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a b s t r a c t

In this paper, we analyze a augmented IS-LM business cycle model with the capital
accumulation equation that two time delays are considered in investment processes
according to Kalecki’s idea. Applying stability switch criteria and Hopf bifurcation theory,
we prove that time delays cause the equilibrium to lose or gain stability and Hopf
bifurcation occurs.
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1. Introduction

Since time delay was first considered in the investment processes in [13], lots of literature such as [9,12,15,28,29,23–
26,6,7] have incorporated time lag into the dynamic economics and considered the impacts of delayed time on the whole
economic system.
Furthermore, time delay has also been introduced into the extended IS-LM (the related IS-LMmodelwith some extension,

e.g. [27,21,22,2,16,17,20]), for example, De cassare and Sportelli [5] investigated the equilibrium point’s stability and the
existence of the limit cycle of a IS-LM model by introducing a fixed time delay into the tax revenue, Cai [3] and Zhou and
Li [30] both discussed an IS-LM model with a time lag in the capital accumulation equation although with a little different
extension in the latter, Neamtu [18] presented an IS-LM model with the same lag into the tax revenues and the capital
accumulation equation, they all analyzed the qualitative behavior of the model via Hopf bifurcation or stability switch
criteria, while Fanti and Manfredi [8] considered an IS-LM model with distributed tax collection lag and showed that it
could display from stability to stable oscillations, and finally to chaotic motion.
In this paper, we consider the generalized IS-LMmodel with time delay proposed in [3], but with two distinct time lags in

the capital accumulation equation and use the analytical approaches presented in [19] to analyze the qualitative behavior of
themodel. To our knowledge, there are few papers discussing the dynamic IS-LMmodel with two time delays in investment
processes.
Our aim is to show that the time delays in the capital accumulation processes could cause the equilibrium to lose or gain

stability and cycles in dynamic macroeconomics.
The outline of the paper is as follows, in the next section, we construct the IS-LM model and analyze its qualitative

behavior, finally we conclude the paper in Section 3.
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2. The model

2.1. Assumptions of the model

As a combination of the standard IS-LM model (Torre [27]){
Ẏ = α(I(Y , r)− S(Y , r)),
ṙ = β(L(Y , r)−M),

(1)

and the Kaldor model{
Ẏ = α(I(Y , K)− S(Y , K)),
K̇ = I(Y , K)− δK ,

(2)

Gabisch and Lorenz [10], Boldrin [2] investigated the augmented IS-LM modelẎ = α(I(Y , K , r)− S(Y , r)),ṙ = β(L(Y , r)−M),
K̇ = I(Y , K , r)− δK ,

(3)

furthermore, Cai [3] studied the following augmented IS-LM with Kalecki’s time lag in the capital accumulation, which
assumed that saved part of profit is invested and capital growth is due to past investment decisions:Ẏ = α(I(Y , K , r)− S(Y , r)),ṙ = β(L(Y , r)−M),

K̇ = I(Y (t − T ), K , r)− δK ,
(4)

where I, S, L, K , Y , r,M, T respectively represents investment, savings, liquidity preference (demand for money), capital
stock, gross product, interest rate, constant money supply, time delay. α > 0, β > 0 are respectively the adjustment
coefficients in the markets of goods and money, δ > 0 means the depreciation of the capital stock, Ẏ (t), Y ′(t) denote the
derivative dY (t)dt .
Actually in sys. (4), investment in capital accumulation equation depends on the income at the time investment decisions

are made and on the capital stock at the time investment is finished, while in Section 3.1 of Zak [28], Zak investigated the
Solow growth model with time lag, and considered that investment depended only on the capital stock at the past time
and that the capital stock depreciated at the same gestation period, which it takes to produce and install capital goods
(i.e. ‘time-to-build’ models, see [14,23,24,29]):

K̇(t) = sf (K(t − r))− δK(t − r), (5)
with f as production function, s constant saving rate, the saved part of neoclassical product function sf is invested.
Here, we would assume that the investment function in capital accumulation depends on the income and the capital

stock both at the past time, and also at the different gestation period, i.e.investment function,
I(Y , K , r) = I1(Y , r)+ I2(K) = I1(Y (t − τ1), r(t))+ I2(K(t − τ2)) = I1(Y (t − τ1), r(t))+ β1K(t − τ2),

where−1 < β1 < 0 is propensities to investment I2(K)with respect to capital stock, 0 < SY = s1 < 1 is saving rate, τ1, τ2
are time delays,
and capital accumulation equation,

