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Based on a characteristic method, this work is concerned with a finite element approx-
imation to the time-dependent Navier-Stokes equations with nonlinear slip boundary
conditions. Since this slip boundary condition of friction type contains a subdifferential
property, its continuous variational problem is formulated as an inequality, which can turn
into an equality problem by using a powerful regularized method. Then a fully discrete
characteristic scheme under the stabilized lower order finite element pairs is proposed for
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the equality problem. Optimal error estimates for velocity and pressure are derived under
the corresponding L2, H'-norms. Finally, a smooth problem test is reported to demonstrate
the theoretically predicted convergence order and the expected slip phenomena, and the

simulation of a bifurcated blood flow model is displayed to illustrate the efficiency of the
proposed method.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will consider the mathematical model of viscous incompressible fluid, which can be written as the
following time-dependent Navier-Stokes equations

ou
— —vAu+u-Viu+Vp =f

in 2 x],
at di _ . (1.1)
ivu =0 in £ x]J,
u(0) = ug in £ x {0},

where ] = (0,T] (0 < T < oo) is a given time interval, 2 C R? is a bounded convex domain with a Lipschitz continuous
boundary I' = 962, u(x, t) and f(x, t) denote the flow velocity and the external force, p(x, t) is pressure, and v > 0 is the
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kinematic viscosity. Moreover, the boundary conditions are presented as follows:

u=20 on Ip,
Up

=0, los/<g o +gu =0 on It (1.2)

where I' = I'p U I's. The adhesive Dirichlet boundary condition is imposed on I'p, and for I's, a nonlinear slip and non-leak
boundary conditions are considered. Assume that both I's and I'p are not empty and I'p N I's = @. Here and what follows,
the unit outward normal vector and the tangent vector to the boundary are denoted by n and t, respectively. For a vector
field v on the boundary, v - n and v - T are its normal and tangential components. Let v, = v - nand v, = v — v,n. Denote
by o.(u) = ”%" independent of p, the tangential component of stress vector defined on Is. The frictional function g, is
assumed to be continuous on I's and strictly positive on I. This friction type of boundary conditions was first introduced
by Fujita in [ 1] and appeared in the modeling of blood flow in a vein of an arterial sclerosis patient and some other models.

For such boundary conditions (1.2), Fujita in [2] showed existence and uniqueness of a weak solution for the Stokes
problem. From a theoretical point, some well-posedness analyses for the Stokes problem with nonlinear slip boundary
conditions have been discussed during the past years [3-6]. In addition, numerical results for the steady Stokes and Navier—
Stokes problems with such boundary conditions can be found in [7-12]. However, to our knowledge, there has not been
much work on an analysis of finite element (FE) approximations to the unsteady problems with such boundary conditions.
Djoko in [13] considered a semi-discrete scheme in time for the unsteady Stokes variational inequality problem by means
of a regularized method, Kashiwabara in [14] investigated the weak solutions of the continuous variational inequality
problem governed by the non-stationary Navier-Stokes equations, Liin [ 15] used the regularized method to obtain existence,
uniqueness and regularity of global weak solutions to the two-dimensional time-dependent Navier-Stokes equations with
nonlinear slip boundary conditions, and also stabilized FE methods are employed to solve this problem in [16], where the
following convergence estimates with respect to a regularization parameter ¢ are established:

1
llu — v |l joo0 ,12) < Ce2, :
lu — u£||L2(O,T;H1) +lp— pSHLZ(O,T;LZ) < Ce?,

where (u, p) and (u°, p®) are the solutions of the Navier-Stokes type variational inequality problem and its regularized
problem, respectively, and the constant C > 0 is independent of ¢.

Since the characteristic methods can effectively weaken a non-physical phenomenon caused by nonlinear term (u - V)u
[17,18], which via rewriting the governing equations (1.1) in terms of Lagrangian coordinates defined by the particle
trajectories associated with the problem under consideration [19]. The Lagrangian treatment can greatly reduce a time
truncation error in the Eulerian method [20], and the characteristic methods have been shown to possess remarkable stability
properties [21,22]. Furthermore, it is well-known that a regularized method plays a key role in theoretical and numerical
analysis of a variational inequality problem, which turns the variational inequality into equations. In this work, with the
help of regularized technology, we combine the characteristic method with the pressure projection stabilized method to
solve the time-dependent Navier-Stokes problem with nonlinear slip boundary conditions, and we derive the optimal error
estimates based on the following FE approximation:

||u£(tm) - ui(tm)”Hl + ”pg(tm) - pi(tm)”]] =< Ch,
luf (tm) — up(tm)ll 2 < Ch?.

The organization of this paper is given as follows. In the next section, we will introduce some function spaces, existence
of weak solutions of the discussed problem, the characteristic method and the corresponding regularized problem. In
Section 3, we will develop a first-order fully discrete scheme of the characteristic regularized continuous equality problem.
Our analysis shows that this fully discrete scheme is unconditionally stable provided that the characteristics are transported
by a divergence-free velocity field. Optimal error estimates for the characteristic stabilized method are derived in Section 4.
This work ends with a section of numerical examples. Slip and non-slip phenomena are shown that depend on the friction
function, the obtained optimal error estimates are consistent with theoretical analysis, results of the blood flow model further
illustrate the feasibility of the proposed method.

2. Statement of the Navier-Stokes equations with nonlinear slip boundary conditions
2.1. Weak form of the problem

Let H(}(.Q) be the standard Sobolev space [23] equipped with the usual norm || - ||;. For function spaces corresponding to
velocity and pressure, we introduce closed subspaces of [H!(£2)]? or L?(£2) as follows:

V={ve H(2)P: vl =0 vy =0}V, = {v e V:divw = 0}, ¥ = LX(2), V = [HA(2)P,

Q=L(R)= {q € LZ(Q),/ qdx = o} , H={vel?(2)* divv =0in £ and v, = 0 on 9£2}.
2
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The scalar product and norm in Q are denoted by the usual L*(£2) inner product and || - |lo. (V-, V-)and [V - [lo = || - llv
are the inner product and norm in V, respectively. We denote by C%1(£2) the space of Lipschitz continuous functions on the
closure of §2. The spaces consisting of vector-valued functions are denoted in boldface. Moreover, the symbol C denotes a
generic positive constant whose value may change at different locations.

