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Abstract

In this paper we establish the construction of a family of free derivative of point
to point iterative processes, with quadratic convergence, from two known data in
each previous iteration. Besides, we study the accessibility of this family by means
of the basins of attraction and the convergence balls. We provide a local convergence
analysis for the family of iterative processes free of derivatives, when the operator
F' is not necessarily Fréchet differentiable. The sufficient convergence conditions
are weaker and more flexible than in earlier studies. An application is provided
involving mixed Hammerstein nonlinear integral equation with application in real
world problems. Finally, we show also a dynamical study and the convergence
regions of some members of the family.
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1 Introduction

One of the most studied problems in numerical analysis is the solution of nonlinear equa-
tions

F(z) =0. (1)



To give sufficient generality to the problem of approximating a solution of a nonlinear
equation by iterative processes, throughout the paper we consider that F: Q C X — X is
a nonlinear operator defined on a nonempty open convex subset €2 of a Banach space X, so
that many scientific and engineering problems can be written as a nonlinear equation (see
9, 14]) in Banach space; for example, nonlinear integral equations, initial value problems,
matrix equations, nonlinear PVF, etc..

It is well-known that Newton’s method,

Ty € Qa Tpn = Tp-1— [F,<xn—1)]_1F(xn—1)7 n e Na (2)

is the one of the most used iterative processes to approximate a solution z* of F(x) =
0. The quadratic convergence and the low operational cost of Newton’s method ensure
that it has a good computational efficiency. But this method has a serious shortcoming;:
the derivative F’(x) has to be evaluated at each iteration. This makes it inapplicable
to equations with non-differentiable operators and in situations when evaluation of the
derivative is too costly. In these cases, it is common to approximate derivatives by divided
differences, so that iterative processes that use divided differences instead of derivatives
are obtained. Remember that the operator [u,v; F] € L(X, X), u,v € Q with z # y, is a
first order divided difference [20, 21|, which is a bounded linear operator such that

[u,v; F]: QC X — X and [u,v; Fl(u—v) = F(u) — F(v). (3)

Our first goal in this work consists on the construction, based on Newton’s method
(2), of a family of derivative-free iterative processes with the form:

xo given in (), A
Tpy1 = Ty — [di(2),do(2,); F] 7 F (2,), n >0, @
where di(x,) v dy(z,) are known data at the point z,. In that way, from this family
of iterative processes, we want to establish a general theory of local convergence to that
derivative-free point to point iterative processes that can be applied when operator F
is non-differentiable. Occasionally, the study of the local convergence of derivative-free
iterative processes shows a small contradiction. There are many known results of local
convergence (see [7],[13],[15],[23],[25], and references therein given) which usually include
the condition of the existence of the operator [F'(x*)]™!, forcing the operator F' to be
differentiable. However, in this paper, we obtain a type of result for the local convergence
from requiring a weaker type of assumptions to obtain a local convergence result when
operator F' is non-differentiable.

Our second goal is to ensure that the order of convergence of the family of iterative
processes included in (4) is quadratic as Newton’s method (2). This fact allows us to
study the conditions that data functions d;(t) and dy(t) must satisfy.

Notice that the methods using divided differences in their algorithm have a drawback,
the accessibility of these methods to the solution of the equation (1) is poor, so that



the domains of starting points are reduced. This is our third objective, to study the
accessibiity of the iterative processes included in (4). In this work, we study the dynamical
planes of the family of iterative processes considered and, on the other hand, we will study
the accessibility in a theoretical way from the convergence balls associated to them.

The rest of the paper is structured as follows. Section 2 contains the construction of
the family of iterative processes. A dynamical study for the iterative processes is given
in Section 3. The local convergence results are given in Section 4. In the Section 5,
another iterative processes with central divided differences are constructed. A numerical
experiment is included in the Section 6. To finish, the conclusions are given in Section 7.