K̇(t) = I1(Y (t − τ1), r(t))− (δ − β1)K(t − τ2),
so the fixed price disequilibrium augmented IS-LM model we discuss would beẎ (t) = α[I1(Y (t), r(t))+ β1K(t)− s1Y (t)],ṙ(t) = β[L(Y (t), r(t))−M],

K̇(t) = I1(Y (t − τ1), r(t))− (δ − β1)K(t − τ2),
(6)

clearly, when τ2 = 0, system (6) is the same as system (4) except that we assume the different investment function and
saving function.

2.2. Qualitative behavior of the model

2.2.1. The equilibrium point
It’s easy to know that the equilibrium point (Y ∗, r∗, K ∗) is the solution of

I1(Y ∗, r∗) =
(δ − β1)s1

δ
Y ∗,

L(Y ∗, r∗) = M,

K ∗ =
s1
δ
Y ∗.
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2.2.2. Linear stability analysis
The linearization of the system in a neighborhood of the equilibrium (Y ∗, r∗, K ∗) yields:(Y (t)

r(t)
K(t)

)′
= η1

(Y (t)− Y ∗
r(t)− r∗

K(t)− K ∗

)
+ η2

(Y (t − τ1)− Y ∗
r(t − τ1)− r∗

K(t − τ1)− K ∗

)
+ η3

(Y (t − τ2)− Y ∗
r(t − τ2)− r∗

K(t − τ2)− K ∗

)
, (7)

η1 =

(
α(IY − s1) αIr αβ1
βLY βLr 0
0 Ir 0

)
, η2 =

(0 0 0
0 0 0
IY 0 0

)
, η3 =

(0 0 0
0 0 0
0 0 −(δ − β1)

)
,

where IY =
∂ I1
∂Y (Y

∗, r∗) > 0, Ir =
∂ I1
∂r (Y

∗, r∗) < 0, LY = ∂L
∂Y (Y

∗, r∗) > 0, Lr = ∂L
∂r (Y

∗, r∗) < 0. So the characteristic equation
of system (7) is det(λI − η1 − η2e−τ1λ − η3e−τ2λ) = 0, which leads to

D(λ, τ1, τ2) = R(λ)e−λτ2 + Q (λ)e−λτ1 + P(λ) = 0, (8)

where

R(λ) = (δ − β1)[λ2 − (α(IY − s1)+ βLr)λ+ αβLr(IY − s1)− αβLY Ir ] = r2λ2 + r1λ+ r0, r2 > 0,
Q (λ) = −αβ1IYλ+ αβ1βIY Lr = q1λ+ q0, q1 > 0, q0 > 0,
P(λ) = λ3 − [α(IY − s1)+ βLr ]λ2 + [α(IY − s1)βLr − αβIrLY ]λ− αβ1βIrLY = λ3 + p2λ2 + p1λ+ p0, p0 < 0.

2.2.3. The case τ1 = τ2 = 0
So the characteristic polynomial is

D(λ, 0, 0) = R(λ)+ Q (λ)+ P(λ) = λ3 + (p2 + r2)λ2 + (p1 + q1 + r1)λ+ (p0 + q0 + r0) = 0, (9)

according to the Routh-Hurwitz criterion, the equilibrium point is stable if and only if

(H1) p2 + r2 > 0, (p2 + r2)(p1 + q1 + r1)− (p0 + q0 + r0) > 0.

2.2.4. The case τ1 = 0, τ2 6= 0
Let τ1 = 0 in (8), the characteristic equation becomes

D(λ, 0, τ2) = R(λ)e−λτ2 + Q (λ)+ P(λ)
= (r2λ2 + r1λ+ r0)e−λτ2 + λ3 + p2λ2 + (p1 + q1)λ+ p0 + q0
= 0. (10)

According to the works of Beretta and Kuang [1] we should find the imaginary solutions of Eq. (10). Let λ = ωi be these
solutions. As D(0, 0, 0) = p0 + q0 + r0 6= 0 under assumption (H1), i.e. the imaginary axis cannot be crossed by real values.
We suppose that ω > 0. We find roots λ = ωi of (10), because λ = −ωi is also a root of (10). Substituting it into (10) and
separating the real and imaginary parts, we have

cos(ωτ2) = −Re
(
P(ωi)+ Q (ωi)

R(ωi)

)
= −

(−p2ω2 + p0 + q0)(−r2ω2 + r0)+ [(p1 + q1)ω − ω3]r1ω
(−r2ω2 + r0)2 + (r1ω)2

,

sin(ωτ2) = Im
(
P(ωi)+ Q (ωi)

R(ωi)

)
=
−(−p2ω2 + p0 + q0)r1ω + [(p1 + q1)ω − ω3](−r2ω2 + r0)

(−r2ω2 + r0)2 + (r1ω)2
.