If X is a Banach space normed by || - ||x, we define

T
L"(O,T;X):{v:[O,T]—>X|/ ||v(t)||§dr<oo} 1<p < oo,
0

L*°(0,T; X) = {v 1[0, T] — X | sup |v(t)|lxdt < oo},
te[0,T]

and let M be a positive integer, At = T/M, t; = mAt, then

1

M P
PO.T:X)= v {treees tu) — X | 0llpo.rn) = {Arz ||v(ti)||§] <oop 1<p=<oo,
i=1

P(0,T; X) = {v e tu) — Xl = max vl < oo} :

The continuous bilinear forms a(-, -)and d(-, -)on V x V and V x Q are given as follows:
a(u,v) =v(Vu, Vv), d(v,p) =(divv,p) Yu,veV, VpeQ.

If divu = 0, the trilinear form b(-; -, -) satisfies

((u-Vv,w)— %((u -Vw,v) VueV,, v,welV.

N =

b(u;v,w)=((u-Vv),w)+ %((divu)v, w) =

Givenuy € H,f € 12(0,T;Y),and g € L%(0, T; [?(I%)), the weak variational inequality problem of the second kind for
(1.1)and (1.2) is proposed as in [2]: Find u € L?(0, T; V)N L*(0, T, Y), p € [>(0, T; Q) and u,(t) € L*(0, T; Y) such that

(w,v—u)+a(w,v—u)+bwuv—u)— dv-—up)+jv:)—ju)>F,v-u)Vv eV,
d(u,q) =0 VqeQ, (2.1)
u(0) = uo,

where j(n) = ffs g(-, t)Inlds, n € L*(Is). Moreover, (2.1) is equivalent to the following problem:
Find u e L%, T; V,)NL>®(0, T; H) such that

(ug,v—u)+a(u,v—u)+b(u; u,v —u) +j(’,) —jlu)=>(f,v—u) Vvely, (2.2)
u(0) = uy.

Lemma 1 ([14]). The variational inequality problem (2.2) has a unique solution u € L®(0,T; V,), u; € L*(0,T;Y) N L?
(0,T; V,)if f e H(0,T; Y)and g € H'(0, T; L*(Is)), withg(0) € H'(Is) and ug € H%(£2) NV, which satisfy the slip boundary
conditions at t = 0.

2.2. The regularized problem and the characteristic method

Define the substantial derivative operator D;u = %—'t‘ + (u - V)u [19], then the variational inequality problem (2.1) turns
into

du,q)=0 VqeQ, (2.3)

(D, v —u)+a(u, v —u)—dv —u,p)+jve) —jlu;) > (f,v—u) WweVv,
{ u(O) = Up.

Now, we introduce a regularized problem of (2.3). Since j(n) is not differentiable with respect to 7, it is natural to choose a
family of functions j.(n) which are convex and differentiable to approximate j(n) [ 16]. For any constant 0 < ¢ < 1, we select

J's(n)z/ g/l +e2ds vy e 2(1y).
I

Hence j.(n) satisfies

o) — )l < e/ gds Vi e IX(13)

Is
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and

1
(gradjz(n), &) = lim jUe(n + h&) —je(n)] = ds V&, n e LA(T%).

né
g—
ro VIl + e
Then the regularized problem of (2.3) turns into the following formulation:

Find u® € [?(0, T; V)N L*(0, T; Y)and p° € L*(0, T; Q) such that
(Do, v —u) +a(u’, v —u’)—dv —u®, p) +j(v;) —je(uz) > (F,v —u®) YveV,

du',q)=0 VqeQ, (24)
u®(0) = ug.
Since j.(n) is convex and differentiable, we use the Gateaux-derivative K, : V. — V' by
.y = [ g—g—d
s = g—F————4das.
’ Ts \/W
Hence we can see that K, is monotone [13]:
Yu,veV (K. (u)—K.(v),u—v) >0.
Now the regularized problem (2.4) is equivalent to the following equality problem [13,16]:
(D’ v)+a(’, v) —d(v, p°) + (K(u7), vo) = (F.v) WweV,
du’,q)=0 VgeQ, (2.5)
u®(0) = uy.

Moreover, the corresponding characteristic regularized problem of (2.2) can be easily obtained and specifically we do not
repeat it here.

3. The characteristic finite element approximation
3.1. Discretization of the material derivative

For a characteristic method, the key lies in the discretization of D;u. Given the velocity field u, we also denote by
X(x, tmy1; t) the characteristic curves associated with the material derivative which is defined by the following initial value
problem [19]

dX(x, tpeq; t
{(Xd’:ﬁ) = u(X(X, tyq1; £), 1),

X(x, tmg1s tmg1) = X.

Thanks to the Cauchy-Lipschitz Theorem [24], this ODE has a unique solution when u e C%'(£2)¢, and X(x, tmy1; t)
represents the position at time t of a particle which locates at x at time t,,, 1. Forall (x, t) € £2 X [tm, tme1],0 <m <M — 1,
we have

tm4+1
x — X(x, tpy1; tm) = / u(X(x, tymy1; t), £)dt.
tm

If the integral approximation is of first order, then
X — X(X, tmy1; tm) & Atu(X(X, ting1; tmg1), tme1) = ALU(X, tnyq).
So, the discretization of the material derivative can be obtained as

u(x, tmy1) — WX(X, tni1; tm)s tm)
At '
Here, we leave out some details, one can refer to [19].