Moreover, we denote B(z, 9) = {y € X;||[y—z| < o} and B(z,0) = {y € X;|ly—=z| <
o}, respectively for the closed and open balls with center in  and of radius ¢ > 0

2 Construction of the family

In this section, we consider the real-valued function f : R — R and we want to approxi-
mate a solution of the equations f(¢) = 0. It is a know fact, that in order to approximate
that solution the most used method is the Newton’s one, defined as follows:

to given,

f)

ft)

Firstly, we will use it by means of using divided differences which will allow us to extend
our result to Banach spaces. Next, the convergence rate of the new family of iterative
processes obtained should be quadratic. Finally, the family of iterative processes obtained
should be a point-to-point family of iterative processes. So, we consider to construct an
iterative process as

thyr = Ny(t,) =t, —

to given,
tn—ﬁ—l:Gf(tn):tn_%a 71207

where g : R — R. As an example of this situation, Kung and Traub in [16] presented the
Steffensen method as follows:

to given,
Ftn)? (5)
ORI

flt+ f(t) = f(t)
f(t)

consider a value of ¢ in which we will get two different data functions d; () and ds(t) that
will allow us to define the divided difference and construct an iterative process as:

tpi1 = Sf(tn) =t +

That is, they use the divided difference g(t) = . Following this idea, we



to given,

di(t) — da(t) (6)
) — Fda(y? =0

In order to achieve the quadratic convergence, we wil replace f'(¢) by the divided differnece
o) = ) = F(dalt)
d1(t) — do(t)

iterative processes constructed should be point-to-point, it is a well-known fact that to
achieve the quadratic order, we need that G(t*) = t* and G';(t*) = 0, where ¢* is a simple
solution of the equation f(t) =0 (see Shroder [24]).

Following Steffensen’s method (5), we impose that dy(t*) = da(t*) = t*. Then, taking
into account that

tn—l—l - Gf<tn) - tn -

using the data functions d;(t) and dy(t). As the family of

di(t) —do(t) 1
Fldi(t)) = fldo(t) — f/(t)
if the data functions d; and ds are derivable functions with d}(t*) # d5(t*). It follows that
Gp(t") =t7,

On the other hand, in the previous conditions if there exist di and dj, we have

(dy () — do(t7)) (1)
fdu(t)) = f(da(2))

=0,

and

(dy(t7) — do(t7)) [ (2)

limt_ t* = 17
(1) — f(da(1))
Then, we obtain that G(t*) = t* and so we get the quadratic convergence of the
family of iterative processes (6).
Now, we observe that the most known iterative processes free-derivatives are included
in the family of iterative processes constructed (6)..

(I) Steffensen method
If we consider d;(t) =t and do(t) =t + f(t), we obtain the Steffensen method (5).

(IT) Backward-Steffensen method
If we consider di(t) = t — f(t) and dy(t) = t, we obtain the Backward-Steffensen
method:

to given,
f(t 2 7
( n) n > 0, ( )

f(tn_f(tn)) _f(tn), N

notice that, in this case, used a backward divided difference .




(ITIT) Central-Steffensen method
If we consider d;(t) =t — f(t) and da(t) = t+ f(t), we obtain the Central-Steffensen
method:

to given,
2f(t,)? 8
/() n >0, ®)

f(tn_f(tn»_f(tn"f’f(tn)), N

notice that, in this case, used a central divided difference .

tni1 = CSp(ty) =t +

(IV) Generalized Steffensen-type method
If we consider di(t) =t — af(t) and dqo(t) = t + bf(t), we obtain the Generalized
Steffensen-type method:

to given,
(a+D)f(t)* G
fltn —af(tn)) = flta +0f ()"~

3 A dynamical study

In this section we will compare the dynamical planes associated with the four special cases
mentioned in Section 2. As all of these iterative methods are, derivative-free we will use
the non-differentiable equation

f2)=z2— 02 —plz| =0 (10)

where o = pu =1/40
This equation has 3 different roots:

2~ —1.56155. ..,
Z9 = 0

and
23 /2 2.56155. ...

As in previous papers (see [2, 17, 18]) and books (see [3, 4, 5, 19]) we will define:

The basin of attraction of a root z* is defined as the set of points whose iterations
converge to the root z*.

In order to draw the basins of attraction, a point is painted in red if the iteration of
the method starting in the point converges to the root z1, in blue if it converges to zs, in
yellow it it converges to z3 and in black those points for which there is no convergence to
any of the roots. We choose a tolerance of 1073 and a limit of 200 iterations.

In Figures 1-6 the basins of attraction associated to the roots of the polynomial f are
shown. As it can be seen the best methods in terms of convergence are the Generalized
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Figure 1: The Steffensen method Figure 2: The Backward-Steffensen
method

h n n n L
-8. 4. 0. 4. 8.

