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Shape Preserving Rational Cubic Fractal Interpolation Function

N. Balasubramani

aDepartment of Mathematics, IIT Guwahati, Guwahati, 781039, India

Abstract

A new type of C1 Fractal Interpolation Function (FIF) is developed using the Iterated Function System
(IFS) which contains the rational spline. The numerator of this rational spline contains cubic polynomial
and the denominator of the rational spline contains quadratic polynomial. We find uniform error bound
between the original function which belongs to the class C2 and the FIF. We described suitable conditions
on scaling factors and shape parameters such that it preserves the shape properties which inherited in
the data.

Keywords: Iterated function system, Fractal interpolation function, Positivity, Monotonicity,
Convexity.

1. Introduction

Suppose the data D = {(xi, yi) ∈ I × R : i = 1, 2, . . . , N} is given, where x1 < x2 < · · · < xN
and I = [x1, xN ]. Interpolation is the process of constructing a continuous function Φ : I → R such
that Φ(xi) = yi for all i = 1, 2, . . . , N . The classical interpolants (polynomial, spline etc.) are infinitely
differentiable or piecewise infinitely differentiable. In many situations, data comes from numerical ex-
periments are highly irregular. So classical interpolation methods becomes unsuitable to interpolate
these data. To interpolate irregular data, Barnsley [1] introduced a new interpolation method called
Fractal Interpolation using special type of iterated function system. In order to approximate differen-
tiable functions Barnsley and Harrington [2] introduced differentiable fractal interpolation functions.
With the help of Barnsley and Harrington results, various classical spline methods are generalized for
instance [3–5].

In many situations, it is required that interpolant should reflect the geometric characteristics of
the data set. Constructing interpolant with sufficiently smooth and preserving geometric character-
istics of the data is called shape preserving interpolation. To preserve shape properties of the data,
various spline interpolants are developed, for instance [6–10]. The uniqueness of spline interpolation
becomes unsuitable for shape modification problem. Späth [11] introduced rational function with shape
parameters to preserve geometric characteristic attached to data set. Also, various researchers [12–19]
have constructed shape preserving rational splines using shape parameters. Using fractal interpolation
functions, Chand and coworkers [20–24] have initiated study on shape preserving.

In this paper, a new C1 fractal interpolation function using rational IFS which contains three families
of shape parameters is constructed in such a way that it preserves shape properties of the data. The
proposed scheme has many outstanding features.

• The proposed method is a best tool to approximate a function that is continuous and its derivatives
are irregular (see Section 5).

• When all the scaling factors are zero, fractal interpolation function that obtained from proposed
method, reduces into a classical rational cubic spline (see Remark 2 and Section 5).

• The proposed method is equally applicable for the data with derivatives or data without deriva-
tives.
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• In the proposed method, extra knots are not needed to get the shape preserving interpolant.

• In the proposed scheme, shape preserving fractal interpolant is unique for the fixed scaling factors
and the fixed shape parameters. By changing the scaling factors and the shape parameters,
infinitely many shape preserving fractal interpolants can be obtained.

• This scheme is computationally economical because even though three families of shape parameters
are involved, the data dependent conditions are prescribed on one family of the shape parameters.
Remaining two families of the shape parameters can assume any positive values.

In Section 2, introduction about iterated function system and fractal interpolation functions are
presented. In Section 3, construction of FIF and approximation property of this FIF are discussed. In
Section 4, shape preserving aspects of this FIF are discussed. In Section 5, shape preserving aspects of
FIF is checked with examples.

2. Fractal Interpolation Function

Let a set of data points {(xi, yi) : i = 1, 2, . . . , N} be given such that x1 < x2 < · · · < xN . Let
J := {1, 2, . . . , N − 1}. Set Ii = [xi, xi+1] and I = [x1, xN ]. Let Li : I → Ii, i ∈ J , be contraction
mappings such that

Li(x1) = xi, Li(xN ) = xi+1. (1)

Let K = I ×D, where D is the suitable compact set containing all yi’s. Consider the mappings such
that for all i ∈ J , Fi : K → D satisfying

Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1,

|Fi(x, y)− Fi(x, y′)| ≤ |si||y − y′|, x ∈ I; y, y′ ∈ D, (2)

where −1 < si < 1. For each i ∈ J , define function wi : K → K by wi(x, y) = (Li(x), Fi(x, y)) for all
(x, y) ∈ K. The collection J = {K;wi : i ∈ J} is called an Iterated Function System (IFS).

Proposition 1. [25] The IFS {K;wi : i ∈ J} has a unique attractor G, and G is the graph of a
continuous function f : I → R which interpolates the data {(xi, yi) : i = 1, 2, . . . , N}, i.e., f(xi) = yi,
i = 1, 2, . . . , N .

The function f is called a Fractal Interpolation Function (FIF) corresponding to the IFS J , and it
can also be constructed based on the following.

Let G = {g : I → R| g is continuous, g(x1) = y1 and g(xN ) = yN}. Then G is a complete
metric space with respect to the uniform metric ρ(g1, g2) = max{|g1(x) − g2(x)| : x ∈ I}. Define the
Read-Bajraktarević operator T on (G, ρ) as

Tg(Li(x)) = Fi(x, g(x)), x ∈ I, i ∈ J. (3)

Using (1) and the first condition of (2), it is easy to verify that Tg is continuous on the interval Ii, i ∈ J ,
and all the interior points x2, x3, . . . , xN−1. Also T is a contraction map on (G, ρ), i.e.,

ρ(Tg1, T g2) ≤ |s|∞ρ(g1, g2),

where |s|∞ = max{|si| : i ∈ J}<1. Therefore, by the Banach fixed point theorem, T has a unique fixed
point f(say) on G such that Tf(x) = f(x) for all x ∈ I. By (3), the FIF f satisfies the functional
equation

f(Li(x)) = Fi(x, f(x)), x ∈ I, i ∈ J.
The FIFs constructed so far by the following IFS {K;wi : i ∈ J}

Li(x) = aix+ bi,

Fi(x, y) = siy + ri(x),

}
i ∈ J, (4)
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where
ai =

xi+1 − xi
xN − x1

, bi =
xNxi − x1xi+1

xN − x1
,

|si| < 1 and ri : I → R is a continuous functions such that Fi satisfies (2). The number si is called the
vertical scaling factor of the map wi and s = (s1, s2, . . . , sN−1) is called the scale vector of the IFS. The
following proposition ensures the existence of a differentiable FIF.

Proposition 2. [2] Let {(xi, yi) : 1 = 1, 2, . . . , N} be a data set such that x1 < x2 · · · < xN . Let Li(x)
be the affine functions satisfying Li(x1) = xi, Li(xN ) = xi+1, i ∈ J and Fi(x, y) = siy + ri(x), i ∈ J
satisfying (2). Suppose for some integer n ≥ 0, |si| < ani , ri ∈ Cn(I), i ∈ J . Let

Fi,k(x, y) =
siy + r

(k)
i (x)

aki
, y1,k =

r
(k)
1 (x1)
ak1 − s1

, yN,k =
r

(k)
N−1(xN )

akN−1 − sN−1
,

k = 1, 2, . . . , n. If Fi−1,k(xN , yN,k) = Fi,k(x1, y1,k), i = 2, 3, . . . N − 1 and k = 1, 2, . . . , n, then
{(Li(x), Fi(x, y)) : i = 1, 2, . . . , N − 1} determines a FIF f ∈ Cn(I), and f (k) is the FIF determined by
{(Li(x), Fi,k(x, y)) : i = 1, 2, . . . , N − 1}, k = 1, 2, . . . , n.