Deu(X, tmy1) =

3.2. Finite element approximation

Let 7, = {K} be a family of shape-regular and conforming triangulations of §2 and 2 = UK [25], h = max{h, hx =
diam(K)} be the grid size. The boundary oK of an element consists of faces e. In two dimensions, each e is an edge. The set

1/2
of all interior edges and e € I's N 0K will be defined by I'; with the norm [|w| r;, = (Zeerh fe wzds) [26]. To construct a
Galerkin approximation of (2.5), we consider the following affine FE families
V,:={veVn[Co2)P? :vig € [P(K)? VK € T},

Qh:{oﬁzz laeQ:alg € Po(K) VK € Tal,
Q :=1{qe€Q:qlx e Pi(K) YK e Th},
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where P,(K)(r = 0, 1) denotes the space of polynomials of degree at most r. In the following, we assume that the continuous
and discrete spaces are related by the following hypotheses [27]:

(H1). Forall(v, q) € ((W*®(2)> NV, H'(2) N L3(£2)),

inf  {[IV(v —w)llo + Ig — gnllo} < Ch(lIvIl2 + lIgll1),
(Vh,qn)EVh*xQn

: 2
inf ||v —wllo,r < Ch*||VI|2,cc-
vpeVy

We recall a local pressure projection stabilization method to overcome the unstable disadvantage caused by the lower
order FE subspaces V;, x Qy, which establishes an optimal coupling between the velocity and pressure fields such that the
weak coerciveness condition is satisfied, as shown in the second lemma [26,28-30]. Let 1'12 : [2(2)(j = 0, 1) be the standard
projection operator [26,28], which is defined as follows:

m:1*(2)— QY and I} :I1*(2)— Q).

In case of no distinction, we employ a unified notation IT, for the valuable projection operator. Then the interpolation error
is introduced here and will be used in the theoretical analysis:

ITwpllo < lIpllo Vp € 1%(22) and ||p — Mypllo < Chiplli Vp e H(2)NQ.
Now, we introduce the stabilization bilinear form G(p, q) in the following manner
G(p,q) = (p— Myp,q — I1pq) Vp,q € Q.
A new FE scheme to approximate (2.5) is given based on the above descriptions.

Definition 1. Suppose that u;™ and p;"™ are approximations of the velocity and pressure at the point (x, t,), respectively,
and find (™", pi"™"") € V, x Qy such that

(deu, ™ vp) + a(uy ™ vi) — d(vn, pp ™) A (K, vie) = (P v) Yy € W, a1)
d(uy™ ' qn) + GPy™ qn) =0 Van € Qu,
where
") — up XX, st Bn))
At
and X;*(X, typy1; tm) is the solution of

dXy"(x, tmy1; 1)

deu) ™ (x)

" =" (X (X b3 £, 8) b S €S g,

X}T(X, tmt1; tmg1) = X.
The initial approximate velocity uf, will be chosen to be the V-projection of uf onto Vy. If u§, € H?(£2) N V, there exists a
positive constant C such that

llufy — uyllo + bl V(uf — u,)llo < Ch?. (32)

Remark 1. (a). If the FE subspace V}, x Q,? is chosen, the stabilized term G(p, qn) = (pn — I"[,}ph, qn — thqh), and when we
select V4 x Q;, G(pn., qn) = (pn — I12pn, qn — ITPqn). The detailed implementation of IT;, (j = 0, 1) can be found in [12,26].

(b). The characteristic stabilized FE approximation of problem (2.3) can be displayed as similarly: Find (uy, pn) € Vi, x Qy,
for all (v, qn) € Vi, x Qp, such that

{(dtuhv Vi — up,) + a(up, vy — up,) — d(Vi, — g, pr) + ja(Vae) — jn(ttne) = (F, vio — ), (3.3)

d(un, qn) + G(pn, gn) = 0.
We denote By((un, pn); (Vi, qn)) = a(ttn, V) — d(vi, pn) + d(un, Gn) + G(Ph, qn), (Wh, Pr), (Vh, gn) € Vi X Qn, and recall the
following stability lemma:
Lemma 2 ([28,30]). There exist positive constants 1, 8, independent of h, V(uy, pn) € Vi, x Qy such that,

[Bn((tn, pr); (Va, qn))l < B1(IIVURllo + 1Pallo)(IIVVaIlo + lignllo) Y(Vh, qn) € Vi x Qu,

Br((un, pr); (v, qn))
B2l Vugllo + lpnllo) < sup
0 o IVvnllo + NI gnllo
#(Vn,qn)eVp xQp

where Vy, = {v € V : v|; € P1(K) VK € T} is a FE subspace of V.
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The system of equations (3.1) is symmetric and this characteristic FE scheme is unconditionally stable prov1ded that the

characteristics are transported by a divergence-free field. Indeed, as in [31], choosing (v, i) = (u’ m“, Py i )in(3.1)gives

™ g+ v AL VAR ™ g 4 AL — ™ g + ALK, ™)

= ALF™ ™) ("R g ), ™).

Using Young’s inequality and the definition of K., one obtains

s m+1 2
AR
™ v AL VS AL — TP + A / ds
Ty a m+1 |2 + 82
2 2
< CALIF™ M Iy + llup™ 1)
Furthermore, we see that
1 1
ux,er 2
:uu"" "G+ ALV AL — Tpy ™ o + Ar/ _ O P s}
S m+1| + 82
CIALIF™ M o + g™ llo)-
Namely,
£,m+1)2 %
[ ’”“||0+vm||Vu€ i ||0+At/ ds
&‘ m+1| + 82
1
2
< CALI™ o + CL ™2 + vAL V™2 + At / e gl
FM|2 +82

so the stability of this discrete scheme is proved.
3.3. Existence and uniqueness of a solution to the regularized discrete scheme
Lemma 3. There exists a unique solution pair (uy, pj,) € V, x Qu to problem (3.1).

Proof. Assume that V};, and Qj, are the spaces defined as above. We introduce the following formulas [26]:
prdivv, dx
fﬂi > Cilipnllo — Gallpn — Hiprllo Vpn € Qn.

0£vpeV, IVvpllo

Considering that existence is equivalent to uniqueness of a solution for a finite-dimensional linear system, using induction
and following [32], one can complete the proof.