(11)

A necessary condition to have ω as a solution of (10) is that ωmust be a root of the following equation:

F(ω) = |P(ωi)+ Q (ωi)|2 − |R(ωi)|2

= ω6 + [p22 − 2(p1 + q1)− r
2
2 ]ω

4
+ [(p1 + q1)2 − r21 + 2r0r2 − 2p2(p0 + q0)]ω

2
+ (p0 + q0)2 − r20

= 0. (12)

Let u = w2. Then

F(u) = u3 + Au2 + Bu+ C = 0, (13)

where A = p22 − 2(p1 + q1)− r
2
2 , B = (p1 + q1)

2
− r21 + 2r0r2 − 2p2(p0 + q0), C = (p0 + q0)

2
− r20 .

Using the results of [5] we assume that

(H2) anyone of A ≥ 0, C < 0; B ≤ 0, C < 0; A < 0, B > 0, C < 0,4 > 0; A < 0, B = 0, C = 0; B < 0, C = 0;
(H3) anyone of A < 0, B > 0, C > 0,4 < 0; A < 0, B > 0, C = 0, A2 > 4B;
(H4) A < 0, B > 0, C < 0,4 < 0;
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(H5) anyone of A ≥ 0, B ≥ 0, C ≥ 0; C > 0,4 > 0;

where the discriminant4 = [F(k)]
2

4 +
[F ′(k)]3

9 , k = − A3 for the reduced form (13), and obtain that

Lemma 2.1. For Eq. (13), it’s well known that

i. if (H2) holds, Eq. (13) has only one positive real root ω1;
ii. if (H3) holds, Eq. (13) has two distinct real positive root ω2, ω3 (setting ω2 < ω3);
iii. if (H4) holds, Eq. (13) has three distinct positive real root ω1 < ω2 < ω3;
iv. if (H5) holds, Eq. (13) has no positive real root.

Remark. To the simplicity, we assume ω1, ω2, ω3 in the above three different cases only for the same monotonicity of F
around the points but not the same roots of Eq. (13).

We should know that a solution ω of Eq. (13) is also a solution of the characteristic equation (11) if and only if τ ∗2 =
φ(ω∗)+2nπ

ω∗
n ∈ N, φ ∈ [0, 2π ]. From the Lemma 2.1 and Lemma in Cooke and Grossman [4] or Ruan and Wei [19], we

could easily get

Lemma 2.2. For Eq. (10),we have

i. if (H2) holds and τ2 = τ 12,n, then Eq. (10) has only one pair of purely imaginary roots±ω1i.
ii. if (H3) holds and τ2 = τ 22,n, τ

3
2,n, then Eq. (10) has two pairs of purely imaginary roots±ω2i,±ω3i.

iii. if (H4) holds and τ2 = τ 12,n, τ
2
2,n, τ

3
2,n, then Eq. (10) has three pairs of purely imaginary roots±ω1i,±ω2i,±ω3i.

iv. if (H5) holds, then Eq. (10) has no purely imaginary roots where

τ 12,n =
1
ω1
cos−1

{
−
(−p2ω21 + p0 + q0)(−r2ω

2
1 + r0)+ [(p1 + q1)ω1 − ω

3
1]r1ω1

(−r2ω21 + r0)2 + (r1ω1)2

}
+
2nπ
ω1

,

τ 22,n =
1
ω2
cos−1

{
−
(−p2ω22 + p0 + q0)(−r2ω

2
2 + r0)+ [(p1 + q1)ω2 − ω

3
2]r1ω2

(−r2ω22 + r0)2 + (r1ω2)2

}
+
2nπ
ω2

,

τ 32,n =
1
ω3
cos−1

{
−
(−p2ω23 + p0 + q0)(−r2ω

2
3 + r0)+ [(p1 + q1)ω3 − ω

3
3]r1ω3

(−r2ω23 + r0)2 + (r1ω3)3

}
+
2nπ
ω3

.