3. C1 rational FIF

In the present section, rational FIF with three families shape parameters is going to constructed
based on Read-Bajraktarević operator [23, 26]. Let {(xi, yi) : i = 1, 2, . . . , N} be a set of data points
such that x1 < x2 < · · · < xN . Let di be the derivative value at the knot point xi. Consider the IFS
(4) with

ri(x) =
pi(x)
qi(x)

≡ Pi(θ)
Qi(θ)

=
Ai(1− θ)3 +Biθ(1− θ)2 + Ciθ

2(1− θ) +Diθ
3

ui(1− θ)2 + θ(1− θ)(γi + ui + vi) + viθ2
,

where θ = x−x1
xN−x1

, x ∈ [x1, xN ]. Here Ai, Bi, Ci, Di are constants such that it satisfies the required
condition for the existence for C1 FIF. ui, vi and γi are parameters such that ui > 0, vi > 0 and γi ≥ 0.
These parameters will ensure the positivity of denominator of ri(x).

Let F∗ := { φ ∈ C1(I)| φ(x1) = y1 and φ(xN ) = yN}. Then (F∗, ρ∗) is a complete metric space,
where ρ∗ is the metric induced by norm ‖g‖= ‖g‖∞+‖g(1)‖∞ on C1(I). Define Read-Bajraktarević
operator T on F∗ as

Tφ(Li(x)) = siφ(x) + ri(x), x ∈ I, i ∈ J. (5)

Let si such that |si|< ai for all i ∈ J . The fixed point Φ of T ∗ satisfies the functional equation

Φ(Li(x)) = siΦ(x) + ri(x), x ∈ I, i ∈ J. (6)

Here, Φ is a FIF and derivative Φ(1) is also a FIF which satisfy the following functional equation

Φ′(Li(x)) =
siΦ
′(x) + r

(1)
i (x)

ai
, x ∈ I, i ∈ J. (7)

The constants Ai, Bi, Ci and Di are evaluated based on Hermite conditions Φ(xi) = yi, Φ(xi+1) =
yi+1, Φ

(1)(xi) = di and Φ(1)(xi+1) = di+1 for i ∈ J . These conditions are equivalent [20] to the
conditions on Fi(x, y) for generating a C1-FIF given in Proposition 2. So, Φ(1) is the fixed point of the
operator T∗ : F∗ → F∗ defined by

(T∗φ∗)(Li(x)) =
siφ
∗(x) + r

(1)
i (x)

ai
, x ∈ I, i ∈ J,

where F∗ := {φ∗ ∈ C(I)|φ∗(x1) = d1 and φ∗(xN ) = dN} is endowed with the uniform norm metric. Let
hi = xi+1 − xi.
Substituting x = x1 in (6) implies,

Ai = ui[yi − siy1].
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Substituting x = xN in (6) implies
Di = vi[yi+1 − siyN ].

The condition Φ′(xi) = di in (7) gives

Bi = uihidi + yi(2ui + vi + γi)− si[ui(xN − x1)d1 + y1(2ui + vi + γi)].

The condition Φ′(xi+1) = di+1 in (7) gives

Ci = −vihidi+1 + yi+1(ui + 2vi + γi) + si[vi(xN − x1)dN − yN (ui + 2vi + γi)].

Hence, the FIF with three families of shape parameters is

Φ(Li(x)) = siΦ(x) +
Pi(θ)
Qi(θ)

, (8)

where

Pi(θ) = (ui[yi − siy1])(1− θ)3 + (vi[yi+1 − siyN ])θ3

+ (uihidi + yi(2ui + vi + γi)− si[ui(xN − x1)d1 + y1(2ui + vi + γi)])θ(1− θ)2

+ (−vihidi+1 + yi+1(ui + 2vi + γi) + si[vi(xN − x1)dN − yN (ui + 2vi + γi)])θ2(1− θ),

Qi(θ) = ui(1− θ)2 + θ(1− θ)(γi + ui + vi) + viθ
2, θ = x−x1

xN−x1
, x ∈ [x1, xN ].

Arithmetic mean method
In the above constructed FIF, derivative values are needed. In most of the cases, derivative values

are not given. In that situation derivative values are approximated using some approximation methods.
In this paper Arithmetic Mean Method [12, 24] is used to find derivative values. Let ∆i = yi+1−yi

hi
, i ∈ J.

At interior knots xi, i = 2, 3 . . . , N − 1, set

di =

{
0 if ∆i−1 = 0 or ∆i = 0,
hi∆i−1+hi−1∆i

hi−1+hi
otherwise, i = 2, 3, . . . , N − 1.

At end knots x1 and xN , set

d1 =

{
0 if ∆1 = 0 or sgn(D∗1) 6= sgn(∆1),
D∗1 = ∆1 + (∆1−∆2)h1

h1+h2
otherwise,

dN =

{
0 if ∆N−1 = 0 or sgn(D∗N ) 6= sgn(∆N−1),
D∗N = ∆N−1 + (∆N−1−∆N−2)hN−1

hN−1+hN−2
otherwise.

Remark 1. Rewrite the rational cubic FIF Φ given in (8) in the following form

Φ(Li(x)) = siΦ(x) + {[(1− θ)yi + θyi+1 +
Ri(θ)
Qi(θ)

]− si[(1− θ)y1 + θyN +
Ti(θ)
Qi(θ)

]},

where
Ri(θ) = hiθ(1− θ)[(∆i − di+1)viθ + (di −∆i)ui(1− θ)],

Ti(θ) = θ(1− θ)[{(yN − y1)− (xN − x1)dN}viθ+
{(xN − x1)d1 − (yN − y1)}ui(1− θ)].

From this expression, it follows that if γi →∞ then Φ converges to the following affine FIF

Φ(Li(x)) = siΦ(x) + (yi − siy1)(1− θ) + (yi+1 − siyN )θ.

Also, if γi →∞ and si → 0 then Φ converges to the straight line segment in the interval [xi, xi+1].
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Remark 2. If si = 0 for all i ∈ J , then the rational cubic FIF given in (8) reduces to the classical
rational interpolation C as

C(x) =
Ui(ϕ)
Vi(ϕ)

, (9)

where

Ui(ϕ) = uiyi(1− ϕ)3 + (uihidi + yi(2ui + vi + γi)ϕ(1− ϕ)2

+ (−vihidi+1 + yi+1(ui + 2vi + γi)ϕ2(1− ϕ) + viyi+1ϕ
3,

Vi(ϕ) = ui(1− ϕ)2 + ϕ(1− ϕ)(γi + ui + vi) + viϕ
2, ϕ =

x− xi
xi+1 − xi

, x ∈ [xi, xi+1].