4. Error estimates

The objective of this section is to derive optimal error estimates for the characteristic stabilized method. To begin with,
we suppose that

feCO,T:H), ueH®O,T:V)N c(o, T; c“-l(ﬁ)).
The corresponding solution (u®, p®) of problem (2.5) will be assumed to satisfy the following regularity hypotheses [19,33]:

(H2). o € [® (o, T, Hz(.Q)) N c(o, T, c‘“(ﬁ)) N C(0, T; V),

du’
- € L2<O, T; HZ(.Q)) NL*0,T; H)NL*0,T; V,), D u’ e [*(0,T;H),

dp

(H3).

(HA). p € L(0. T H'(2)) NL¥(0.T: Q). - € (0. T H'(2))
(H5). Let us make the mesh restriction At = O(h®), as h — 0, where ¢ > 1/2. Moreover, for the
sufficiently small &, holds e < C(ut)? on I5.

Now we introduce the Galerkin projection operator (Rp, Q) : (V, Q) — (Vp, Qp) as
Br((Ru(u, p), Qn(u, p)); (i, qn)) = B((, p); (Vh, qn)) V(Vh, Gn) € Vi x Qu,
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where B((u, p); (v, q)) = a(u, v) — d(v, p) + d(u, q). It is well defined and satisfies (H1)[27,28]. At this point, the initial value
can be chosen as ug, = Rp(uo, po) and pg, = Q(ug, po).
We will frequently use a discrete version of the Gronwall’s lemma used in [33].

Lemma 4. Let C, At, and ay,, by, ¢y, d,, for integers n > 0, be nonnegative numbers such that

m m m
am+Athn < AtZandn—i-Athn +C Vm>1.
n=0 n=0 n=0

Suppose that Atd, < 1, for all n, and set y, = (1 — Atd,)~". Then

m m m
am + Athn <exp (AtZyndn> (Athn + C) vm > 1.
n=0 n=0 n=0

4.1. 1% and H' estimates for velocity

Theorem 5. Under assumptions (H1)-(H5), there exists a positive constant C, independent of h and At, such that

U — [l oo 1:12(2)) < C(AL + h?).
Proof. According to (3.2), we see that

(-, to) — ugyllo < C(AL + 1), IV(W(-, to) — ugy)llo < C(AL + h). (4.1)

Introduce the functions ¢° = u® — u}, §° = u* — Ry, 0° = 8" — ¢°, ¢° = p;, — Oy, where Ry £ Ry(u®, p°), Oy £ Qp(u®, p°).
Subtracting (3.1) from (2.5) with (v, q) = (v, qn) yields

(dea® ™ vy) + a(e™™ T wy) — d(vh, ™) 4+ d(a® ™ qn) + GO gp)
= (K (ui(-, tny1)) — Ks(uf,}mﬂ), Vi) + (de§° (-, tng1), Vi) + (D (-, tng1) — dett® (-, tmgr), Vi)

Choosing (vi, qn) = (a>™F1, ¢&™ 1Y in (4.2) gives

(4.2)

(deo™ ™1, 65 ™) 4 [V ™0 4 (T — )™ g
= <I{5(ui(7 tm+]) — I{g(uzjrm+1 ), O_s,m+1> 4 (d[8€(~, tg,m+]), as,m+1)

+ (D (-, tng1) — et (-, tpgq), 051, (4.3)

=

Hence, using 2(x — y, x) > |x|> — |y|?, (4.3) turns into

1 2 5 ,
o™ g = l0* ™ 1) 4+ v Vo™ g 4 (1 — )™+ g

ue(.’ tm-H) - ug(x('; tm-H; tm)7 tm) o_g,qu)
At ’
n ‘(us(x(" tme1; tm), tm) — ua(X’T(" tme1; tm), tn) ag,m_'_l)‘
At ’
+ ‘(‘SF(» tm) - SS(X(U tm-H? tm)» tm)7 o,e.nH»l)‘
At
+ ‘(SS(X(H tmt1; tm)s tm) — SS(X/T(H tmt15 tm)s tn) ag,m+])’
At ’
n ‘(Ge"“(') = o""™(X(, tmi1; tm)) as,mﬂ)' n ‘(ag’m(x(-, tmi1; tm)) — 05 (X" (-, tmg 1 tm) ag,mﬂ)‘
At ' At ’

(L) g

< |(par e -

8
+ UK (U b)) — Ke(up™ ), 0™ ) | = ) . (44)
i=1

Following [ 19] and using a scaling argument, we obtain the estimates forI; (i = 1, ..., 7) and summing them up, there holds
7 2

2 4de 2 2 du®
Dk = @l ™ g+ IV G + CAUID g g, v+ cmH :
i=1

L2(tm,tms1:Y)
C 2
+Clg o +

dé®
o + CII8 lloecy) + Clla®™ I3

L2t tmg1:Y)
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Next, we estimate Ig in terms of the mean-value theorem:
(Ke(UE(-, tiy1)) — Ke (u;,m“),o“"jw:(xs( U (-, b)) — Ke(ul ), 0™ — (-, b))
+ (Ko (U (-, tmi)) — K, ("fn"'f ) Uy b)) — RS
< (K (Ui, tms1)) — Ko™ ), (- tnsr) — RQ",“)

1
(-, tnyt) uy
/ et ,,,] LU (s ) — R ds
e P e
1
< Ui b)) — uﬁrm+| |i(',fm+1)—R1T,H|d5,

(luhr('! tm+1)|2 +e& )3/2
where ﬁ;ﬁ; lies between uy, and u;. Using hypothesis (H1), for sufficiently small ¢ > 0, holds

Iy = (KL, ) — Ko L), gt
< Cllghoerg ™ — R0 r + 110G tmat) = R o ) IEC tmrt) — RIS Mo r