8F

9
d

L L L
-8. 4. 0.

Figure 3: The Center Steffensen method Figure 4: The Generalized Steffensen-type
method with a =b=1/10

Steffensen method with lower values of a and b and also values of both parameters should
be close. In Figure 5 this fact can be seen as almost all points of the region converge to
any of the three roots.

4 Local convergence

Taking into account the previous study, now, we consider the family of iterative processes
in Banach spaces. To do this, we consider F' : 2 C X — X a continuous nonlinear
operator, {2 is a non-empty open convex domain in the Banach space X and d; : X — X
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Figure 5: The Generalized Steffensen Figure 6: The Generalized Steffensen
method with a = b = 1/1000 method with a =2 and b =1/2.

a derivable real function, for i = 1,2, with dy(z*) = do(2*) = z* and d(x*) # dy(x*),
being z* a solution of (1). Besides, we suppose that there exists a divided difference of
order one [z, w; F| € L(X, X) for each pair of distinct points z, w € Q and we assume that
di(x) = do(zx) if and only if z = z*, since that we must characterize the different data
to define [dy(z), d2(x); F]. So, we will study the local convergence of iterative processes
given by the following algorithm:

xo given in €2, (11)
Tyt = Tp — |di(2), do(20); F] 7 F(2,), n >0,

To analyze the local convergence of iterative processes that do not use derivatives
in their algorithms, the condition usually required for the operator divided difference is
known as Lipschitz continuous condition, which is given by

Iz, w; Fl = [y, v; FIl < K(llz =yl + [lu = vll); 2, y,u,0 €. (12)

Another condition, under which the local convergence is also usually studied is when the
operator divided difference is Holder continuous in €2. That is:

e, w; F] = [y, v; FIIl < Kz = yll” + lu = o[I"); =, 9,u,0€Q pe0,1],  (13)

which generalizes the Lipschitz continuous condition. Note that both conditions involve
the operator F' to be differentiable [10, 11]. To generalize the above conditions and even to
consider situations in which operator F' is non-differentiable, we will consider the condition

H[x,u, F] - [y,U;F]H < w(Haz - yH7 ||u - UH), T,Y,u,v € Qv (14>



where w : R, xR, — R, is a continuous nondecreasing function in its two arguments, with

Obviously, we obtain (12) if w(z) = Kz and (13) if w(z) = K2zP. Moreover, as it is
known ([10, 11]), if w(0,0) = 0 then F is a differentiable operator. Therefore, taking into
account condition (14), we consider the case in which the operator F' is non-differentiable.
For example, situations where w(0,0) # 0, as we can see subsequently.

On the one hand, we assume the following conditions for the operator divided differ-
ence:

(C1) There exist 2* € Q with F(2*) =0, d > 0 and Z € Q, with ||Z — z*|| = J, such that
[z*,Z; F|7' € L(X, X), and suppose for x € Q, ||[z*,z; F]7!|| < 8.

(C2) ||[z,y; F] — [u,v; F])|| < w(]]x —ul],|ly — v||) holds for each pair of different points
(,y), (u,v) € Q x Q, where w : R, x R, — R, is a continuous non-decreasing
function in its two variables.

(C2") ||[z,y; F] — [z*, %; F))|| < @(||]z —x*||, |ly — Z||) holds for each pair of different points
(z,y) € Q x Q divided difference of order one, where @ : R, x R, — R, is a
continuous non-decreasing function in its two variables.

Notice that (C2') is not an additional to (C2) condition, since in practice the compu-
tation of function w requires the computation of function w as a special case. Moreover,

we clearly also have that w(s,t) < w(s,t) for each s, € R, and the function Y can be
w
arbitrarily large ([1], [20]).
On the other hand, we assume the following condition for the data functions:

(C3) |ldi(x) — di(z*)|| < wi(]|]z — x*||) holds for each x € 2, where w; : R, — R, is a

continuous non-decreasing function for ¢ = 1, 2.

The local study of the convergence is based on providing the so-called ball of conver-
gence of iterative process, that shows the accessibility to x* from the initial approximation
xo belonging to the ball of convergence. We denote the ball of convergence as B(z*, R)
and consider xy € B(x*, R) with xq # x*.