This show that if si → 0, then graph of our rational FIF on [xi, xi+1] approaches the graph of the
classical rational cubic interpolant given in [18].

Remark 3. If si = γi = 0, ui = vi = 1 on each subinterval Ii = [xi, xi+1], i ∈ J , then the rational FIF
(8) reduces to the standard cubic Hermite spline
Φ(x) = (2ϕ3 − 3ϕ2 + 1)yi + (ϕ3 − 2ϕ2 + ϕ)hidi + (−2ϕ3 + 3ϕ2)yi+1 + (ϕ3 − ϕ2)hidi+1,
where ϕ = x−xi

xi+1−xi
, x ∈ [xi, xi+1].

3.1. Convergence Analysis of C1-Rational FIF
In this section, an upper bound of the uniform error between an original function S ∈ C2[x1, xN ]

and the rational cubic FIF Φ is determined. The effectiveness of the FIF Φ in the approximation of a
function S is derived with the help of classical rational cubic spline.

Theorem 3. Let Φ as given in (8) and C as given in (9) respectively, be the rational cubic FIF and
classical rational cubic interpolant with respect to the data {(xi, yi), i = 1, 2, . . . , N} generated from
an original function S ∈ C2[x1, xN ]. Let di, i = 1, 2, . . . , N denotes the derivative values at the knots.
Then

‖S − Φ‖∞≤
|s|∞([M + hM̄ ] + [M∗ + |I|M∗])

1− |s|∞
+ ‖S(2)‖∞h2c∗,

where M := max{|yi|, i = 1, 2, . . . , N}, M̄ := max{|di|, i = 1, 2, . . . , N}, M∗ := max{|y1|, |yN |},
M∗ := max{|d1|, |dN |}, |I|:= xN − x1, h = max{hi, i ∈ J}, |s|∞= max{|si|, i ∈ J},
w(ui, vi, γi, ϕ) = ϕ2(1−ϕ)2u2

ih
2
i +ϕ4(1−ϕ)2h2

i (ui+vi+γi)
2

2Vi(ϕ)[ui+ϕ(ui+vi+γi)]
+ ϕ2(1−ϕ)4h2

i (ui+vi+γi)
2+ϕ2(1−ϕ)2v2i h

2
i

2Vi(ϕ)[vi+(ui+vi+γi)(1−ϕ)] ,

c∗i := max{w(ui, vi γi, ϕ) : 0 ≤ ϕ ≤ 1}, i ∈ J and c∗ = max{c∗i : i ∈ J}.

Proof. From (5), the Read-Bajraktarević operator T ∗s : F∗ → F∗ such that

T ∗s φ(x) = siφ(L−1
i (x)) +

pi(L−1
i (x), si)

qi(L−1
i (x))

, x ∈ Ii, i ∈ J,

where pi(x) ≡ Pi(θ) and qi(x) ≡ Qi(θ) are as in (8). It is evident that Φ is the fixed point of operator
T ∗s with s 6= 0. Also, classical rational cubic spline C is the fixed point of T ∗s with s = 0 = (0, 0, . . . , 0) ∈
RN−1.

Let s = (s1, s2, . . . , sN−1) be a scale vector such that |si|< ai for all i ∈ J and with at least one
si 6= 0. For s 6= 0, T ∗λ is a contraction map with contraction factor |s|∞. Hence

‖T ∗λΦ− T ∗λC‖∞≤ |s|∞‖Φ− C‖∞. (10)

Also

|T ∗λC(x)− T ∗0C(x)| =
∣∣∣si C ◦ L−1

i (x) +
pi(L−1

i (x), si)
qi(L−1

i (x))
− pi(L−1

i (x), 0)
qi(L−1

i (x))

∣∣∣,

≤ |si|‖C‖∞+
|pi(L−1

i (x), si)− pi(L−1
i (x), 0)|

qi(L−1
i (x))

.

(11)
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Using the mean value theorem of functions of several variables, there exist β = (β1, β2, . . . ,
βN−1) such that |βi| < |si| and

pi(L−1
i (x), si)− pi(L−1

i (x), 0) =
∂pi(L−1

i (x), βi)
∂si

si. (12)

By (11) and (12),

|T ∗λC(x)− T ∗0C(x)| ≤ |si|
(
‖C‖∞+

∣∣∣∣∣
∂
(
pi(L

−1
i (x),βi)

qi(L
−1
i (x)

)

∂si

∣∣∣∣∣

)
. (13)

Now let us concentrate to find the bound for the right hand side of the Equation (13). The classical
rational cubic interpolant C can be written as

C(x) = w1(ui, vi, γi, ϕ)yi + w2(ui, vi, γi, ϕ)yi+1 + w3(ui, vi, γi, ϕ)di − w4(ui, vi, γi, ϕ)di+1, (14)

where
w1(ui, vi, γi, ϕ) = ui(1−ϕ)3+(2ui+vi+γi)ϕ(1−ϕ)2

Vi(ϕ) , w2(ui, vi, γi, ϕ) = (ui+2vi+γi)ϕ
2(1−ϕ)+viϕ

3

Vi(ϕ) ,

w3(ui, vi, γi, ϕ) = uihiϕ(1−ϕ)2

Vi(ϕ) , w4(ui, vi, γi, ϕ) = vihiϕ
2(1−ϕ)

Vi(ϕ) .
Now

w1(ui, vi, γi, ϕ) + w2(ui, vi, γi, ϕ) = 1.

Also

w3(ui, vi, γi, ϕ) + w4(ui, vi, γi, ϕ) =
uihiϕ(1− ϕ)2 + vihiϕ

2(1− ϕ)
ui(1− ϕ)2 + ϕ(1− ϕ)(γi + ui + vi) + viϕ2

,

≤ uihiϕ(1− ϕ)2 + vihiϕ
2(1− ϕ)

ui(1− ϕ)2 + viϕ2
.

Since ui(1− ϕ)2 + viϕ
2 ≥ max{ui(1− ϕ)2, viϕ

2},

w3(ui, vi, γi, ϕ) + w4(ui, vi, γi, ϕ) ≤ uihiϕ(1− ϕ)2

ui(1− ϕ)2
+
vihiϕ

2(1− ϕ)
viϕ2

,

= hi.

From (14),

|C(x)| ≤ max{|yi|, |yi+1|}+ hi max{|di|, |di+1|},
= Mi + hiM̄i,

where Mi = max{|yi|, |yi+1|} and M̄i = max{|di|, |di+1|}.
Thus

‖C‖∞≤M + hM̄. (15)

Now

∂
(
pi(L

−1
i (x),si)

qi(L
−1
i (x)

)

∂si
= −w∗1(ui, vi, γi, ϕ)y1 − w∗2(ui, vi, γi, ϕ)yN − w∗3(ui, vi, γi, ϕ)d1

+ w∗4(ui, vi, γi, ϕ)dN ,

w∗1(ui, vi, γi, ϕ) = ui(1−ϕ)3+(2ui+vi+γi)ϕ(1−ϕ)2

Vi(ϕ) , w∗2(ui, vi, γi, ϕ) = (ui+2vi+γi)ϕ
2(1−ϕ)+viϕ

3

Vi(ϕ) ,
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w∗3(ui, vi, γi, ϕ) = ui(xN−x1)ϕ(1−ϕ)2

Vi(ϕ) , w∗4(ui, vi, γi, ϕ) = vi(xN−x1)ϕ2(1−ϕ)
Vi(ϕ) .