Lemma 2.3. Let τ ∗2 denote an element of either the sequence {τ
1
2,n} or {τ

2
2,n} or {τ

3
2,n}, then the following transversality condition

are satisfied:

sign
{
dRe(λ)
dτ2

∣∣∣∣
τ2=τ

∗
2

}
= sign F ′(ω2) = sign(3ω4 + 2Aω2 + B),

sign
{
dRe(λ)
dτ2

∣∣∣∣
τ2=τ

1
2,n

}
> 0, sign

{
dRe(λ)
dτ2

∣∣∣∣
τ2=τ

2
2,n

}
< 0, sign

{
dRe(λ)
dτ2

∣∣∣∣
τ2=τ

3
2,n

}
> 0. (14)

Proof. From [5], we know that the results of the first line is true, and also F(ω) is increasing at ω1, ω3, decreasing at ω2,
therefore (14) is set up.

Lemma 2.4. For Eq. (10), we have the following

i. If (H1) and (H2) hold, then when τ2 ∈ [0, τ 12,0) all roots of Eq. (10) have negative real parts, and when τ2 > τ 12,0 Eq. (10) has
at least one root with positive real part.

ii. If (H1) and (H3) hold, then there exist k witches from stability to instability when the parameters such that τ 32,0 < τ 22,0 <

τ 32,1 <, · · · , < τ 32,k−2 < τ 22,k−2 < τ 32,k−1 < τ 32,k < τ 22,k−1, all roots of Eq. (10) have negative real parts when
τ2 ∈ (τ

2
2,n, τ

3
2,n+1), τ

2
2,−1 = 0, n = −1, 0, . . . , k − 1. When τ2 ∈ [τ

3
2,n, τ

2
2,n), n = 0, 1, . . . , k − 1,and τ2 > τ 32,k Eq.

(10) has at least one root with positive real parts.
iii. If (H1) not hold but (H3) hold, when the parameters such that τ 22,0 < τ 32,0 < τ 22,1 <, . . . , < τ 22,k−1 < τ 32,k−1 < τ 32,k < τ 22,k,
there may exist k switches from instability to stability, that is when τ2 ∈ [τ 32,n, τ

2
2,n+1) and τ2 > τ 32,k−1, τ

3
2,−1 = 0, n =

−1, 0, . . . , k− 2 Eq. (10) has at least one root with positive real parts. When τ2 ∈ [τ 22,n, τ
3
2,n), n = 0, 1, . . . , k− 1, all roots

of Eq. (10) have negative real parts.
iv. If (H1) and (H4) hold, then there exists at least one stability switch.
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Proof. i. As (H1) and (H2)hold, then the equilibriumof the Eq. (10) is stable and the Eq. (10) has complex rootwith negative
real parts for τ2 = 0, and also for τ2 = τ 12,0 Eq. (10) has purely imaginary roots and the real parts of the root changes
continuously increasing with increased τ2 because of sign{ dRe(λ)dτ2

|τ2=τ
1
2,n
} > 0, then for τ2 ∈ [0, τ 12,0) all roots of Eq. (10)

have negative real parts and Eq. (10) has at least one root with positive real parts when τ2 > τ 12,0.
ii. Because ω3 > ω2 and τ i2,n =

φ(ωi)+2nπ
ωi

, i = 2, 3 are the two corresponding sequences for the time delay τ2,
then ∃k, τ 32,k − τ

3
2,k−1 =

2π
w3

< 2π
w2
= τ 22,k−1 − τ

2
2,k−2, and also (H1) and (H2) hold, then the equilibrium is stable

for τ2 = 0. Therefore necessarily τ 32,0 < τ 22,0 (or the multiplicities of roots with negative real parts could become
two for (14) when τ2 is decreased, it’s impossible. c.f. Cooke and Grossman [4]), when the parameters are such that
τ 32,0 < τ 22,0 < τ 32,1 <, . . . , < τ 22,k−2 < τ 32,k−1 < τ 32,k < τ 22,k−1,we know that there exist a lot of stability switches and the
stability of the equilibrium of change a finite of times at most, eventually it becomes unstable.