€2 2
< ChH|U 2,00 + CH? [ V™™ |47 12,00 < Ch* + EIIWS""+1 llo-

Substituting the above estimates into Eq. (4.4), multiplying the resulting inequality by 2At, summing O to n for index m, and
choosing ¢; = - and e, = 3, we obtain the recursive relation:

ar
n+1
lo*™ o +vAtZ||Va”’u0+2AtZ|| (I = g™ o
m=0 m=0
< CcAt?(|D? du ) * c(e ds)
(” w ”Lz(o iyt H L2(O,T;Y)> * (” ligorv) + H 12(0.T: v)>
+CAt Z [¢°™I2 + CAL Z lo®™ |2 + Ch*.
m=0 m=0
By assumption (H1), using the discrete Gronwall’s lemma, and the triangle inequality, we see that
2
12 41,2 41,2 2( 192 du?
19711 < 200" + 208" < CAC (1D Wz ) + | g Lz(m))
dwe |2 dp*

+Ch“(||u e + | 5 1P o iy + | g

12(0,T;Y) 12(0,T; Hl(.o))>

+Cat Z 16*™ 15
m=0

Finally, the discrete version of Lemma 4 completes this proof.

Theorem 6. When (H1)-(H5) hold and further assume that the grid size h and time size At satisfy

7 — 2Ce

C
(a) > < C; —2Cs and (b) At < (2Cs < G7),

7
where Cg, C; are positive constants independent of h and At, then we have the following estimate

lu® — uj |0, 1;v) < C(AL + h).
Remark 2. The reason of the existences of (a) and (b) is that we need to control the estimates for divergence term d(-, -) by

the stabilized term and || % ||(2) in the following proof, which is a special treatment in this theorem. And if putting (a) (b)
together, one can see that delta t = O(h?), which is not conflicting to (H5).

.m+1_a m

Proof. Taking v;, = *- and g, = * Ifﬂ in Eq. (4.2), we have
ot~ gt o®m 1 2
e H (190 ™o = IVe™ M)+ d( T £ ) o = et
+B V(M)Hz < ’(D W, tmir) — U (-, tngr) — WEXC, bmgt Em)s bm) g&mt1 —O'S’m>‘
2 Atz ol AN AL , =

N ‘<u5(X(~, fm1 Em). ) — WQXE'C, Gngt ), bm) 05T — g )‘
At ' At
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n ‘(58 tm+1 8(, tm) o™ — 08"”)’ n ‘(58(-, tm) — 8°(X(-, tng1s b)), tm) 05T — 6“'”)‘
’ At At ’ At
+’(88 tm+1stm) tm)_ss(X}T('stm+1§tm)» tm) otmtl _Ua’m)‘
At ’ At
0°"(:) — 0" "(X(-, tyy1; tm)) 0T — 0"
+ ‘( At ’ At )
0 "X (s tmg1s tm)) — 00X tngas tn)) 0F T — g
+ ’( At ’ At )’
omt1 0’8 m+1 s
+ KIQ 1)) — Ke(ui™ ), 7> ZHl (4.5)

For the term d( ;* m+1) we separate it into two cases. Let the FE subspace be V, x Q+. Then, noting that V¢&™! = 0
and using the dlvergence theorem, we see that

e,m 1 1
) I R RS o) Tt
At At Jg At K

KeTy

> _A]t(;/e.[;s,m-é—lfds);(;/e(a&mf ds);
1

N =™ M, (h’”zllag""llo + h1/2||Va£='”||o)
h 2 CzAt a&m 2

= _C £7m+1 H ‘ ’

> 1Atll[§ Mo — At

where [£%™+1] denotes the jump of £&™+1 ¢ Q,? and G, = ﬁ. For the lowest equal-order FE subspace V}, x Qh] in the same
way, there holds

ag.m 1 1 1 1 1
d , ;8,m+ — as,m . ng“‘”"* dS _ (O'S’m, V;.s,m+ )
At At Jr At
C3  om h? 2 GAt|o®™
_ & v e,m+1 >_(C v e,m+1 _
Zt” lolIVE llo = 4EII ¢ llo 2

v

2 2
C
, (cs = 3) }
o 4c,

h 2 1 2 h? 2 1 2
Ci— e,m+1 < — (I - Hl e,m+1 L Ci— |V e,m+1 < — (I - HO &,m+1 .
1 M o = G n)¢ o> CaryIVE llo = 7 IIC n)¢ llo

At
It follows from [26] that

Set the left-hand side of Eq. (4.5) be L, which can be transformed by

as,m+] — &M 2 5 v 08,m+1 oM 2
Atm i 2At 5 el i
CeAt || 0°
;72‘ DR (Cs:Cz,fOthXQ,? and C6=C5,fothth]).
0
Because
Ll R s H 27~ 2 gt o
At 0 At At o At ’
sm+1
z(l—At)H H 1—At)H
At At 0
then
o 1y gom —gomy?® 1 CeAty [ o5 |2
L> — AvZ i ST TR v LT 7"7” (*1—At— )‘ H
2At(” g ”0 IVe ||OH_Z At 0+ 2( ) h2 At iy
£m+1 as,m+1 —g&m 2
+ - (l—At)’ “ + 7]” (4.6)
At2

Since 1— At > 0 obviously holds and when h? < C; —2Ge, At < <2, 2Cs < C; hold, %(1 — At)— B AL > 0is definitely
2

and 1 (1 =A)|*
0

m S m+1

o
At

valid, then the nonnegative terms (%(1 — At) — %At)

n (4.6) can be dropped.
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Next we carefully explore the conditions for At and h. If %(1 — At) — % > 0, we have

At

At < —hz
1—- At = 2GC
So there exists a constant C;, independent of h and At, when C; > 2Cg as —7 < f, such that
1 2
At < —h". (4.7)
G

2
Then if the coefficient of term is nonnegative, replacing At, there is,
0

At
1 C 1 1 C 1 G, — 2C 1
Taoan-Cnes 1o Lp) G 1p_ G026 1.
2 h2 2 G

thus
h? < G — 26,

substituting the above estimate to (4.7) comes into

G —2Gs

At <
G

Therefore, we seek out the conditions h?> < C; — 2Cs and At < G266 ZCG to make sure (1 — At)— %At > 0. Now (4.5) turns
into

o.g,m+1

v

Z 1. (4.8)

By a similar argument to that in [19], the estimates of II; (i = 1, ..., 7) are directly given as follows

Zn, < & H

+c (g + At

2
— &M H v
0

At t3

ot Jm+1 otm
2 H

v 1
Vem+l — |V e,my 2 7’
(190" ™ — 190" 1)+ 5

(AL)?