∣∣∣∣∣
∂
(
pi(L

−1
i (x),si)

qi(L
−1
i (x)

)

∂si

∣∣∣∣∣ ≤ |w
∗
1(ui, vi, γi, ϕ)y1|+|w∗2(ui, vi, γi, ϕ)yN |+|w∗3(ui, vi, γi, ϕ)d1|

+ |w∗4(ui, vi, γi, ϕ)dN |.

By using similar procedure for finding bound for ‖C‖∞,

∣∣∣∣∣
∂
(
pi(L

−1
i (x),si)

qi(L
−1
i (x)

)

∂si

∣∣∣∣∣ ≤M
∗ + |I|M∗. (16)

From (13),(15) and (16),

|T ∗s C(x)− T ∗0C(x)| ≤ |s|∞([M + hM̄ ] + [M∗ + |I|M∗]),

and hence
‖T ∗s C − T ∗0C‖∞≤ |s|∞([M + hM̄ ] + [M∗ + |I|M∗]). (17)

Using (10) and (17)

‖Φ− C‖∞= ‖T ∗s Φ− T ∗0C‖∞≤ ‖T ∗s Φ− T ∗s C‖∞+‖T ∗s C − T ∗0C‖∞,

which implies

‖Φ− C‖∞≤
|s|∞([M + hM̄ ] + [M∗ + |I|M∗])

1− |s|∞
. (18)

Now, let us concentrate the uniform error bound between the original function S and it’s classical
rational cubic spline C. Assume that S ∈ C2[x1, xN ]. For x ∈ [xi, xi+1], let us consider the error
function E(S;x) = S(x)− C(x) as a linear functional which operates on S. Then using Peano Kernel
Theorem [27]:

L[S] = E(S;x) = S(x)− C(x) =
∫ xi+1

xi

S(2)(τ)Lx[(x− τ)+]dτ, (19)

where

Lx[(x− τ)+] =

{
r(τ, x) if xi < τ < x,

s(τ, x) if x < τ < xi+1,

Here Lx is used to emphasize that the functional L is applied to the truncated power function (x− τ)n+
considered as a function of x. Also

(x− τ)n+ :=

{
(x− τ)n if τ < x,

0 if τ > x,

r(τ, x) = (x− τ)− [(ui + 2vi + γi)(xi+1 − τ)− vihi]ϕ2(1− ϕ) + vi(xi+1 − τ)ϕ3

ui(1− ϕ)2 + ϕ(1− ϕ)(γi + ui + vi) + viϕ2
, (20)

s(τ, x) = − [(ui + 2vi + γi)(xi+1 − τ)− vihi]ϕ2(1− ϕ) + vi(xi+1 − τ)ϕ3

ui(1− ϕ)2 + ϕ(1− ϕ)(γi + ui + vi) + viϕ2
. (21)

Therefore,

|S(x)− C(x)| ≤ ‖S(2)‖∞
∫ xi+1

xi

|Lx[(x− τ)+]|dτ. (22)
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The integral involved in (22) can be expressed as
∫ xi+1

xi

|Lx[(x− τ)+]|dτ =
∫ x

xi

|r(τ, x)|dτ +
∫ xi+1

x

|s(τ, x)|dτ. (23)

In order to calculate the integral given in (23), the roots of r(τ, x) and s(τ, x) are calculated
Roots of r(x, x), s(x, x) in [0, 1] are ϕ = 0 and ϕ = 1,
Roots of r(τ, x) is τ∗ = x− ϕ2hi(ui+vi+γi)

ui+ϕ(ui+vi+γi)
, and τ∗ ∈ [xi, x],

Roots of s(τ, x) is τ∗ = xi+1 − vihi(1−ϕ)
vi+(ui+vi+γi)(1−ϕ) , and τ∗ ∈ [x, xi+1].

The expression given in (20) and (21) can be simplifies as
r(τ, x) = [(1−ϕ)2ui+ϕ(1−ϕ)2(ui+vi+γi)](τ

∗−τ)
Vi(ϕ) ,

s(τ, x) = [(ui+vi+γi)ϕ
2(1−ϕ)+ϕ2vi](τ−τ∗)
Vi(ϕ) ,

respectively, where Vi(ϕ) given in (9). Now

∫ x

xi

|r(τ, x)|dτ =
∫ τ∗

xi

r(τ, x)dτ −
∫ x

τ∗
r(τ, x)dτ,

=
ϕ2(1− ϕ)2u2

ih
2
i

2Vi(ϕ)[ui + ϕ(ui + vi + γi)]
+
ϕ4(1− ϕ)2h2

i (ui + vi + γi)2

2Vi(ϕ)[ui + ϕ(ui + vi + γi)]
,

∫ xi+1

x

|s(τ, x)|dτ = −
∫ τ∗

x

s(τ, x)dτ +
∫ xi+1

τ∗

s(τ, x)dτ,

=
ϕ2(1− ϕ)4h2

i (ui + vi + γi)2

2Vi(ϕ)[vi + (ui + vi + γi)(1− ϕ)]
+

ϕ2(1− ϕ)2v2
i h

2
i

2Vi(ϕ)[vi + (ui + vi + γi)(1− ϕ)]
.

By Equations (22) and (23),
|S(x)− C(x)| ≤ c∗i h2

i ‖S(2)‖∞, where c∗i := max{w(ui, vi, γi, ϕ) : 0 ≤ ϕ ≤ 1},
w(ui, vi, γi, ϕ) = ϕ2(1−ϕ)2u2

ih
2
i +ϕ4(1−ϕ)2h2

i (ui+vi+γi)
2

2Vi(ϕ)[ui+ϕ(ui+vi+γi)]
+ ϕ2(1−ϕ)4h2

i (ui+vi+γi)
2+ϕ2(1−ϕ)2v2i h

2
i

2Vi(ϕ)[vi+(ui+vi+γi)(1−ϕ)] .

Since the above inequality is true for x ∈ [xi, xi+1], i ∈ J , the desired error bound is given by

‖S − C‖∞≤ c∗h2‖S(2)‖∞, where c∗ := max{c∗i : i ∈ J}. (24)

Using (18) and (24) with the following inequality

‖S − Φ‖∞≤ ‖S − C‖∞+‖C − Φ‖∞,

gives our required bound for ‖S − Φ‖.

Remark 4. In the above theorem, Assumed that |si|< ai = hi

xN−x1
for all i ∈ J . From this, when

h→ 0 the FIF Φ (8) converges uniformly to the original function S. Also by assuming |si|< a2
i , FIF Φ

has same order of convergence as the classical rational interpolant C.