iii. the proof is the similar as ii.
iv. If (H1) and (H4) hold, then the equilibrium of the Eq. (10) is stable and Eq. (10) has three pairs of purely imaginary roots
ω1, ω2, ω3, and (14) is hold, so there exist at least one stability switch at τ 12,0 or τ

3
2,0. �

According to the above analysis and the theorem in Hale [11], we obtain the following results:

Theorem 2.1. When the conditions corresponding to Lemma 2.4(i., ii., iii.) are satisfied, then
i. The equilibrium (Y ∗, K ∗) is locally asymptotically stable when τ2 ∈ [0, τ 12,0) and a Hopf bifurcation occurs at (Y

∗, K ∗) when
τ2 = τ

1
2,0.

ii. The equilibrium (Y ∗, K ∗) is locally asymptotically stable when τ2 ∈ {0} ∪ (τ 22,n, τ
3
2,n+1), τ

2
2,−1 = 0, n = −1, 0, . . . , k− 2, a

Hopf bifurcation occurs when τ2 = τm2,n ∪ τ
3
2,k−1,m = 2, 3, n = 0, 1, . . . , k− 2.

iii. The equilibrium (Y ∗, K ∗) is locally asymptotically stable when τ2 ∈ [τ 22,n, τ
3
2,n), n = 0, 1, . . . , k−1, a Hopf bifurcation occurs

when τ2 = τm2,n,m = 2, 3, n = 0, 1, . . . , k− 1.

2.2.5. The case τ1 6= 0, τ2 6= 0
Next, we return to the Eq. (8) with τ1 > 0 and τ2 in stable regions. Regard τ1 as a parameter, following Ruan andWei [19],

we have

Lemma 2.5. If all roots of Eq. (10) have negative real parts for τ2 > 0, then there exists a τ ∗1 (τ2) > 0, such that when
0 ≤ τ1 < τ ∗1 (τ2) all roots of Eq. (8) have negative real parts.

Proof. Since the left hand side of Eq. (8) is analytic in λ and τ1, following the Theorem 2.1 of Ruan and Wei [19], when τ1
varies, the sum of the multiplicities of zeros of the left hand side of Eq. (8) in the open right half-plane can change only if a
zero on or cross the imaginary axis. �

Theorem 2.2. Assume (H1) holds true.
i. If (H2) holds, then for any τ2 ∈ [0, τ 12,0), there exists a τ

∗

1 (τ2) such that the equilibrium of system (6) is locally asymptotically
stable when τ1 ∈ [0, τ ∗1 (τ2)).

ii. If (H3) holds, then for any τ2 ∈ (τ 22,n, τ
3
2,n+1), τ

2
2,−1 = 0, n = −1, 0, . . . , k−1, there exists a τ

∗

1 (τ2) such that the equilibrium
of system (6) is locally asymptotically stable when τ1 ∈ [0, τ ∗1 (τ2)).

iii. If (H5) holds, then for any τ2 ≥ 0, there exists a τ ∗1 (τ2) such that the equilibrium of system (6) is locally asymptotically stable
when τ1 ∈ [0, τ ∗1 (τ2)).

Proof. i. and ii. According to i. and ii. of Lemmas 2.4 and 2.5, we could easily get the results.
iii. If (H1) and (H5) hold, then we know that for any τ2 ≥ 0 all roots of Eq. (10) have negative real parts, so following
the Lemma 2.5, there exists a τ ∗1 (τ2) > 0 such that all roots of Eq. (8) have negative real parts for 0 ≤ τ1 < τ ∗1 (τ2).

�

It’s clear that Hopf bifurcation occurs at τ ∗1 (τ2) if it holds the conditions of Lemma 2.5 or Theorem 2.2. And also theremay
exist a lot of stability switches. If we let τ2 in unstable region, then there may exist no τ ∗1 (τ2) such that when the system (6)
is unstable in 0 ≤ τ1 < τ ∗1 (τ2), it’s stable in τ

∗

1 (τ2) < τ1.

3. Concluding remarks

We investigated the IS-LM model with two time delays in the capital accumulation equation and concluded that when
one time lag influences the qualitative behavior of the economic system, the other also changes the behavior. Therefore, for
policy makers, they should seriously consider more time delays in the economic system and their impacts on the economic
system.
Fromall the aforementioned economicmodelwe could know that they are all fixed price disequilibriumdynamicmodels.

For future research we could consider flexible price or Phillips curve in the dynamic economic system and the influence of
time delay on the whole system.
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