2
ot m+1 _ cem 264 ‘

8 m+1 e.m 2
At 0

2
v + CAL DA (-, tmgr) 2 A
At% . t L2(tm,tmy1;Y)

da? Jm+1 2

12(tm,tmy1;Y)

H du (-, tiny1) | ) H
det L2(tm tmi1:Y) At

+C||58 m+l||1_00 0,T:H(2)) + C(l + )”85 e ||L:>o(0T H1(2)) + C <1 + 7) ”V & m”oa

where &, = Dy(h)*(At? + At 24
Imitating the estimates of Ig,

and Dy(h) = h'~ 2 (log #)! =

||L2(tmt m1 y))

1 a.s,m+1 —g&m
m
Iy = ](KS(ui(-,th))—K (e, )|
/ ‘ (s tms1) u ! ’ ’ag’m“ —gtm ‘ q
g : S,
Ty \/|u;.‘( tm+1 |2+82 \/|ll£ m+1|2+82 At
o.g,m+l _ o.s,m
<[ g Slug(e 1)—“€m+1|"7}d5
/rs (1 uj rm+1)|2 +e2)32 e At
. e,m+1 __ o&m
< Cliglwecre) 16°™ o,y —x
0.5
e,m+1 e,m e,m+1 e,m
’ —_ ’ 2 €4 g — 0
<ClIVe™™ o HV x < ClIVe™™ g+ 3 \ i
t 0 (At)z 0

Using the Poincare-Friedrichs inequality ||¢™ || < C||V@™|lo and substituting the estimates 21.7:1111 and Il into Eq. (4.8),
multiplying by 2At and summing from O to n for index m, then choosing €3 = % and €4 = 7, we obtain
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At o&MH1 _ gem At n g& Mt _ gem
TSy [Atielad NI y) Lo
m=0 0 m=0 Atz 0
du’ |2 s |°
< CAt (”D uF”,_Z(OT Y) + H 0. T'Y)) +C{1+ Zam ”6 ”LOO(OTHl(Q)) + C’ dt 12(0,T:Y)
n+1
+CALY [V Mg+ C Z o + AD[ V0" .
m=0 m=0
Since anzoam = Dy(h)?AL(T + (E du* ||L2(0 Y) yand Dy(h)?At = ©(1) as h — 0, using assumption (H1) and Lemma 4 imply

that

2 2 2
V"™ lp < 21IVE ™y + 2V g
dut 12 n+1

+cat Z V™™

< CAt ( D; 2y + H )
I ”LZ(O Y 12(0,T;Y)

dp® |2
L2<0,T;H1(rz>>)'

u!’
o+t (1 o oy + | 1P B oy + | o

[2(0,T;H2(£2))

A further use of Lemma 4 completes the proof.

4.2. 1? estimate for pressure

Theorem 7. Under assumptions (H1)-(H5), the following error estimate for the pressure holds

Ip* — pi”ﬂ(o,T;Q) < C(At + h).

Proof. For v, € V}, and g, € Qp, from the definition B, and Eq. (2.5) it follows that

By((6®™, 25™); (i, qn)) = (Dett* (-, ting1) — dett® (-, timg1), Vi) + (de (-, tmgr), Vi)
- (dtae’mH, V).

From Lemma 2, we see that

B s,m’ s,m; ,
BIVe o + M) < sup (O T (o )

Okl T Xy [IVVillo + lIqnllo
= sup (Dt (-, tmg1) — et (-, tmy1), Vi) + (ded° (-, tmga), Vi) — (dra®™ 1, wy)|
VX Vvullo + lIgnllo
Furthermore, note that
||§£’m+l|| H,D[u ( tm+1) u’(- fm+1)—“€(x( Stm415tm)stm)
+’ S(X(es tmrts tm)s tm) — ug(xh( tm+17tm) tm) H
At
n H 8 (-, tmy1) — 8°(-, tm) H n ‘ 8 (-, tm) — 8°(X(., tm+1» tm), tm) H
At 0 At .
+ CH 8 (X(-, tins1s b)), tm) — SE(X’T(-, tm+15 tm)s tm) H
At 0.1
n H ®"(-) — o®™(X(-, tmi15 tm)) H TX(s tmg1; tm)) — 05 "(XF(, tngts b)) H
At At o
o e IR
0 At lly

and

Ip* — pi”ﬂ(o,T;Q) < |p°- Onllo,1:0) + 11Ch — pi”ﬂ(o,T:Q)'

Applying a similar technique as in the proof of the previous theorem, the discrete Gronwall’s lemma and the results in
Theorem 5, the proof can be done.



54 F. Jing et al. / Journal of Computational and Applied Mathematics 320 (2017 ) 43-60

08F.

i
iy
1
l|[
[
06!
> i
1
i
041
[
i
IR
v
N
N

02t

NERRNN
SN

[+ 1470 e

0 0.2

Fig. 1. Velocity field in £2 under the lowest equal-order FE subspaces V, x th

5. Numerical examples

In this part, we will assess the performances of the characteristic stabilized methods to solve the time-dependent Navier—
Stokes equations with nonlinear slip boundary conditions of the friction type. Firstly, we validate the convergence properties
of the proposed method to solve a test problem, slip and non-slip phenomena are observed on the boundary. Then, this
method is extended to a bifurcated blood flow model, the computational domain is investigated with a stenosis or without.
For the nonlinear term in scheme (3.1), the Newton iteration is applied and iterative initial value is the solution of the Stokes
problem. We set the iterative tolerance as 107, the regularization parameter ¢ = 107° and the final time T = 1 unless
other specified explanations are made.