4. Shape Preserving Interpolation

In this section shape preserving aspects of C1 FIF (8) are investigated. There are different kinds
of shape preserving aspects namely positivity, monotonicity, convexity etc. Choosing random scaling
factors and shape parameters may not preserves these shapes. So sufficient conditions on scaling factors
and shape parameters are derived to preserve these shape properties.

Proposition 4. [28] The polynomial % = %(t) = ζυ3 + ηυ2 +ϑυ + κ is nonnegative for all υ ≥ 0 if and
only if (ζ, η, ϑ, κ) ∈ T1 ∪ T2, where

T1 = {(ζ, η, ϑ, κ) : ζ ≥ 0, η ≥ 0, ϑ ≥ 0 and κ ≥ 0},
T2 = {(ζ, η, ϑ, κ) : ζ ≥ 0, κ ≥ 0, 4ζϑ3 + 4κη3 + 27ζ2κ3 + 27ζ2κ2 − 18ζηϑκ− η2ϑ2 ≥ 0}.
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4.1. Positivity
Suppose {(xi, yi) : i = 1, 2, . . . , N} be a data set such that yi > 0. The following theorem gives

sufficient conditions on scaling factors and shape parameters so that FIF (8) will preserve positivity.

Theorem 5. Let {(xi, yi) : i ∈ J} be a data set such that yi > 0. Let Φ be the corresponding FIF
defined in (8). Let di be the derivative at the knot xi. Then sufficient conditions on scaling factors and
shape parameters on each interval Ii = [xi, xi+1], so that Φ preserve positivity are

0 ≤ si < min
{
ai,

yi
y1
,
yi+1

yN

}
,

ui > 0, vi > 0 and γi > max
{

0, γ∗1i γ
∗
2i

}
,

where
γ∗1i =

−uihidi − (2ui + vi)yi + si[uid1(xN − x1) + (2ui + vi)y1]
yi − siy1

,

γ∗2i =
vihidi+1 − (ui + 2vi)yi+1 − si[vidN (xN − x1)− (ui + 2vi)yN ]

yi+1 − siyN
.

Proof. Assume that si ≥ 0 for all i ∈ J . Then Φ(Li(x)) > 0 if Pi(θ)
Qi(θ)

> 0. The parameters ui > 0, vi >

0 and γi ≥ 0 for all i ∈ J , gives denominator Qi(θ) > 0. The positivity of the function Pi(θ)
Qi(θ)

depends
on the numerator Pi(θ). Now,

Pi(θ) = Ai(1− θ)3 +Biθ(1− θ)2 + Ciθ
2(1− θ) +Diθ

3,

= t1iθ
3 + t2iθ

2 + t3iθ + t4i,
(25)

where
t1i = (ui + vi + γi)(yi − siy1) + (−ui − vi − γi)(yi+1 − siyN ) + uihi(di − si

ai
d1) + vihi(di+1 − si

ai
dN ),

t2i = (−ui− 2vi− 2γi)(yi− siy1) + (ui + 2vi + γi)(yi+1− siyN )− 2uihi(di− si

ai
d1)− vihi(di+1− si

ai
dN ),

t3i = (−ui + vi + γi)(yi − siy1) + uihi(di − si

ai
d1),

t4i = ui(yi − siy1).
By substituting θ = υ

υ+1 in (25), Pi(θ) > 0 for all θ ∈ [0, 1] is equivalent to say
Θi(υ) = t∗1iυ

3 + t∗2iυ
2 + t∗3iυ + t∗4i > 0 for all υ ≥ 0,

where
t∗1i = t1i + t2i + t3i + t4i = vi(yi+1 − siyN ),
t∗2i = t2i + 2t3i + 3t4i = (ui + 2vi + γi)(yi+1 − siyN )− vihi(di+1 − si

ai
dN ),

t∗3i = t3i + 3t4i = (2ui + vi + γi)(yi − siy1) + uihi(di − si

ai
d1),

t∗4i = t4i = ui(yi − siy1).
From proposition 4, Θi(υ) > 0 for all υ ≥ 0 if and only if (t∗1i, t

∗
2i, t

∗
3i, t

∗
4i) ∈ T1 ∪ T2.

Conditions given in the region T2 is omitted due to complication in calculation. Since conditions given
in the region T1 are computationally economical, the region T1 is used to get positivity of Θi. Now,

t∗1i > 0⇐⇒ vi(yi+1 − siyN ) > 0⇐⇒ si <
yi+1

yN
,

t∗4i > 0⇐⇒ ui(yi − siy1) > 0⇐⇒ si <
yi
y1
,
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t∗2i > 0⇐⇒ (ui + 2vi + γi)(yi+1 − siyN )− vihi(di+1 −
si
ai
dN ) > 0,

⇐⇒ γi >
vihidi+1 − (ui + 2vi)yi+1 − si[vidN (xN − x1)− (ui + 2vi)yN ]

yi+1 − siyN
,

t∗3i > 0⇐⇒ (2ui + vi + γi)(yi − siy1) + uihi(di −
si
ai
d1) > 0,

⇐⇒ γi >
−uihidi − (2ui + vi)yi + si[uid1(xN − x1) + (2ui + vi)y1]

yi − siy1
.

So t∗1i, t
∗
2i, t

∗
3iand t∗4i lies in the region T1 if the scaling factors and shape parameters satisfy the

conditions given in the statement of Theorem 5.

Remark 5. When si = 0 for all i ∈ J , the sufficient conditions in the theorem 5 reduces to

ui > 0, vi > 0, and γi > max
{

0,
−uihidi − (2ui + vi)yi

yi
,
vihidi+1 − (ui + 2vi)yi+1

yi+1

}
.

This gives the sufficient conditions for the classical rational cubic spline (9).

4.2. Monotonicity
Let {(xi, yi) : i = 1, 2, . . . , N} be a monotonic data. Without loss of generality, assume that data

is monotonically increasing, i.e., y1 ≤ y2 ≤ . . . ≤ yN . Then ∆i = yi+1−yi

xi+1−xi
≥ 0, i ∈ J . The aim of this

section is to find a suitable parameters such that the FIF (8) preserves monotonicity.

Φ(1)(Li(x)) =
siΦ

(1)(x)
ai

+
Ψi(θ)

(Qi(θ))2
,

where Ψi(θ) =
5∑

k=1

Ak,iθ
k−1(1− θ)5−k,

A1,i = u2
i d
∗
i ,

A2,i = 2ui{(ui + 2vi + γi)∆∗i − vid∗i+1},
A3,i = A2,i +A4,i − (A1,i +A5,i) + γi(ui + vi + γi)∆∗i − γi(uid∗i + vid

∗
i+1),

A4,i = 2vi{(2ui + vi + γi)∆∗i − uid∗i },
A5,i = v2

i d
∗
i+1,

d∗i = di − sid1
ai
, d∗i+1 = di+1 − sidN

ai
and ∆∗i = ∆i − si yN−y1

hi
.

Theorem 6. Let {(xi, yi) : i = 1, 2, . . . , N} be a monotonically increasing data, i.e., y1 ≤ y2 ≤ . . . ≤
yN . Let Φ be the corresponding rational cubic FIF defined in (8). Let di be the derivative at the knot
point xi. Let derivatives satisfy the necessary conditions for monotonicity, namely

sgn(di) = sgn(di+1) = sgn(∆i) for ∆i 6= 0.

