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convergence theorems are established in a uniformly smooth and strictly convex Banach
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1. Introduction and preliminaries

Let E be a Banach space with the dual E∗. We denote by J the normalized duality mapping from E to 2E
∗

defined by

Jx = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖2 = ‖f ∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing.
A Banach space E is said to be strictly convex if ‖ x+y2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to

be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖

xn+yn
2 ‖ = 1. Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth

provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1.1)

exists for each x, y ∈ UE . It is also said to be uniformly smooth if the limit (1.1) is attained uniformly for x, y ∈ UE . It is well
known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E. It is also
well known that if E is uniformly smooth if and only if E∗ is uniformly convex.
Recall that a Banach space E has the Kadec–Klee property if for any sequence {xn} ⊂ E and x ∈ E with xn ⇀ x and

‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as n→ ∞ for more details on Kadec–Klee property; the readers is referred to [1–3] and
the references therein. It is well known that if E is a uniformly convex Banach space, then E enjoys the Kadec–Klee property.
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Let C be a nonempty closed and convex subset of a Banach space E and T : C → C a mapping. The mapping T is said to
be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x0 and limn→∞ Txn = y0, then Tx0 = y0. A point x ∈ C is a
fixed point of T provided Tx = x. In this paper, we use F(T ) to denote the fixed point set of T and use→ and⇀ to denote
the strong convergence and weak convergence, respectively.
Recall that the mapping T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ C .

It is well known that if C is a nonempty bounded closed and convex subset of a uniformly convex Banach space E, then every
nonexpansive self-mapping T on C has a fixed point. Further, the fixed point set of T is closed and convex.
As we all know that if C is a nonempty closed convex subset of a Hilbert space H and PC : H → C is the metric projection

of H onto C , then PC is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not available
in more general Banach spaces. In this connection, Alber [4] recently introduced a generalized projection operatorΠC in a
Banach space E which is an analogue of the metric projection in Hilbert spaces.
Next, we assume that E is a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E. (1.2)

Observe that, in a Hilbert space H , (1.2) is reduced to φ(x, y) = ‖x− y‖2, x, y ∈ H . The generalized projectionΠC : E → C
is a map that assigns to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is
the solution to the minimization problem

φ(x̄, x) = inf
y∈C
φ(y, x)

existence and uniqueness of the operator ΠC follows from the properties of the functional φ(x, y) and strict monotonicity
of the mapping J (see, for example, [1,3–5]). In Hilbert spaces,ΠC = PC . It is obvious from the definition of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀ x, y ∈ E. (1.3)

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0 if and only if x = y. It
is sufficient to show that if φ(x, y) = 0 then x = y. From (1.3), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖ Jy‖2.
From the definition of J , we have Jx = Jy. Therefore, we have x = y; see [1,3] for more details.
Let C be a nonempty closed convex subset of E and T amapping from C into itself. A point p in C is said to be an asymptotic

fixed point of T [6] if C contains a sequence {xn}which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The set of
asymptotic fixed points of T will be denoted by F̃(T ). A mapping T from C into itself is said to be relatively nonexpansive [4,
7,8] if F̃(T ) = F(T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T ). The asymptotic behavior of a relatively
nonexpansive mappings was studied in [4,7,8]. The mapping T is said to be φ-nonexpansive if φ(Tx, Ty) ≤ φ(x, y) for all
x, y ∈ C . T is said to be quasi-φ-nonexpansive [9–11] if F(T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T ).

Remark 1.2. The class of quasi-φ-nonexpansive mappings is more general than the class of relatively nonexpansive
mappings which requires the restriction: F(T ) = F̃(T ).

In 2005, Matsushita and Takahashi [12] considered fixed point problems of a single relatively nonexpansive mapping in
a Banach space. To be more precise, They proved the following theorem:

TheoremMT. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty closed convex subset of E,
let T be a relatively nonexpansive mapping from C into itself, and let {αn} be a sequence of real numbers such that 0 ≤ αn < 1
and lim supn→∞ αn < 1. Suppose that {xn} is given by

x0 = x ∈ C,
yn = J−1(αnJxn + (1− αn)JTxn),
Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . . ,

(1.4)

where J is the duality mapping on E. If F(T ) is nonempty, then {xn} converges strongly to PF(T )x, where PF(T ) is the generalized
projection from C onto F(T ).