5.1. A smooth problem

Let £2 = [0, 1] be the unit square. The boundary I" consists of two portions I, and I's given by
Fs={(X,1)|0<X<1}, FDZF\FS

A uniform mesh partition of §2 into triangular elements is obtained by dividing £2 into sub-squares of equal size and then
drawing the diagonal in each sub-square (Friedrichs-Keller type).
We consider the following exact solution u(x, y, t) = (u1(x, y, t), u(x, y, t)) satisfying u| » = 0:

uy(x, y, t) = 10x3(x — 1)*y(y — 1)(2y — 1)cost,
Uy(x,y,t) = —10x(x — 1)(2x — 1)y*(y — 1)% costt, (5.1)
p(x,y,t) = 10(2x — 1)(2y — 1) cost.

For this test, we set v = 1.0 and At = 0.001 except for additional statement. The external force f is suitably obtained from
(1.1). By direct computation, we have

max |o,| = max |10x*(x — 1)? cos t| = 0.625 cost.
Ts 0<x<1

Now we impose the slip boundary on I's, with g being constant, it is immediate to see that

g >0.625cost = (5.1) remains a solution = No-slip occurs.
g < 0.625cost = (5.1) is no longer a solution = Slip occurs.

Such behaviors are clearly characterized by our numerical solutions in Figs. 1-2 for three different values of g with uniform
grids of 24 x24.In fact, slip phenomena (uy,, # 0) take place on I's forg = 0.1and g = 0.5, whereas non-slip phenomena are
observed for g = 1.0, where we omit cos T in g since the results are selected at the final time in all the numerical examples.
It is shown that the bigger the threshold function g, the more difficult it becomes for a non-trivial slip to occur.

We now display the relative errors E;2(p), E;1(u), and Ej2(u) in Tables 1-4 when g changes, where

Ea(p) = P Pullo g |y = IV = Hh)lo lu = uyllo
. Iplo  ~ " I Vallo o

Since the explicit solution is unknown when g = 0.5, we regard the approximate solution with grids of 120 x120 as a
reference solution (U, pres ). However, we know the exact solution (5.1) when g = 1.0 and thus we take u,s = u, prsf = p.
The convergence rates depending on the time size is characterized in Table 5 with a fixed mesh size h = 1/50. Fig. 3-4
displayed the convergence behaviors under different Reynolds numbers: 1, 400, 1000, where I stands for the FE subspace
Vi, x Q,? and ] for the FE subspace Vj, x th From the gained results, we observe that the spacial optimal convergence-order
o(h) for the H'-norm of velocity, L>-norm of pressure and ©(h?) for the L?>-norm of velocity, along with the convergence rate
O(At) depends the time size, which are consistent with the theoretical analysis in Section 4.

» Ep(u) =
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Fig. 2. Velocity field in £2 under the lowest order FE subspaces Vi, x Q2.

Table 1

Convergence behavior of ||y — thyer || and ||pn — prer || for g = 0.5.

1
h

Vi x Q; FE subspace

E;2(p) Rate  Eyi(u) Rate  E;2(u) Rate
8 1.706E—1 - 5.177E—1 - 3.690E—1 -
16 7.765E—2 1.14  2.106E—1 130 9.678E—2 1.93
24 4.927E-2 1.12 1.2653-1 126  4.279E-2 2.01
32 3.819E—-2 0.89 9.419E—-2 1.03 2.348E—-2 2.09
40 2.785E—2 142  6.808E—2 1.45 1.445E—2 2.08
Table 2
Convergence behavior of || — || and ||py — prerll for g = 0.5.
: Vi x Q2 FE subspace
E;2(p) Rate  Eyi(u) Rate  E;2(u) Rate
8 9.906E—2 - 5.538E—1 - 3.715E—1 -
16 3.007E—-2 1.72 2.207E—-2 1.33 9.460E—2 1.97
24 1.483E—2 1.74 1.314E—-1 128  4.151E-2 2.03
32 8.893E—3 1.78  9.696E—2 1.06  2.270E-2 2.09
40 5.912E-3 183  6.997E-2 1.46 1.395E—2 2.18
Table 3
Convergence behavior of ||[u — uy|| and ||p — pp|| for g = 1.0.
% Vi x Q; FE subspace
E;2(p) Rate  Eyi(u) Rate  E;2(u) Rate
8 1.195E—1 - 6.333E—1 - 4210E—1 -
16 3.590E—2 173  2501E-1 134  1.143E-1 1.88
24 1.775E-2 1.74 1.494E—1 1.27 5.208E—2 1.94
32 1.079E—2 173 1.054E—1 121  2.978E-2 1.94
40 7.353E—3 172 8.118E-2 1.17 1.911E-2 1.99
Table 4
Convergence behavior of ||u — uy|| and ||p — py|| for g = 1.0.
1 Vi x Q2 FE subspace
E;2(p) Rate  Eyi(u) Rate  E;2(u) Rate
8 1.834E—1 - 5.942E—1 - 4.130E—1 -
16 8.000E—2 120 2.388E—1 1.31 1.154E—1 1.84
24 5.113E-2 1.10  1.440E—-1 125 5.307E-2 1.92
32 3.764E—-2 1.06 1.022E—-1 1.19 3.049E-2 1.93
40 2.981E—2 1.04  7.905E-2 1.15 1.958E—2 1.99