Then sufficient conditions on scaling factors and shape parameters so that Φ will preserve monotonic
on the interval I are

0 ≤ si <
{
ai,

aidi
d1

,
aidi+1

dN
,
yi+1 − yi
yN − y1

}
,

ui > 0, vi > 0 and γi ≥ max
{

0,
uid
∗
i + vid

∗
i+1 −∆∗i (ui + vi)

∆∗i

}
,

for all i ∈ J .
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Proof. Let {(xi, yi), i = 1, 2 . . . , N} be an monotonically increasing data. From single variable calculus,
it is obvious that a function Φ is monotonic if Φ(1)(x) ≥ 0, for x ∈ [x1, xN ]. Assume that si ≥ 0, i ∈ J .
For each node xj , j = 1, 2, . . . , N

Φ′(Li(xj)) =
siΦ
′(xj)
ai

+
Ψi(θj)

(Qi(θj))2
, θj =

xj − x1

xN − x1
. (26)

From (26), Φ′(Li(xj)) ≥ 0 if Ψi(θj)
(Qi(θj))2 ≥ 0. It is obvious that (Qi(θj))2 ≥ 0 for all θ ∈ [0, 1]. Then

sufficient conditions for Ψi(θj) ≥ 0, θ ∈ [0, 1] are Ak,i ≥ 0, k = 1, 2, . . . , 5. Now

A1,i ≥ 0⇔ si ≤
aidi
d1

.

Similarly

A5,i ≥ 0⇔ si ≤
aidi+1

dN
.

Let 0 ≤ si < {aidi

d1
, aidi+1

dN
, yi+1−yi

yN−y1 }.
Then A2,i ≥ 0 if

γi ≥
d∗i+1vi −∆∗i (ui + 2vi)

∆∗i
.

A4,i ≥ 0 if

γi ≥
d∗i ui −∆∗i (2ui + vi)

∆∗i
.

A3,i can be written as

A3,i =ui{(ui + 2vi + γi)∆∗i − vid∗i+1}+ vi{(2ui + vi + γi)∆∗i − uid∗i }
+ ui{(ui + vi + γi)∆∗i − uid∗i − vid∗i+1}+ vi{(ui + vi + γi)∆∗i − uid∗i − vid∗i+1}
+ γi{(ui + vi + γi)∆∗i − uid∗i − vid∗i+1}+ 2uivi∆∗i .

Also
uid
∗
i + vid

∗
i+1 −∆∗i (ui + vi)

∆∗i
>
d∗i+1vi −∆∗i (ui + 2vi)

∆∗i
,

uid
∗
i + vid

∗
i+1 −∆∗i (ui + vi)

∆∗i
>
d∗i ui −∆∗i (2ui + vi)

∆∗i
.

So A3,i ≥ 0 if

γi ≥ max
{

0,
uid
∗
i + vid

∗
i+1 −∆∗i (ui + vi)

∆∗i

}
.

From the above discussion, it is evident that Φ(1)(Li(xj)) ≥ 0 for all i ∈ J , j = 1, 2, . . . , N , if the scaling
factors and shape parameters satisfies the sufficient conditions given in the statement of Theorem 6.
{I;Li(x) : i ∈ J} is an IFS and [x1, xN ] is an its attractor. Since fractal interpolation function is defined
as recursive structure, Φ(1)(Li(xj)) ≥ 0 for all i ∈ J and for every knot xj imply that Φ(1)(x) ≥ 0 for
all x ∈ [x1, xN ].

4.3. Convexity
A data {(xi, yi) : i = 1, 2, . . . , N} is said to be convex if

∆1 ≤ ∆2 ≤ . . . ≤ ∆i−1 ≤ ∆i ≤ . . . ≤ ∆N−1.

Assume that data {(xi, yi) : i = 1, 2, ..., N} is strictly convex, i.e., ∆1 < ∆2 < ... < ∆N−1. To avoid the
possibility of straight line segments, assume that d1 < ∆1 < ... < di < ∆i < di+1 < ... < ∆N−1 < dN .
Choosing arbitrary scaling factors and shape parameters may not give convex interpolant. The aim of
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this section is to find sufficient conditions on scaling factors and shape parameters so that rational FIF
(8) preserves convexity.

Theorem 7. Suppose {(xi, yi) : i = 1, 2, ..., N} be a strictly convex data. Let the derivatives satisfy
d1 < ∆1 < ... < di < ∆i < di+1 < ...∆N−1 < dN . Let Φ be the corresponding rational cubic FIF defined
in (8). Then the sufficient conditions for the scaling factors and shape parameters so that Φ preserve
convexity on the interval I are

0 ≤ si < min
{
a2
i ,

hi(di+1 −∆i)
dN (xN − x1)− (yN − y1)

,
hi(∆i − di)

(yN − y1)− d1(xN − x1)

}
,

ui > 0, vi > 0 and γi > max
{vi(d∗i+1 −∆∗i )

(∆∗i − d∗i )
,
ui(∆∗i − d∗i )
(d∗i+1 −∆∗i )

}
.

Proof. From calculus, Φ is convex if Φ(2)(x+) or Φ(2)(x−) is exist and nonnegative for all x ∈ (x1, xN )
[21, 29]. So informally

Φ(2)(Li(x)) =
siΦ

(2)(x)
a2
i

+
Ψ∗i (θ)

hi(Qi(θ))3
, (27)

where Ψ∗i (θ) =
6∑

k=1

Bk,iθ
k−1(1− θ)6−k,

B1,i = 2u3
i (∆

∗
i − d∗i ) + 2u2

i vi(∆
∗
i − d∗i ) + 2u2

i [γi(∆
∗
i − d∗i )− vi(d∗i+1 −∆∗i )],

B2,i = 2B1,i + 6u2
i vi(∆

∗
i − d∗i ),

B3,i = B1,i + 12u2
i vi(∆

∗
i − d∗i ) + 6uiv2

i (d∗i+1 −∆∗i ),

B4,i = B6,i + 12uiv2
i (d∗i+1 −∆∗i ) + 6u2

i vi(∆
∗
i − d∗i ),

B5,i = 2B6,i + 6uiv2
i (d∗i+1 −∆∗i ),

B6,i = 2v3
i (d∗i+1 −∆∗i ) + 2v2

i ui(d
∗
i+1 −∆∗i ) + 2v2

i [γi(d∗i+1 −∆∗i )− ui(∆∗i − d∗i )],

d∗i = di − sid1
ai
, d∗i+1 = di+1 − sidN

ai
, ∆∗i = ∆i − si yN−y1

hi
.