In first place, we must to prove the existence of the operator [d;(zo), d2(z0); F]7'. As
dy(wo) # da(wo) and [|ds(xo) — ™[] = ||di(w0) — di(2”)|| < wi(llzo —2™[| <wi(R) fori = 1,2,
if we assume that B(z*, R) C 2, with R = max{R,w;(R),wa(R)}, then [di(zy), d2(z0); F]
is well defined. Therefore, we obtain

17— [, & F] ™ da(wo), da(wo); FII| < [[[e*, @5 FI7H[[l[27, &5 F] = [dy (o), da(@o); F]|

< Bw(llz” —di(zo)|, |7 — da(zo))|| < Bw(||di(x™) = di(zo)[, |7 — 27[| + [|da(x™) — da(z0)]])
< Bw(wi(R),d + wa(R))



and, if we assume that §w(wi(R),0 + we(R)) < 1, by the Banach Lemma we obtain that
[dy(z0), da(m0); F]™! exists with

B

[l (), da (o) FI7| < — Bo(n(R), 0+ wa(R))

In second place, starting from one initial approximation zy of a solution z* of the
equation F'(z) = 0, a sequence {z,} of approximations is constructed such that the
sequence {||z, — z*||} is decreasing and a better approximation to the solution x* is then
obtained at every step. Obviously, the interest focuses on lim, x,, = z*. Therefore, we
must to prove that ||z; — 2*|| < ||zg — z*||. So, we can write by method (11) that

11— 2t =29 — 2 — [dy(20), do(20); F] P F(20) + [di(20), da(z0); F] F(2*)
= [di(w0), da(wo); 1 ([di (o), da(w0); F) — [wo, ™ F) (zo — ), (15)

and

lzy =27l < |lldi(20), da(xo): F] ™ [[l[di (20), da(x0); F] = [z0, 2"; F])[l|z0 — 2|
Buw(lldi(xo) = woll, llda (o) — z*])
1 — B&(wi(R),d + wa(R))

Bw(|ldi (o) — 2" + |* = wol|, [|da(0) — 27|
1— Bo(wi(R),0 + ws(R))
Bw(wi(R) + R, wy(R)) .

S 1 Bw(wl(R),éerQ(R))on — (16)

fw(wi(R) + R, ws(R))

1= fw(wi(R),0 + ws(R))
|lxo — 2*|| and besides x; € B(z*, R).
Bearing in mind the first step we just study, we must assume the following conditions:

< |20 — 2|

[0 — ]|

= 1, we obtain that ||z; — z*|| <

Then, if we assume that

(C4) The equation
B (w(wi(t) +t, wa(t)) + W(wi(t),d +wa(t))) —1=0 (17)
has at least one positive real root, the smallest positive root is denoted by R.
(C5) B(z*,R) C Q and B&(wi(R),d + wy(R)) # 1.
Notice that, from (17), we have
1 —fw(wi(R),d +w(R)) =Fw(wi(R)+ R,ws(R) =0
and, from (C5), we obtain that Sw(w;(R),d + we(R)) < 1.

To generalize the study carried out for the first step, we present an auxiliary pertur-
bation result on the inverse of divided difference of order one for the operator F.
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Lemma 1 Suppose that conditions (C1)-(C5) hold. If x € B(z*, R), with x # z*, then
[dy(z),dy(x); F]7! exists and

. B
I s s T @)

Proof. We can write ||d;(x) — z*|| < ||di(x) — di(z")|| < wi(||lxr — z*|]) < wi(R), for

i = 1,2. Therefore, from (C5), we obtain that dy(z),dy(xz) € B(xy, R) C Q. Obviously,

di(x) # do(z) and then [d(x), ds(z); F] is well defined for each z € B(x*, R), with x # x*.
Then, using (C?2'), (C4) and (C5), we obtain in turn that

Ild1 (), da(2); F]

(18)

17— [, @5 F] 7 dy (@), da(@); FII| < I, @5 F] 7l [2*, & F) = [di(x), da(); F]|

< BE(lz" — di(@)[], |17 — da(2))]| < BE([|di(z") — di(@)]], |7 — 27| + ||do(z7) — da(2)]])
< Bw(wi(R),0+wa(R)) < 1.