5.2. Numerical simulation of a bifurcated blood flow model

55

This example studies a two-dimensional simplified model of hemokinesis in a bifurcated arterial vessel whose main
vessel wall may have an arterial stenosis, as shown in Fig. 5 [34,35]. Assume that the blood vessel acts as a “Y”-glyph pipe
with a certain length, Fig. 5(b) attached with a half-square stenosis on the wall of the main vessel. Blood flows into the vessel
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Table 5
Relative errors and convergence rates of different time size when g = 1.0.
At Vi x Q) Vi x Q)
E;2(u) Rate Eyi(u) Rate E;2(u) Rate Eyi(u) Rate
0.5 9.89809 - 9.87599 - 9.93787 - 9.93783 -
0.1 2.07197 0.972 2.07774 0.969 2.26594 0915 2.26803 0918
0.05 1.04083 0.993 1.06203 0.968 1.18563 0.935 1.21138 0.936
0.01 0.209027 0.997 0.234829 0.938 0.251769 0.963 0.267785 0.925
1 05
s & -15f s
g g Lt g .
| = 4 .
5L | | | | | | P 75E | | | | | |
-4 38 36 -34 -32 -3 28 -26 4 38 36 34 32 3 28 26 -4 38 -36 -34 -32 -3 28 -26
log(h) log(h) log(h)
(a) L% convergence order for velocity. (b) H' convergence order for velocity. (c) L? convergence order for pressure.
Fig. 3. Convergence orders under different Reynolds numbers with At = h?> when g = 0.1.
0 15
~F -2.5F| == s
k3 8 5] 5 -
g g 2 4
T 25t pal s A
I S S Y USRI _3:\\\\\\\\\\\\\\\\\\\\\\\l\\\ _6_5:‘HMHMHMHMHMH‘MH
-4 38 -36 -34 32 -3 -28 -26 4 38 36 -34 32 3 -28 -26 -4 38 -36 -34 32 3 -28 -26
log(h) log(h) log(h)
(a) L? convergence order for velocity. (b) H' convergence order for velocity. (c) I? convergence order for pressure.

Fig. 4. Convergence orders under different Reynolds numbers with At = h> wheng = 1.0.
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(a) Without stenosis. (b) With stenosis.

Fig. 5. Calculation region of the bifurcation vascular model.

from the left entrance and two outlets are labeled. The top and bottom boundaries drawn in dashed lines in the main vessel
can be chosen as a Dirichlet or slip boundary, the rest of the regional boundaries is imposed with a Dirichlet boundary. Set
the diameter of the main vessel as 2, the width of the main branch outlet as 1.25, and that of the other branch as 0.75. The
specific ratio between the width of the stenosis and the diameter of the main vessel is used to describe the degree of arterial
stenosis, noted by S.

For the grid generation, 40 grid points are scattered on per unit length and Delaunay mesh generation method is applied
(Fig. 6 displays the mesh generation and 5 points are scattered on per unit length just for intuitive exhibition, refined mesh
is employed on the singular points for Fig. 6(b)). The inflow velocities are: u, = 1.2 — 1.2(y — 1)?, u, = 0, ugx = 1.2, and
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(a) Without stenosis. (b) With stenosis.

Fig. 6. Calculation region of the bifurcation vascular model.
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Fig. 7. The velocity and streamlines, pressure contours of blood flow with different boundary conditions: Dirichlet (a-d) and slip (e-h) under finite subspace
Vy x th

ugy = 0; the viscosity coefficient v = 1.0, and we set the time size At = h?, the frictional function g = |v 3:;";’ | when the

slip boundary is considered. Fig. 7, 8 show the values of velocity, streamlines and pressure contours at the final time with
different computational domain, different boundary conditions, as well as different FE subspaces. The results of velocity and
pressure are displayed in Fig. 9 when S changes, the shear stress along the bottom boundary with different S is drawn in
Fig. 10, and in both Figs. 9 and 10 only slip boundary conditions are considered.

By comparing the pressure contours in Figs. 7-9, when there are no stenoses, the values of the pressure change slightly
in the main vessel, except the bifurcate junctions, where exists sharp change of the pressure. The values of pressure with
slip boundary conditions are less than those without. When the stenoses emerge, the pressure changes rapidly around the
beginning and end of the stenosis areas in the main vessel, bifurcation junctions and branches.

From the velocity figures (a), (e) and (c), (g) in Fig. 7-8, the streamlines directly flow from inlet to outlet and calculated
values of velocity on the boundary are zeros when all Dirichlet boundaries are considered in the main vessel, while as the
slip boundaries exist, the values of velocity on the top and bottom boundaries are non-vanishing ((a), (e)). When the stenosis
exists, flow separated regions appear and form low velocity areas, and if all Dirichlet boundary conditions are considered,
eddies arise at the forward and backward of the stenosis ((c) in Figs. 7-9), however, when the top and bottom boundaries are
chosen as slip, eddies arise only at the backward ((g) in Figs. 7-9). As the width of the stenosis becomes larger, the separation
areas enlarge, which cause the bigger local eddies ((c), (g) in Figs. 7-9).

From Fig. 10, the positions and sizes of the stenosis are easy to find, the shear stress at the beginning and end of the
stenosis changes strikingly. In the low speed sections of the blood vessels, the blood platelets and fibrinogen more easily
deposit, while the lower shear stress in the separation area makes the accumulation of material around the vessel walls
hardly be carried off by the flowing blood, which can easily lead to vascular lesions, and then come into atherosclerosis.
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Fig. 8. The velocity and streamlines, pressure contours of blood flow with different boundary conditions: Dirichlet (a-d) and slip (e-h) under finite subspace
Vh X Qho .
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Fig. 9. The velocity and streamlines, pressure contours of blood flow with slip boundary conditions when S = 0.05, 0.25 under FE subspaces V, x Q! (a-d)
and Vj, x Q2 (e-h).

6. Conclusions

In this work, a characteristic finite element scheme is studied for the time-dependent Navier-Stokes equations with
nonlinear slip boundary conditions. Because this type of boundary conditions includes a subdifferential property, the
continuous problem is formulated as a variational inequality. By means of a regularized problem, the inequality problem
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Fig. 10. The shear stress along the bottom boundary with different S under FE subspaces Vj, x Qh1 (a-d)and Vj, x Q,? (e=h).

turns into equations and the lower finite element subspaces are chosen for the fully discrete characteristic scheme based on
the pressure projection. We have proved the unconditional stability of the proposed scheme and established the optimal
convergence orders for appropriately smooth solutions. Finally, numerical results verified the theoretical analysis, and
illustrated the presented characteristic method exhibits good stability behavior with the nonlinear slip boundary of friction

type.
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