Now
Φ(2)(x+

1 ) =
B1,1

h1u3
1

[
1− s1

a2
1

]−1

, (28)

Φ(2)(x−N ) =
B6,N−1

hN−1v3
N−1

[
1− sN−1

a2
N−1

]−1

, (29)

Φ(2)(x+
n ) =

sn
a2
n

Φ(2)(x+
1 ) +

B1,n

u3
nhn

, n = 2, 3, . . . , N − 1. (30)

Let 0 ≤ si < a2
i , i ∈ J. From equations (28), (29) and (30) it is obvious that if B1,i ≥ 0 (i ∈ J) and

B6,N−1 ≥ 0, then the right-handed second derivatives at the knots xi, i ∈ J , and the left-handed second
derivative at xN are nonnegative. For a knot points xn, n ∈ J

Φ(2)(Li(xn)+) =
siΦ

(2)(x+
n )

a2
i

+Ri(xn),

where Ri(x) = Ψ∗
i (θ)

hi(Qi(θ))3
.

Assuming B1,i ≥ 0, i ∈ J , then Φ(2)(Li(xn)+) ≥ 0 if Ri(xn) ≥ 0. Note that Ri(xn) ≥ 0 if the coefficients
Bj,i ≥ 0 for j = 1, 2, . . . , 6. Applying Three Chords Lemma [30], for a strict convex interpolant, the end
point derivatives should necessarily satisfy d1 <

yN−y1
xN−x1

< dN . Because of this, we can get condition on
scaling factor si such that the quantities, ∆∗i − d∗i > 0 and d∗i+1 −∆∗i > 0.
That is (

∆i − si
yN − y1

hi

)
−
(
di −

sid1

ai

)
> 0 if si <

hi(∆i − di)
(yN − y1)− d1(xN − x1)

,
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(
di+1 −

sidN
ai

)
−
(

∆i − si
yN − y1

hi

)
> 0 if si <

hi(di+1 −∆i)
dN (xN − x1)− (yN − y1)

.

Let
0 ≤ si < min

{
a2
i ,

hi(∆i − di)
(yN − y1)− d1(xN − x1)

,
hi(di+1 −∆i)

dN (xN − x1)− (yN − y1)

}
, i ∈ J. (31)

The assumption on scaling factors given in (31) and if γi ≥ vi(d
∗
i+1−∆∗

i )

(∆∗
i−d∗i ) ensures B1,i ≥ 0, B2,i ≥ 0 and

B3,i ≥ 0. Similarly by the assumption on scaling factors given in (31) and if γi ≥ ui(∆
∗
i−d∗i )

(d∗i+1−∆∗
i ) ensures

B4,i ≥ 0, B5,i ≥ 0 and B6,i ≥ 0.
Thus the condition on scaling factors and shape parameters given Theorem 7 statement ensures

Bj,i ≥ 0 for all j = 1, 2, . . . , 6. This in turn ensures that nonnegative of Φ(2)(Li(xn)+) for i, n ∈ J , and
Φ(x−N ). The non negativity of Φ(2)(x+) or Φ(2)(x−) is follows from non negativity of Φ(2)(Li(xn)+) for
i, n ∈ J , and Φ(x−N ). Hence restrictions on scaling factors and shape parameters given in statement of
the Theorem 7 ensure convexity of Φ.

Remark 6. Suppose ∆i − di = 0 or di+1 −∆i = 0, then we take si = 0, di = di+1 = ∆i. In this case,
Φ become straight line Φ(Li(x)) = yi(1− θ) + yi+1θ in the interval [xi, xi+1].

5. Example

We consider the positive data {(2, 10), (3, 2), (7, 3), (8, 7), (9, 2), (13, 3), (14, 10)}. The derivatives
are calculated based on arithmetic mean method and derivatives are d1 = −9.6500, d2 = −6.3500, d3 =
3.2500, d4 = −0.5000 d5 = −3.9500 d6 = 5.6500, d7 = 8.3500. To preserve positivity, scaling factors
are taken according to Theorem 5 and scaling factors ranges are s1 ∈ [0, 0.0833), s2 ∈ [0, 0.2000), s3 ∈
[0, 0.0833), s4 ∈ [0, 0.0833), s5 ∈ [0, 0.2000), s6 ∈ [0, 0.0833).

Shape parameters and scaling factors are taken according to Theorem 5, using this Figure 1(a) is
plotted, which is positive FIF. Figure 1(b) is plotted by perturbing scaling factor s2 as 0.018 with
respect to Figure 1(a). There is a significant change occurred in the interval [x2, x3]. There is a little
change in the interval [x5, x6] and changes in the other intervals are negligible. Figure 1(c) is plotted
by perturbing shape parameter γ2 as 300.6 with respect to Figure 1(a). In interval [x2, x3] curve move
little up and the changes in the other intervals are negligible. From this observation, scaling factors
playing dominant role comparing to shape parameters.

Next by taking all the scaling factors si = 0 for all i = 1, 2, . . . , 6, Figure 1(d) is plotted, which
is classical rational cubic spline preserving positivity. Next Figure 1(e) is plotted by taking arbitrary
scaling factors and shape parameters. By observing Figure 1(e), it is known that conditions given in
Theorem 5 are sufficient not necessary. Figure 2 represents the derivative of the FIFs that are given in
Figure 1. As mentioned in the introductory section, it is evident that proposed scheme is a best tool to
approximate a continuous function that having irregular derivative. The parameters are used to plot
Figures 1 and 2 are given in Table 1.

Next, we consider the monotonic increasing data {(7.99, 0), (8.09, 2.76429× 10−5), (8.19, 4.37498×
10−2), (8.70, 0.169183), (9.20, 0.469428), (10, 0.943740), (12, 0.998636), (15, 0.999919), (20, 0.999994)}.
Derivatives are approximated using arithmetic mean method and derivatives are d1 = 0, d2 = 0.2187,
d3=0.4059, d4 = 0.4250, d5 = 0.5976, d6 = 0.4313, d7 = 0.0166, d8 = 0.0003 d9 = 0. In order to
preserve monotonicity, scaling factors are taken according to Theorem 6 and scaling factors ranges are
s1 ∈ [0, 0.28 × 10−4), s2 ∈ [0, 0.8326 × 10−2), s3 ∈ [0, 0.4246 × 10−1), s4 ∈ [0, 0.4163 × 10−1), s5 ∈
[0, 0.6661× 10−1), s6 ∈ [0, 0.5489× 10−1), s7 ∈ [0, 0.1283× 10−2), s8 ∈ [0, 0.75× 10−4).

Taking arbitrary scaling factors and shape parameters (see Table(1)) Figure 3(a) is plotted, which is
not preserving monotonicity of the data. So, scaling factors and shape parameters are selected based on
Theorem 6, using this Figure 3(b) is plotted, which preserves monotonicity of the data. After perturbing
scaling factor s3, Figure 3(c) is plotted. Comparing Figure 3(c) with Figure 3(b), it is known that there
is significant change occurred in the interval [x3, x4], changes in the other intervals are negligible. Figure
3(d) is plotted after perturbing shape parameter γ3 with respect to Figure 3(b). Comparing Figure 3(b)
and Figure 3(d), it is observed that there is a slight change in the interval [x3, x4], changes in the other
intervals are negligible.
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Taking all scaling factor si = 0 i = 1, 2, . . . , 8, classical rational cubic spline is plotted which is given
in Figure 3(e). Derivative of the FIFs given in Figure 3 are constructed and plotted in Figure 4. Scaling
factors and shape parameters are used to compute Figures 3 and 4 are given in Table 2.