Then, by the Banach Lemma on invertible operators, the operator [dy(x), ds(x); F]™
exist so that (18) is satified. O

Taking into account the preceding notation, we shall show the main local convergence
result for method (11) based on conditions (C1)—(C5).

Theorem 2 Suppose that conditions (C1)-(C5) are satisfied. Then, sequence {x,}
generated for o € B(z*, R) with xy # x*, by the method (11) is well defined, remains in
B(z*, R) for each n € N and converges to x*, a solution of the equation F(x) = 0.

Proof. Previously, we have proved for, o € B(z*, R) with zq # 2*, that [d; (), da(z0); F]™*
exists, ||x; —2*|| < ||Jxog — 2*|| and besides z; € B(z*, R).

Now, we suppose that [dy (7 1), do(zr_1); F]7! exists, ||z — 2*|| < |lzx—1 — z*|| and
besides ), € B(z*, R). Let us assume that z; # x*, in other case the proof is completed.
Then, by Lemma 1, we obtain that [d;(z), da(x,); F]™! exists and

B

s (x), da(a); F)H| < — Bw(wi(R),6 +wa(R))

So, xx41 is well defined. Besides, from (16) and (C4), we have ||z511 — a*|| < [|zx — 2¥||
and z1 € B(z*, R).

So, we get by a mathematical induction procedure that ||z, —2*|| < ||z, —2*|| < R,
which shows that x,, € B(z*, R), for n € N, and nEIJPoo Ty =2 . O

Concerning the uniqueness of the solution z*, we have the following result.

Theorem 3 Under the conditions (C1)-(C5) further suppose that there exists R, > R
such that
pw(0,6 + R,) < 1. (19)

Then, the limit point x* is the only solution of equation F(x) =0 in B(z*, R,) N <.

10



Proof. Let y* € B(z*, R,) N be such that F(y*) = 0. Define @ = [z*,y*; F]. Then,
using (C2') and (19), we get in turn that

Il &5 F17 (2, y" F = [, & F])|| < Ba(ll2" — 27|, ly” — 2]) < BB(0,6 + R.) < 1.

Hence, Q! € L(X, X).
In view of the identity 0 = F(z*) — F(y*) = Q(z* — y*), we deduce that 2* = y*. O

4.1 Particular iterative processes in Banach spaces

In this section, we consider different particular cases of the family of iterative processes
given by (11) in Banach spaces. For this study, notice that we must consider particular
situations for the data functions d; and d». So, we will need to calculate the values of w;
and wy such that the condition (C3) is verified. Besides, when the functions d;(¢) and
ds(t) are known, in each case, the bounds obtained in (16) can be lower if we simplify the
equation (17). Notice that, as the data known in each step are "z,,” and ” F'(z,,)” the idea
to define a iterative process point to point is consider a combination of these values. In the
particular cases that we study, we can consider some different conditions as for example
that F'is a Lipschitz-centered operator in the solution z*, i. e., || F(z)—F(z*)|| < k||jz—x*||
or, equivalently in this case, that the operator ” F” verifies that ||F(x)| < kljz — x*|.
However, forward we will consider ||[z, z*; F]|| < «, for each = € Q.

4.1.1 Steffensen method

In this first case, we consider

and therefore, we obtain

xo given in €
(20)
Tpi1 = Tn — [Tny Tp + F(2,); F]7'F(z,), n>0.
Then, in the condition (C3), we have
() =1, wi(t) = (1+a)t,
so, in (C'4), the equation (17) is reduced to
B (w2, (1+a)t)+w(t,0+(1+a)t) —1=0 (21)

and, in (C5), we will consider R = (1 + )R and S&(R, 6 + (1 + a)R) # 1.
With the initial conditions (C'1)—(C3), from the previous conditions (C4) and (C5), the
result of local convergence given in the Theorem 4, for Steffensen’s method, is obtained.

11



4.1.2 Backward-Steffensen method

In second place, we consider

and, from (11), we obtain

xo given in €,
{ Tpi1 = Ty — [Tn — F(x,), 20 F]7'F(x,), n>0.
For this method, we have
wit) = (1+a)t, wq(t) =t.
So, the previous conditions (C4) and (C5), can be expressed in the following form:

(C4) The equation
B (w((24+a)tt)+o(l+a)t,d+1t)—1=0 (23)

has at least one positive real root, the smallest positive root is denoted by R.
(C5) B(z*, R) C Q, with R = (14 )R and 8&((1 4+ a)R,6 + R) # 1.