Let f be a bifunction from C × C to R, where R denotes the set of real numbers. In this paper, we consider the following
equilibrium problem. Find p ∈ C such that

f (p, y) ≥ 0, ∀y ∈ C . (1.5)

We use EP(f ) to denote the solution set of the equilibrium problem (1.5). That is,

EP(f ) = {p ∈ C : f (p, y) ≥ 0, ∀y ∈ C}.
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Given a mapping Q : C → E∗, let

f (x, y) = 〈Qx, y− x〉, ∀x, y ∈ C .

Then p ∈ EP(f ) if and only if

〈Qp, y− p〉 ≥ 0, ∀y ∈ C .

That is, p is a solution of the above variational inequality.
Numerous problems in physics, optimization and economics reduce to find a solution of (1.5); see [13–19]. For studying

the equilibrium problem (1.5), let us assume that f satisfies the following conditions:

(A1) f (x, x) = 0, ∀x ∈ C;
(A2) f is monotone, i.e., f (x, y)+ f (y, x) ≤ 0, ∀x, y ∈ C;
(A3)

lim sup
t↓0

f (tz + (1− t)x, y) ≤ f (x, y), ∀ x, y, z ∈ C;

(A4) for each x ∈ C , y 7→ f (x, y) is convex and lower semi-continuous.

Recently, some authors considered the problem of finding a common element in the set of fixed points of a relatively
nonexpansive mapping which is a generalization of nonexpansive mappings in Hilbert spaces and in the set of solutions
of the equilibrium problem (1.5) based on hybrid projection methods in the framework of real Banach spaces; see, for
example [9,20–22] and the references therein.
In [20], Takahashi and Zembayshi obtained the following result on the equilibrium problem (1.5) and a relatively

nonexpansive mapping.

Theorem TZ. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a nonempty closed convex subset of
E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let T be a relatively nonexpansive mapping from C into itself
such that F(T ) ∩ EP(f ) 6= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C,
yn = J−1(αnJxn + (1− αn)JTxn),

un ∈ C such that f (un, y)+
1
rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx

(1.6)

for every n ≥ 0, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies lim infn→∞ αn(1− αn) > 0 and {rn} ⊂ [a,∞) for
some a > 0. Then, {xn} converges strongly toΠF(T )∩EP(f )x, whereΠF(T )∩EP(f ) is the generalized projection of E onto F(T )∩ EP(f ).

Recently, Qin, Cho and Kang [9] further improved Theorem TZ by considering a pair of quasi-φ-nonexpansive mappings
based on shrinking projection methods which was considered by Takahashi, Takeuchi and Kubota [23] in Hilbert spaces. To
be more precise, they proved the following results.

Theorem QCK. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let
f be a bifunction from C × C to R satisfying (A1)–(A4) and let T , S : C → C be two closed quasi-φ-nonexpansive mappings
such that F = F(T ) ∩ F(S) ∩ EP(f ) 6= ∅. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,
yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f (un, y)+
1
rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,

(1.7)

where J is the duality mapping on E, {rn} is a positive sequence and {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying the
following restrictions:

(a) αn + βn + γn = 1;
(b) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;
(c) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly toΠF x0.
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Note that TheoremsMT, TZ andQCK are all valid in uniformly convex and uniformly smooth Banach spaces. The following
question naturally arises in connection with the above results on the framework of spaces.

Question 1.3. Can oneweaken the restriction on the framework of spaces such that hybrid projectionmethods are still valid
for the equilibrium problem (1.5)?
On the other hand, common fixed point problems recently have been studied by many authors; see, for example,

[1,15,21,24–28]. Finding an optimal point in the intersection of the fixed point sets of a family of nonexpansivemappings is a
task that occurs frequently in various areas of mathematical sciences and engineering. For example, the well-known convex
feasibility problem reduces to finding a point in the intersection of the fixed point sets of a family of nonexpansivemappings;
see [29–31]. The problem of finding an optimal point that minimizes a given cost function over common fixed point set of
a family of nonexpansive mappings is of wide interdisciplinary interest and practical importance; see, e.g., [32–34].
In this paper, motivated by TheoremsMT, TZ and QCK, we re-considered the problem of finding a common element in the

common fixed point set of a family of quasi-φ-nonexpansive mappings and in the solution set of the equilibrium problem
(1.5). Strong convergence theorems of common elements are established in a uniformly smooth and strictly convex Banach
space which also enjoys the Kadec–Klee property. Note that every uniformly convex Banach space enjoys the Kadec–Klee
property. Our main convergence theorem gives an affirmative answer to Question 1.3. The results presented this paper
mainly improve the corresponding results announced in Qin, Cho and Kang [9] and Takahashi and Zembayshi [20].

