We assume formal solution of Eq. (150) of the form (137).
Substituting from (137) and (150), we obtain an ODE

—nkd' +and* ¢’ + b ¢'¢" + cn*dp¢” +dn>¢"" =0. (151)

(i) Equating the highest-order nonlinear term and highest-order linear partial derivative in (151), yield n = 3. Then Eq.
(151) has the following formal solutions:

¢(p) = A, + Bysinyy + Ay cosyy + siny(Basiny + Az cos ) + sin Y(B3 siny + A3 cos ) (152)
and

% =siny. (153)

dp

(i) With the aid of 'Mathematica, substituting Egs. (152), (153) into (151), then we obtain a polynomial equation
involving cos’ Y sin/ y fori =0,1, j=1,2,...,10.

— k' +ang> @’ + b’ ¢'¢" + e " + di’ ¢
= (—nkAy 4+ 2aAoB1 A1y + anA} Ay + hipP AgAy + anATAs +dBiy® + hiP A1 By) siny
+ (—nkBy + anA3 By + anB1 A 4+ 2anAgA1 Ay + hip> By Ag 4+ hi* A1 Ay + d Aan) sin y cos
+ -+ anB3(—9A3 + 3B3) cos Y sin’ Y + anA3(—9B3 4 3A3)sin'" Y = 0. (154)
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(iii) Setting the constant term and coefficients of sin i, sin cos i, .. ., sin'?, in the equation obtained in (ii) to zero,
we obtain a system of algebraic equations about the unknown numbers A;, B; fori =0,1,2,3, j=1,2,3.

— nkAy +2aAgB1 A1y + anAiAs + hn*AgAs + anAt Ay + dB iy’ + hiP A By =0,
—nkB1 + al’]A%Bl + anBlA% + 2anApgA1Ay + hn331A0 + h1’]3A1A2 + dA21’]5 =0,

anB3(—9A3 +3B3) =0,
anAsz(—9B3 +3A3) =0 (155)

from Eq. (155), we obtain A3 = B3 = 0. Then Eq. (151) has the following formal solutions:
: . . dy .
¢(p) = A, + Bysiny + Ajcosy + siny(By sinyy + Ay cosyy) and 3, = sin v (156)
p

By means of the same procedures above (ii) and (iii), we obtain a system of algebraic equations in the unknown numbers
k,n,A;, Bjfori =0,1,2, j=1,2.

— kA +2anAoBi Ay + anAiAs + hnPAgAs + anA Ay + d Ay’ + hiP A1 By =0,
— nk By 4+ anA3 By + anBi A} 4 2anAogAi Ay + hiP BiAg + hiP Aj Ay + dB i =0,
nkAy + anA3A; 4 2anA; B} + —anA3 + 4anAoA; By + 4anAgBi Ay + 2anA A3
+ 26’ Bi Ay — 16di° A| — 4hi® AgA1 + 8hi? A1 By + 2hi BiAy =0,
— 20k By + 2anAg B} — 2anAgA? + 2anA§ By + 2anAl By + 4anBy A1 Ay + 2anAg A3
+ b B} 4+ by* A 4 32dy’ By + hi® B} — 4hi A3 + 8hiP AgBy + hip® A3 =0,
4anB? By — 4anBy A3 + 4anAgB3 — 8anBi A1 Ay — danAgA3 + danBy A3 — 2bi’ B?
+ 2bn> A% + 8bi® By — 8bn® A3 — 480dn° By — 6hi® BY + 6hnP A%
— 24hiP Ao By + 8hip® BS — 20> A3 =0,
2anB; — 6anBy A% — 12bi> B3 + 12by> A3 + 720d1P° By — 24hn’ B3 + 24hn* A3 =0,
— 6anAr B3 + 2anA3 + 24by’ By Ay — 720dn° By + 48hiP ByAy = 0. (157)
(iv) Now we solve the above set of Egs. (157) by using Mathematica and the Wu’s elimination method, we obtain the

following solutions that include two different cases:
Case 1:

3n?

a

Al=B =A,=0, B |:(b+2h):t\/(b+2h)2—40da},

_120dn* —20*(b + h) By

A
0 aB, — 6hn?

. k= (aAd+4hAon® + 16dn*). (158)

Case 2:

15dn*(2b — h)
A]=B]:A0:O, B2:2—,
(h +b)*> — 15da

450d%n*(h — 2b)
5= ) . k=dn, (159)
(h +b)> — 15da(h + b)

by integrating (153) and taking the integration constant equal zero, we obtain
sinyy =sechp, cosy = +tanh p. (160)

Then, we find the following two types of traveling wave solutions for the gfKdV equation (150):
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Fig. 1. The single-kink solution (53) in the (a) plane at different times =0, 1, 2 and (b) surface with ug = 7 and 1 = 2. The single-soliton solution
of the derivative of Eq. (53) with respect to x in the (c) plane at different times 7 = 0, 1, 2 and (d) surface with ug = w and n = 2.