If the initial conditions (C'1)—(C3) are satisfied; in this situation, from the previous con-
ditions (C4) and (C5), we can ensure the local convergence of the Backward-Steffensen’s
method, to a solution of the equation F(z) = 0, from Theorem 4.

4.1.3 Central-Steffensen method
In third place, we consider
di(x) =x — F(z), ds(x) =2+ F(x),

and, if we apply these data functions to equation (11), we obtain

{ xo given in € (24)
Tpi1 = Ty — [T — F(2,), 2, + F(x,); F]'F(x,), n>0,
For this iterative process, we have
wi(t) = we(t) = (14 a)t.
Then, in (C4) the equation (17) is reduced to
B (wl(24+a)t,(1+a)t)+o(l+a)t,d+(1+a)t) —1=0 (25)

and, in (C5), we have R = (14 a)R and S&(R, 6 + (1 + a)R) # 1.

If the initial conditions (C'1)—(C3) are satisfied and the specific conditions (C'4)—(C5)
given for the Central-Steffensen method are satisfied, then, the sequence {x,} generated
for zy € B(z*, R), with zy # z*, by the method (24) is well defined, remains in B(z*, R)
for each n € N and converges to x*, a solution of the equation F(x) = 0.

12



4.1.4 Generalized Steffensen-type method

In the last place, we consider the data functions given by
di(x) =x—aF(zx), do(x)=x40bF(x),

for a,b € R,. Then, from (11), we obtain

{ Zp given in €, (26)
Tpi1 = Tp — [T — a F(x), 2, + b F(2,); F] ' F(z,), n>0
The condition (C4) for this method tuns out to be
wi(t) = (1+aa)t, wy(t)=(14+ba)t.
The equation (17) in (C4) is now
B (w((24+aa)t,(1+ba)t) +w((l+aa)t,d+ (1+ba)t)) —1=0, (27)

and condition (C5): B(z*, R) C Q, with R = max{(1 + aa)R, (1 +ba)R}, and 3&((1 +
aa)R, 6+ (1+ba)R) # 1.

If these previous conditions (C4) and (C5) and the initial conditions (C'1)—(C3) are
satisfied, we get a result of local convergence for the Generalized Steffensen-type method,
analogous to the above Theorem 4.

To finish the study of the particular cases for the family of iterative processes given by
(11), we observe that the uniqueness Theorem 3 is valid for each of the methods described
in this section, taking into account that the radius R will be obtained using (21), (23),
(25) or (27).

4.2 On the accessibility from the ball of convergence

Finally, we study the theoretical accessibility of the methods developed in the previous
section, we show as the balls of convergence are in these cases. As all of this iterative
methods are, derivative-free methods, we will use the non-differentiable equation

3

f(z)=2— 02> —plz| =0 (28)

where o = 1 = 1/40 and we use the divided diference given by [z,y; f] = [@-JW - 4nq

can define o
s g3 f1 = [w, 0; fIIF < 2lpl + 3lolllzl[(le = ul + [y = ol]), with z € Q
This equation (28) has 3 different roots:

21 ~ —6.4031242374328485, 29 =0, 23 ~ 6.244997998398398
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The basin of attraction of a root z* is defined as the set of points whose iterations
converge to the root z*. In order to see the accessibility, we draw basins of attraction, a
point is painted in red if the iteration of the method starting in the point converges to
the root z1, in blue if it converges to 2o, in yellow if it converges to z3 and in black those
points for which there is no convergence to any of the roots.