In order to establish our main results, we need the following lemmas.

Lemma 1.4 ([4]). Let C be a nonempty closed convex subset of a smooth Banach space E and x ∈ E. Then, x0 = ΠCx if and only
if

〈x0 − y, Jx− Jx0〉 ≥ 0 ∀y ∈ C .

Lemma 1.5 ([4]). Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty closed convex subset of E and
x ∈ E. Then

φ(y,ΠCx)+ φ(ΠCx, x) ≤ φ(y, x) ∀y ∈ C .

Lemma 1.6. Let E be a strictly convex and smooth Banach space, C a nonempty closed convex subset of E and T : C → C a
quasi-φ-nonexpansive mapping. Then F(T ) is a closed convex subset of C.

Proof. Letting {pn} be a sequence in F(T ) with pn → p as n → ∞, we prove that p ∈ F(T ). From the definition of T , we
have φ(pn, Tp) ≤ φ(pn, p), which implies that φ(pn, Tp)→ 0 as n→∞. Note that

φ(pn, Tp) = ‖pn‖2 − 2〈pn, J(TP)〉 + ‖Tp‖2.

Letting n→∞ in the above equality, we see that φ(p, Tp) = 0. This shows that p = Tp.
Next, we show that F(T ) is convex. To this end, for arbitrary p1, p2 ∈ F(T ), t ∈ (0, 1), putting p3 = tp1 + (1− t)p2, we

prove that Tp3 = p3. Indeed, from the definition of φ, we see that

φ(p3, Tp3) = ‖p3‖2 − 2〈p3, J(Tp3)〉 + ‖Tp3‖2

= ‖p3‖2 − 2〈tp1 + (1− t)p2, J(Tp3)〉 + ‖Tp3‖2

= ‖p3‖2 − 2t〈p1, J(Tp3)〉 − 2(1− t)〈p2, J(Tp3)〉 + ‖Tp3‖2

≤ ‖p3‖2 + tφ(p1, p3)+ (1− t)φ(p2, p3)− t‖p1‖2 − (1− t)‖p2‖2

= ‖p3‖2 − 2〈tp1 + (1− t)p2, Jp3〉 − ‖p3‖2

= ‖p3‖2 − 2〈p3, Jp3〉 − ‖p3‖2

= 0.

This implies that p3 ∈ F(T ). This completes the proof. �

Lemma 1.7. Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E. Let f be a bifunction from
C × C to R satisfying (A1)–(A4). Let r > 0 and x ∈ E. Then
(a) ([13]). There exists z ∈ C such that

f (z, y)+
1
r
〈y− z, Jz − Jx〉 ≥ 0, ∀ y ∈ C .

(b) ([9,20]). Define a mapping Tr : E → C by

Srx =
{
z ∈ C : f (z, y)+

1
r
〈y− z, Jz − Jx〉, ∀y ∈ C

}
.

Then the following conclusions hold:
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(1) Sr is single-valued;
(2) Sr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Srx− Sry, JSrx− JSry〉 ≤ 〈Srx− Sry, Jx− Jy〉
(3) F(Sr) = EP(f );
(4) Sr is quasi-φ-nonexpansive;
(5) EP(f ) is closed and convex;
(6)

φ(q, Srx)+ φ(Srx, x) ≤ φ(q, x), ∀ q ∈ F(Sr).

Lemma 1.8 ([35]). Let p > 1 and s > 0 be two fixed real numbers. Then a Banach space E is uniformly convex if and only if there
exists a continuous strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − wp(λ)g(‖x− y‖)

for all x, y ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and λ ∈ [0, 1], wherewp(λ) = λp(1− λ)+ λ(1− λ)p.

The following lemma can be obtained from Lemma 1.8 immediately.