Next consider the convex data {(−8, 4.5), (−7, 4), (2.2, 3.55) ,(7, 4) ,(10, 4.5) ,(12, 5)}. The derivatives
are estimated using arithmetic mean method and derivatives are d1 = −0.5442, d2 = −0.4558, d3 =
0.0448, d4 = 0.1386, d5 = 0.2167, d6 = 0.2833. Scaling factors and shape parameters are calculated
based on Theorem 7 and scaling factor ranges are s1 ∈ [0, 0.0025), s2 ∈ [0, 0.1669), s3 ∈ [0, 0.0206), s4 ∈
[0, 0.0074), s5 ∈ [0, 0.0059). Taking arbitrary scaling factors and shape parameters, Figure 5(a) is
plotted. It is evident that Figure 5(a) is non convex fractal interpolation function. So scaling factors
and shape parameters are taken according to Theorem 7, using this Figure 5(b) is plotted, which is
convex.

Figure 5(c) is plotted after perturbing scaling factor s2 with respect to Figure 5(b). There is
significant change occurred in the second interval, changes in the other intervals are negligible. Also,
Figure 5(d) is plotted by perturbing shape parameter γ2 with respect to Figure 5(b). By observing
Figure 5(d) with Figure 5(b), it is known that there is small change is the second interval, curve little
move up in that interval, changes in the other intervals are negligible. Figure 5(e) is plotted using
scaling factors si = 0 for all i = 1, 2, . . . , 5. This is classical rational cubic spline. Derivative of the FIFs
given in Figure 5 are constructed and plotted in Figure 6. Scaling factors and shape parameters are
used to compute Figures 5 and 6 are given in Table 3.

Table 1: Parameters for positive interpolation with ui = 1.5 and vi = 1.5 for i = 1, 2, . . . , 6.

↓ Parameter/Figure → 1(a), 2(a) 1(b), 2(b) 1(c), 2(c) 1(d), 2(d) 1(e), 2(e)
s1 0.0730 0.0730 0.0730 0 0.0900
s2 0.1800 0.0180 0.1800 0 0.2100
s3 0.0740 0.0740 0.0740 0 0.1200
s4 0.0745 0.0745 0.0745 0 0.1400
s5 0.1700 0.1700 0.1700 0 0.3000
s6 0.0733 0.0733 0.0733 0 0.1000
γ1 0.8000 0.8000 0.8000 0.8000 30.0000
γ2 30.6000 30.6000 300.6000 15.0000 80.6000
γ3 0.5000 0.5000 0.5000 0.5000 4.5000
γ4 0.8000 0.8000 0.8000 0.8000 3.8000
γ5 2.5000 2.5000 2.5000 7.5000 7.5000
γ6 0.7000 0.7000 0.7000 0.7000 0.7200

Table 2: Parameters for monotone interpolation with ui = 1.5 and vi = 1.5 for i = 1, 2, . . . , 8.

↓ Parameter/Figure → 3(a),4(a) 3(b),4(b) 3(c),4(c) 3(d),4(d) 3(e),4(e)
s1 0.0010 0.21× 10−4 0.21× 10−4 0.21× 10−4 0
s2 0.0004 0.81× 10−2 0.81× 10−2 0.81× 10−2 0
s3 0.0500 0.422× 10−1 0.122× 10−1 0.422× 10−1 0
s4 0.0007 0.413× 10−1 0.413× 10−1 0.413× 10−1 0
s5 0.0043 0.662× 10−1 0.662× 10−1 0.662× 10−1 0
s6 0.0060 0.543× 10−1 0.543× 10−1 0.543× 10−1 0
s7 0.0340 0.12× 10−2 0.12× 10−2 0.12× 10−2 0
s8 0.0650 0.7× 10−4 0.7× 10−4 0.7× 10−4 0
γ1 1120 4936.4 4936.4 4936.4 1184.0
γ2 23.1 0.8 0.8 0.8 0.8
γ3 0.4 4.6 4.6 1600.6 2.1
γ4 54.7 0.5 0.5 0.5 0.5
γ5 43.5 0.5 0.5 0.5 0.5
γ6 3.7 2250.7 2250.7 2250.7 21.5
γ7 6.4 913.9 913.9 913.9 56.3
γ8 9.7 406.3 406.3 406.3 24.3
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(a) Rational cubic FIF.
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(b) Effect of s2.
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(c) Effect of γ2.
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(d) Classical rational interpolant.
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(e) FIF with arbitrary parameters.

Figure 1: Positive preserving interpolation.
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(a) Derivative of the FIF given in Figure 1(a).
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(b) Derivative of the FIF given in Figure 1(b).
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(c) Derivative of the FIF given in Figure 1(c).
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(d) Derivative of the FIF given in Figure 1(d).
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(e) Derivative of the FIF given in Figure 1(e).

Figure 2: Derivatives of the FIFs given in Figure 1.
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(a) Non monotonic FIF.
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(b) Rational cubic FIF.
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(e) Classical rational interpolant.

Figure 3: Monotonicity preserving interpolation.
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(a) Derivative of the FIF given in Figure 3(a).
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(b) Derivative of the FIF given in Figure 3(b).
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(c) Derivative of the FIF given in Figure 3(c).
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(d) Derivative of the FIF given in Figure 3(d).
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(e) Derivative of the FIF given in Figure 3(e).

Figure 4: Derivatives of the FIFs given in Figure 3.
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(a) Non convex FIF.
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(b) Convex FIF.
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(c) Effect of s2.
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(d) Effect of γ2.
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(e) Classical convex interpolant.

Figure 5: Convexity preserving interpolation.
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(a) Derivative of the FIF given in Figure 5(a).
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(b) Derivative of the FIF given in Figure 5(b).
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(c) Derivative of the FIF given in Figure 5(c).
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(d) Derivative of the FIF given in Figure 5(d).
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(e) Derivative of the FIF given in Figure 5(e).

Figure 6: Derivatives of the FIFs given in Figure 5.
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Table 3: Parameters for convex interpolation with ui = 1.5 and vi = 1.5 for i = 1, 2, . . . , 5.

↓ Parameter/Figure → 5(a), 6(a) 5(b), 6(b) 5(c), 6(c) 5(d), 6(d) 5(e), 6(e)
s1 0.0100 0.0020 0.0020 0.0020 0
s2 0.1861 0.1661 0.0166 0.1661 0
s3 0.0502 0.0202 0.0202 0.0202 0
s4 0.1702 0.0070 0.0070 0.0070 0
s5 0.0152 0.0052 0.0052 0.0052 0
γ1 1.3694 2.3694 2.3694 2.3694 1.5000
γ2 443.6127 643.6127 6.8637 90000.2163 6.5098
γ3 28.5777 34.5777 34.5777 34.5777 1.6351
γ4 31.4563 38.4293 38.4293 38.4293 2.6743
γ5 5.9987 7.9948 7.9948 7.9948 1.5000
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