Figure 7: Back Steffensen method ball of Figure 8: Center Steffensen method ball
convergence of convergence

Now, we consider z* = 0 as solution of f(z) =0. If z € B(0,r), it follows
s 11— [ 25 A1) < 20l + 2o el — =1 + lly — 31).
Therefore, we consider the functions
w(ty, t2) = 2[u| + 3o|r(t +t2), @(t1,t2) = 2|p| + 2|o|r(ts +t2)
Notice that the condition (C4) for (IV) method giben in (27):
B (w((2+aa)t,(1+ba)t)+w((1+aa)t,d+ (1+ba)t)—1=0
in this case for (28) is
B (4|p] + |o| r(ba(a + b) + 13)t + 2|o|rd) — 1 =0,

and gets

‘o 1 — B(4|p|+2|o[rd) 40— B(4+ 2r0)

Blo|r (bala +b) +13)  [r(ba(a+ b) + 13)
Remark. We observe that in the previous equation in order to compute the ball of conver-
gence, it appears the expression a + b. This fact, shows us that the methods for with the
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sum of both parameters we obtain the same radius of the ball of convergence. For exam-
ple, for Steffensen’s method (a+b = 0+ 1), Backward-Steffensen’s method (a+b = 1+0)
and some Generalized Steffensen-type methods (a 4+ b= 0.5+ 0.5 =0.25+0.75 = ...) we
obtain the same value of the radius.

Now, we take Z = 0.01, then 6 = 0.01, and § = 1.02564.

For Steffensen’s method, Backward-Steffensen’s method and Generalized Steffensen-
type methods (such as a + b = 1), we obtain:

R=135671, (1+a)R=298477, &(R,5+ (1+a)R) = 0.354038 < 1

On the other hand, if in Generalized Steffensen-type methods we consider a +b = 0.5
and a + b = 0.3 the ball of convergence have the radii R; = 1.47839 and R, = 1.5371
respectively.

So, in all previous situations, the hypotheses of the local convergence result are fulfilled
and the sequence {z,} is well defined and converges to z* = 0.

Using the radius of convergence associated to the methods we draw the ball in white.
In Figures 9-10 the convergence balls associated to different methods are shown.

L L L L
=55 =275 0. 275 55

Figure 9: The Generalized Steffensen Figure 10: The Generalized Steffensen
method with a =b=1/2 method with a = b= 15/100
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5 Another iterative processes with central divided
differences

As we can seen, the iterative processes free-derivative defined by means central divided
differences have a special role in the resolution of equations. In general, the central divided
differences approximate better the derivative than other type of divided differences. In
this situation, the approximation is better when the data are near of the point where we
want approximate the derivative. For apply this idea, we consider the iterative processes
given by the following algorithm:

{ T given in €2,

29
Tpi1 = Tp — [Tn — N F(20), 20 + 0, F(2,); FI ' F(2,), n>0. (29)
where {\,} and {u,} are two convergent sequences of positive real numbers. We denote

lim A, =X and lim 6, =60. In general, as you can see in the Section 6, the best
n—-+o0o n—-+00

situations will appear when {\,}, {0,} C (0,1) and even when A =6 = 0.
Taking into account that, for each n € N, we have

[z = An F(20) = 27 [n = &[] + Anl[ F'(2n) — F(27)]] (30)

[z = 2"l 4+ All[wn, 275 Fl(2n — %) |[l|2n — 27|

(14 Aa) ||z, — |

VAR VANVA

and, analogously, we obtain
|20 — On F(x,) — 27| < (1 + O a)|z, — 27,

where A = max{\,,n € N} and ® = max{f,,n € N}. Then, we have that w;(t) =
(14 Aa)t and wy(t) = (1 4 Oa)t.
On the other hand, notice that the equation (17) in (C4) is now

Bw((2+Aa)t,(1+Oa)t)+w(l+Aa)t,d+(1+0a)t)) —1=0, (31)

and condition (C5): B(z*, R) C Q, with R = max{(1+Aa)R, (1+©a)R}, and S&((1+
ac)R,0+ (1+ba)R) # 1.
So, we obtain the following result for iterative methods given in (29).

Theorem 4 Suppose that conditions (C1)-(C3) are satisfied and we assume the fol-
lowing items:

(i) The equation
Bw((2+Aa)t,(1+0a)t)+0((1+Aa)t, 0+ (1+Oa)t))—1=0

has at least one positive real root, the smallest positive root is denoted by R.
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(i) B(z*,R) C Q, with R = maz{(1+ A )R, (1+ 0O )R}, and B&((1+Aa)R, 5+ (1+
©«a)R) # 1.

Then, sequence {x,} generated for xy € B(xz*, R), with xy # z*, by the method (29) is
well defined, remains in B(z*, R) for each n € N and converges to x*, a solution of the
equation F(x) = 0.