Lemma 1.9. Let E be a uniformly convex Banach space, s > 0 a positive number and Bs(0) a closed ball of E. There exists a
continuous, strictly increasing and convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that∥∥∥∥∥ N∑

i=1

(αixi)

∥∥∥∥∥
2

≤

N∑
i=1

(αi‖xi‖2)− α1α2g(‖x1 − x2‖) (1.8)

for all x1, x2, . . . , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and α1, α2, . . . , αN ∈ [0, 1] such that
∑N
i=1 αi = 1.

2. Main results

Theorem 2.1. Let E be a uniformly smooth and strictly convex Banach space which also enjoys the Kadec–Klee property, C a
nonempty closed and convex subset of E and f bifunction from C × C to R satisfying (A1)–(A4). Let Ti : C → C be a closed
and quasi-φ-nonexpansive mapping for each i ∈ {1, 2, . . . ,N}. Assume that F = ∩Ni=1 F(T ) ∩ EF(f ) is nonempty. Let {xn} be a
sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,

yn = J−1
(
αn,0 Jxn +

N∑
i=1

αn,i JTixn

)
,

un ∈ C such that f (un, y)+
1
rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,

(Υ )

where {αn,0}, {αn,1}, . . . , {αn,N} are real sequences in (0, 1), {rn} is a real sequence in [a,∞), where a is some positive real
number and J is the duality mapping on E. Assume that the control sequences satisfy

∑N
j=0 αn,j = 1 and lim infn→∞ αn,0αn,i > 0,

∀i ∈ {1, 2, . . . ,N}. Then the sequence {xn} converges strongly toΠF x0, whereΠF is the generalized projection from E onto F .

Proof. First, we show that Cn is closed and convex for each n ≥ 1. It is obvious that C1 = C is closed and convex. Suppose
that Ch is closed and convex for some integer h. For z ∈ Ch, we see that φ(z, uh) ≤ φ(z, xh) is equivalent to

2〈z, Jxk − Juk〉 ≤ ‖xk‖2 − ‖uk‖2.

It is easy to see that Ch+1 is closed and convex. This proves that Cn is closed and convex for each n ≥ 1. This in turn shows
thatΠCn+1x0 is well defined. Putting un = Srnyn, from Lemma 1.7 we see that Srn is quasi-φ-nonexpansive. Now, we are in a
position to prove that F ⊂ Cn for each n ≥ 1. Indeed, F ⊂ C1 = C is obvious. Suppose that F ⊂ Ch for some h. Then, for
∀w ∈ F ⊂ Ch, we have

φ(w, uh) = φ(w, Srhyh)
≤ φ(w, yh)

= φ

(
w, J−1

(
αh,0 Jxh +

N∑
i=1

αh,i JTixh

))
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= ‖w‖2 − 2〈w, αh,0 Jxn +
N∑
i=1

αh,iJTixn〉 +

∥∥∥∥∥αh,0 Jxn + N∑
i=1

αh,iJTixh

∥∥∥∥∥
2

≤ ‖w‖2 − 2αh,0〈w, Jxh〉 − 2
N∑
i=1

αh,i〈w, JTixh〉 + αh,0‖xh‖2 +
N∑
i=1

αh,i‖Tixh‖2

= αh,0φ(w, xh)+
N∑
i=1

αh,iφ(w, Tixh)

≤ αh,0φ(w, xh)+
N∑
i=1

αh,iφ(w, xh)

= φ(w, xh), (2.1)

which shows thatw ∈ Ch+1. This implies that F ⊂ Cn for each n ≥ 1. On the other hand, from Lemma 1.5 we see that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(w, x0)− φ(w, xn) ≤ φ(w, x0),

for each w ∈ F ⊂ Cn and for each n ≥ 1. This shows that the sequence φ(xn, x0) is bounded. From (1.3), we see that the
sequence {xn} is also bounded. Since the space is reflexive, we may, without loss of generality, assume that xn ⇀ p. Note
that Cn is closed and convex for each n ≥ 1. It is easy to see that p ∈ Cn for each n ≥ 1. Note that

φ(xn, x0) ≤ φ(p, x0).

It follows that

φ(p, x0) ≤ lim inf
n→∞

φ(xn, x0) ≤ lim sup
n→∞

φ(xn, x0) ≤ φ(p, x0).

This implies that

lim
n→∞

φ(xn, x0) = φ(p, x0).