Type 1:

120dn* — 2n%(b + h) B>
aBy — 6hn?

ul(x,t)=A0+B2sech2p, where p =n(x — kt +¢), Ag=

s

2

31

By =—
a

[(b +2h) + \/(b +2h)% — 40da} ., k= (aA}+ 4hAgn* + 16dn"). (161)

Type 2:

15dn?2b — h) N \/ 450d2n* (h — 2b)

uy(x,t = sech? si
260 g |:(h + b)2 — 15da (h —i—b)3 — 15da(h + b)

nh p} . p=nx—dn't+o). (162)

By means of the same procedures as above, we obtain solutions of fKdV and Sawada—Kotera equations as follows:
(1) For the fKdV equation

Uy + 300y + 30uyityy + 10uttyyy + tyyyry =0, (163)
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Fig. 2. (a) The single-kink solution (60) in the plane at different parameter 17 = 2, 4, 8 with ug = 10. (b) The single-soliton solution of the derivative
of Eq. (60) with respect to x in the plane at different parameter 1 = 2, 4, 8 with ug = 10.
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Fig. 3. The single-antikink solution (70) in the (a) plane at different times r =0, 1, 2 and (b) surface with u¢ = /6, a = 1, = 2. The single-soliton
solution of the derivative of Eq. (70) with respect to x in the (c) plane at different times = 0, 1, 2 and (d) surface with ug = JV6,a=1, n=2.

we have the following formal solitary wave solutions:

12 —-8(5+ /13
u3(x,t):A0+stech2p, where p = n(x — kt + ¢), A()=172 (—)
3(5+£V13) -6

s

By =1 (5 + ¢13) . k= (3042 +40Aon* + 167*), (164)
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Fig. 4. The single-kink solution (81) in the (a) plane at different times = 0, 1, 2 and (b) surface with ug =1, 2 = % n= % The single-soliton

solution of the derivative of Eq. (81) with respect to x in the (c) plane at different times t = 0, 1, 2 and (d) surface with ug =1, o = %, n= %

u(x, t)

Fig. 5. The double-kink solution (109) in the surface with k = —17,a =1,n =2.

ua(x,t) = 3n° sech? ij:i,/isinh =n(x —n*t+¢) (165)

(2) For the Sawada—Kotera equation

Uy + 450Uy + 15uttyy 4+ 15utiyyy + typyry =0, (166)
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Fig. 7. The single-soliton solution (164) in the (a) plane at different times r =0, 1, 2 and (b) surface with ¢ =0 and # = 1. The double-soliton solution
of the derivative of Eq. (164) with respect to x in the (c) plane at different times ¢t = 0, 1, 2 and (d) surface with c =0 and y = 1.
we have the following formal solitary wave solutions:
"2 2 _ 4
us(x,t) =2n"sech”p, p=nx—161"t+c), (167)
— 2 2 2 _ 4
ue(x,t) =—4n“/3 +4n~sech” p, p=nx —26n"t +c), (168)

u7(x, 1) =n*sech® p[1 +1isinh pl, p=nx —n't +o). (169)
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Fig. 8. The single-soliton solution (168) in the (a) plane at different times r =0, 1, 2 and (b) surface with ¢ =0 and n = 1. The double-soliton solution
of the derivative of Eq. (168) with respect to x in the (c) plane at different times = 0, 1, 2 and (d) surface withc =0and n = 1.

5. Conclusions

In this paper, we considered the construction of exact solutions to some NLEEs (the (—) and (+) BRT equations, the
CT equation and mKdV equations) of the pseudo-spherical class. It has been shown that the implementation of certain
BTs for a class of NLEE requires the solution of the underlying linear differential equation whose coefficients depend
on the known solution u(x, t) of the NLEE. We obtain traveling wave solutions for Burgers and gfKdV equations by
using an improved sine—cosine method and Wu’s elimination method. Employing BTs involving explicitly the wave
solutions, new solutions are generated for Burgers’ equation.

The solutions (53), (60), (70) and (81) are the single-kink solutions [see Figs. 1(a), 1(b), 1(c), 2(a), 3(a), 3(b), 4(a),
4(b)] corresponding to the eigenvalue #. Associated with the single-kink solutions are the single-soliton solutions given
by the derivative of Eqs. (53), (60), (70) and (81) with respect to x [see Figs. 1(c), 1(d), 2(b), 3(c), 3(d), 4(c), 4(d)]. The
double-kink solutions (109) and (125) are characterized by the eigenvalue 7 [see Figs. 5(a), 6 (a), 6(b)]. The solutions
(164) and (168) are the single-soliton solutions [see Figs. 7(a), 7(b), 8(a), 8(b)] corresponding to the eigenvalue 7.
Associated with the single-soliton solutions are the double-soliton solutions given by the derivative of Egs. (164) and
(168) with respect to x [see Figs. 7(c), 7(d), 8(c), 8(d)].
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