Hence, we have ‖xn‖ → ‖p‖ as n→∞. In view of the Kadec–Klee property of E, we obtain that

lim
n→∞

xn = p. (2.2)

Next, we show that p ∈ F(T ). By the construction of Cn, we have that Cn+1 ⊂ Cn and xn+1 = ΠCn+1x0 ∈ Cn. It follows that

φ(xn+1, xn) = φ(xn+1,ΠCnx0)
≤ φ(xn+1, x0)− φ(ΠCnx0, x0)
= φ(xn+1, x0)− φ(xn, x0).

Letting n→∞, we obtain that φ(xn+1, xn)→ 0. In view of xn+1 ∈ Cn+1, we obtain that

φ(xn+1, un) ≤ φ(xn+1, xn).

It follows that

lim
n→∞

φ(xn+1, un) = 0.

From (1.3), we see that

‖un‖ → ‖p‖ as n→∞. (2.3)

It follows that

‖ Jun‖ → ‖ Jp‖ as n→∞. (2.4)

This implies that {Jun} is bounded. Note that E is reflexive and E∗ is also reflexive. We may assume that Jun ⇀ x∗ ∈ E∗. In
view of the reflexivity of E, we see that J(E) = E∗. This shows that there exists an x ∈ E such that Jx = x∗. It follows that

φ(xn+1, un) = ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖un‖2

= ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖ Jun‖2.

Taking lim infn→∞ on both sides of equality above yields that

0 ≥ ‖p‖2 − 2〈p, x∗〉 + ‖x∗‖2

= ‖p‖2 − 2〈p, Jx〉 + ‖ Jx‖2
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= ‖p‖2 − 2〈p, Jx〉 + ‖x‖2

= φ(p, x).

That is, p = x, which in turn implies that x∗ = Jp. It follows that Jun ⇀ Jp ∈ E∗. Since (2.4) and E∗ enjoys the Kadec–Klee
property, we obtain that

Jun − Jp→ 0 as n→∞.

Note that J−1 : E∗ → E is demi-continuous. It follows that un ⇀ p. Since (2.3) and E enjoys the Kadec–Klee property, we
obtain that

lim
n→∞

un = p. (2.5)

Note that

‖xn − un‖ ≤ ‖xn − p‖ + ‖p− un‖.

It follows that

lim
n→∞
‖xn − un‖ = 0. (2.6)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞
‖ Jxn − Jun‖ = 0. (2.7)

Let s = supn≥0{‖xn‖, ‖T1xn‖, ‖T2xn‖, . . . , ‖TNxn‖}. Since E is uniformly smooth, we know that E∗ is uniformly convex. In
view of Lemma 1.9, we see that

φ(w, un) = φ(w, Srnyn)
≤ φ(w, yn)

= φ

(
w, J−1

(
αn,0 Jxn +

N∑
i=1

αn,i JTixn

))

= ‖w‖2 − 2〈w, αn,0 Jxn +
N∑
i=1

αn,i JTixn〉 +

∥∥∥∥∥αn,0 Jxn + N∑
i=1

αn,i JTixn

∥∥∥∥∥
2

≤ ‖w‖2 − 2αn,0〈w, Jxn〉 − 2
N∑
i=1

αn,i〈w, JTixn〉 + αn,0‖xn‖2 +
N∑
i=1

αn,i‖Tixn‖2 − αn,0αn,1g(‖ Jxn − JT1xn‖)

= αn,0φ(w, xn)+
N∑
i=1

αn,iφ(w, Tixn)− αn,0αn,1g(‖ Jxn − JT1xn‖)

≤ αn,0φ(w, xn)+
N∑
i=1

αn,iφ(w, xn)− αn,0αn,1g(‖ Jxn − JT1xn‖)

≤ φ(w, xn)− αn,0αn,1g(‖ Jxn − JT1xn‖). (2.8)

It follows that

αn,0αn,1g(‖ Jxn − JT1xn‖) ≤ φ(w, xn)− φ(w, un). (2.9)

On the other hand, we have

φ(w, xn)− φ(w, un) = ‖xn‖2 − ‖un‖2 − 2〈w, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖ + ‖un‖)+ 2‖w‖‖ Jxn − Jun‖.

It follows from (2.6) and (2.7) that

φ(w, xn)− φ(w, un)→ 0 as n→∞. (2.10)

In view of (2.10) and the assumption lim infn→∞ αn,0(1− αn,1) > 0, we see that

g(‖ Jxn − JT1xn‖)→ 0 as n→∞. (2.11)

It follows from the property of g that

‖ Jxn − JT1xn‖ → 0 as n→∞. (2.12)
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Since xn → p as n→∞ and J : E → E∗ is demi-continuous, we obtain that Jxn ⇀ Jp ∈ E∗. Note that

|‖ Jxn‖ − ‖ Jp‖| = |‖xn‖ − ‖p‖| ≤ ‖xn − p‖.

This implies that

lim
n→∞
‖ Jxn‖ = ‖ Jp‖. (2.13)

Since E∗ enjoys the Kadec–Klee property, we see that

lim
n→∞
‖ Jxn − Jp‖ = 0. (2.14)

Note that

‖ JT1xn − Jp‖ ≤ ‖ JT1xn − Jxn‖ + ‖ Jxn − Jp‖.

From (2.12) and (2.14), we arrive at

lim
n→∞
‖ JT1xn − Jp‖ = 0. (2.15)

Note that J−1 : E∗ → E is demi-continuous. It follows that T1xn ⇀ p. On the other hand, we have

|‖T1xn‖ − ‖p‖| = |‖ JT1xn‖ − ‖ Jp‖| ≤ ‖ JT1xn − Jp‖.

In view of (2.15), we obtain that ‖T1xn‖ → ‖p‖ as n→∞. Since E enjoys the Kadec–Klee property, we obtain that

lim
n→∞
‖T1xn − p‖ = 0. (2.16)

It follows from the closedness of T1 that T1p = p. By repeating (2.8)–(2.16), we can obtain that p ∈ ∩Ni=1 F(Ti).
Next, we show that p ∈ EF(f ). From (2.1), we arrive at

φ(w, yn) ≤ φ(w, xn). (2.17)

In view of un = Srnyn and Lemma 1.7, we arrive at

φ(un, yn) = φ(Srnyn, yn)
≤ φ(w, yn)− φ(w, Srnyn)
≤ φ(w, xn)− φ(w, Srnyn)

= φ(w, xn)− φ(w, un). (2.18)

It follows from (2.10) that φ(un, yn) → 0 as n → ∞. From (1.3), we see that ‖un‖ − ‖yn‖ → 0 as n → ∞. In view of
un → p as n→∞, we arrive at

‖yn‖ − ‖p‖ → 0 as n→∞. (2.19)

It follows that

‖ Jyn‖ − ‖ Jp‖ → 0 as n→∞. (2.20)

Since E∗ is reflexive, we may assume that Jyn ⇀ f ∗ ∈ E∗. In view of J(E) = E∗, we see that there exists f ∈ E such that
Jf = f ∗. It follows that

φ(un, yn) = ‖un‖2 − 2〈un, Jyn〉 + ‖yn‖2

= ‖un‖2 − 2〈un, Jyn〉 + ‖ Jyn‖2.

Taking lim infn→∞ on both sides of equality above yields that

0 ≥ ‖p‖2 − 2〈p, f ∗〉 + ‖f ∗‖2

= ‖p‖2 − 2〈p, Jf 〉 + ‖ Jf ‖2

= ‖p‖2 − 2〈p, Jf 〉 + ‖f ‖2

= φ(p, f ).

That is, p = f , which in turn implies that f ∗ = Jp. It follows that Jyn ⇀ Jp ∈ E∗. Since (2.20) and E∗ enjoys the Kadec–Klee
property, we obtain that

Jyn − Jp→ 0 as n→∞.

Note that J−1 : E∗ → E is demi-continuous. It follows that yn ⇀ p. Since (2.19) and E enjoys the Kadec–Klee property, we
obtain that

yn → p as n→∞. (2.21)
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Note that

‖un − yn‖ ≤ ‖un − p‖ + ‖p− yn‖.

It follows from (2.6) and (2.21) that

lim
n→∞
‖un − yn‖ = 0. (2.22)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞
‖ Jun − Jyn‖ = 0.

From the assumption rn ≥ a, we see that

lim
n→∞

‖ Jun − Jyn‖
rn

= 0. (2.23)

In view of un = Srnyn, we see that

f (un, y)+
1
rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C .

It follows from the condition (A2) that

‖y− un‖
‖ Jun − Jyn‖

rn
≥
1
rn
〈y− un, Jun − Jyn〉 ≥ −f (un, y) ≥ f (y, un), ∀ y ∈ C .

By taking the limit as n→∞ in the above inequality, from the condition (A4) and (2.23) we obtain that

f (y, p) ≤ 0, ∀ y ∈ C .

For 0 < t < 1 and y ∈ C , define yt = ty+ (1− t)p. It follows that yt ∈ C , which yields that f (yt , p) ≤ 0. It follows from the
conditions (A1) and (A4) that

0 = f (yt , yt) ≤ tf (yt , y)+ (1− t)f (yt , p) ≤ tf (yt , y).

That is,

f (yt , y) ≥ 0.

Letting t ↓ 0, from the condition (A3), we obtain that f (p, y) ≥ 0, ∀y ∈ C . This implies that p ∈ EP(f ). This shows that
p ∈ F = ∩Ni=1 F(Ti) ∩ EP(f ).
Finally, we prove that p = ΠF x0. From xn = ΠCnx0, we see that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn for each n ≥ 1, we have

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F . (2.24)

Letting n→∞ in (2.24), we see that

〈p− w, Jx0 − Jp〉 ≥ 0, ∀w ∈ F .

In view of Lemma 1.4, we can obtain that p = ΠF x0. This completes the proof. �

If Ti = T for each i ∈ {1, 2, . . . ,N}, then Theorem 2.1 is reduced to the following results.

Corollary 2.2. Let E be a uniformly smooth and strictly convex Banach space which also enjoys the Kadec–Klee property, C a
nonempty closed and convex subset of E and f bifunction from C × C to R satisfying (A1)–(A4). Let T be a closed and quasi-φ-
nonexpansive mapping. Assume that F = F(T )∩ EF(f ) is nonempty. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,
yn = J−1

(
αnJxn + (1− αn)JTxn

)
,

un ∈ C such that f (un, y)+
1
rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,
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where {αn} is a real sequence in (0, 1) such that lim infn→∞ αn(1− αn) > 0, {rn} is a real sequence in [a,∞), where a is some
positive real number and J is the duality mapping on E. Then the sequence {xn} converges strongly to ΠF x0, where ΠF is the
generalized projection from E onto F .

Remark 2.3. Corollary 2.2 improves Theorem TZ in the following aspects.

(a) For the framework of spaces, we extend the space from a uniformly smooth and uniformly convex space to a uniformly
smooth and strictly convex Banach space which also enjoys the Kadec–Klee property (note that every uniformly convex
Banach space enjoys the Kadec–Klee property).

(b) For themappings, we extend themapping from a relatively nonexpansivemapping to a quasi-φ-nonexpansivemapping
(we remove the restriction F̃(T ) = F(T ), where F̃(T ) denotes the asymptotic fixed point set).

(c) For the algorithm, we remove the set ‘‘Wn’’ in Theorem TZ.

For a special case that N = 2, we can obtain the following results on a pair of quasi-φ-nonexpansive mappings
immediately from Theorem 2.1.

Corollary 2.4. Let E be a uniformly smooth and strictly convex Banach space which also enjoys the Kadec–Klee property, C a
nonempty closed and convex subset of E and f bifunction from C × C to R satisfying (A1)–(A4). Let S and T be two closed and
quasi-φ-nonexpansive mappings. Assume that F = F(T ) ∩ F(S) ∩ EF(f ) is nonempty. Let {xn} be a sequence generated in the
following manner:

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,
yn = J−1

(
αnJxn + βnJTxn + γnJSxn

)
,

un ∈ C such that f (un, y)+
1
rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,

where {αn}, {βn} and {γn} are real sequences in (0, 1), {rn} is a real sequence in [a,∞), where a is some positive real number
and J is the duality mapping on E. Assume that the control sequences satisfy αn + βn + γn = 1, lim infn→∞ αnβn > 0 and
lim infn→∞ αnγn > 0. Then the sequence {xn} converges strongly toΠF x0, whereΠF is the generalized projection from E onto
F .

Remark 2.5. For the framework of spaces, Corollary 2.4 mainly improves Theorem QCK from a uniformly smooth and
uniformly convex space to a uniformly smooth and strictly convex Banach space which also enjoys the Kadec–Klee property
(note that every uniformly convex Banach space enjoys the Kadec–Klee property).
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