In order to draw the basins of attraction for iterative methods (29), a point is painted
in red if the iteration of the method starting in the point converges to the root z1, in blue
if it converges to zs, in yellow it it converges to z3 and in black those points for which
there is no convergence to any of the roots. We choose a tolerance of 1072 and a limit of
200 iterations.

4F

h L L L L h n n n L
-4, 2. 0. 2. 4. 4. -2. 0. 2. 4.

Figure 11: The method (29) with A, = Figure 12: The method (29) with A, =
0n:%. 7 and Qn:f—fr’l.

In Figures 11-14 the basins of attraction associated to the roots of the polynomial
f, given in (28), are shown. As it can be seen, again, the best methods in terms of
convergence are the methods in which A, and 6,, are close and moreover, as n — 0o, both
sequences tend to 0. Method even is better if the order of convergence to 0 is greater.

6 Numerical experiment

We consider as in [11], nonlinear integral equations of mixed Hammerstein type of type

x(s) = f(s) +/ G(s,t) H(t,z(t))dt, s € [a,b], (32)
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[ i
L

L L L L h n n n L
-4, -2, 0. 2. 4. 4. -2. 0. 2. 4.

Figure 13: The method (29) with A, = Figure 14: The method (29) with A, = X
On = 5. and 0, = .

where —oc0 < a < b < 400, f, Gy H are known functions and x is a solution to be
determined. Integral equations of this type appear very often in several applications to
real world problems. For example, in problems of dynamic models of chemical reactors
[6], vehicular traffic theory, biology and queuing theory [8]. The Hammerstein integral
equations also appear in the electro-magnetic fluid dynamics and can be reformulated
as two-point boundary value problems with certain nonlinear boundary conditions and
in multi-dimensional analogues which appear as reformulations of elliptic partial differ-
entiable equations with nonlinear boundary conditions (see [22] and the references given
there).

Solving equation (32) is equivalent to solve F(z) = 0, where F : Q C Cla,b] — Cla, 0]
and

b
[F(x)](s) = x(s) — f(s) —/ G(s,t)H(t,z(t))dt, s € la,bl.

Examples where the operator F is differentiable are found in [12]. Note that any
operator F' is differentiable if the divided difference of first order of F' is Lipschitz or
Hoélder continuous in €, see [20].

If we consider (32) where G is the Green function in [a,b] X [a,b], we then use a
discretization process to transform equation (32) into a finite dimensional problem by
approximating the integral of (32) by a Gauss-Legendre quadrature formula with m nodes:

/ q(t) dt ~ iwiQ(ti)7

where the nodes t;, in [a, b], and the weights w; are determined.
If we denote the approximations of z(t;) and f(¢;) by z; and f;, respectively, with
i = 1,2,...,m, then equation (32) is equivalent to the following system of nonlinear
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equations:

xi:fi+zain(tj7xj)7 j:1727"'7m7 (33)
j=1
where (bte)(ts—a)
wJZTa’ Js,
aij = w;G(ti, ;) = { (b—t)(ti-a) .
W= J > 1.

Now, system (33) can be written as
Fx)=x—f—Az=0, F:R™ — R™, (34)
where
X = (21,2, . .. 7$m)T7 f=(fi,fo ... ,fm)Ta A= (%j)??j:lv
z = (H(ty,x1), H(ty, 23), ..., H(tm, zm))".

As in R™ we can consider divided difference of first order that do not need that the
function F' is differentiable (see [20]), we then use the divided difference of first order
given by [u,v; F] = ([u,v; F;;)=; € L(R™,R™), where

1

[u7V7F]Z] = (E(Uh s Uy Ujgds - avm) - E(ula ceey Uj—1, Vg, . 7Um))a

U

u = (U, Us, ..., Up)" and v = (vy,v2,...,0m)".

We consider a nonlinear integral equation of Hammerstein-type defined in (32) with
a=0,b=1, G(s,t) is the Green function and H(t,z(t)) = \x(t)® + p|x(t)|. Then, the
system of nonlinear equations (34) is of the form

F(x)=x—f—A(Avx + pwy) =0, F:R™ — R™, (35)
where
Ve = (2323, a3 )T, wy = (|21], |22], ..., |2m])7,

A € R and p # 0, it is obvious that the function F' defined in (35) is nonlinear and
non-differentiable. In this case, we have

21|~y
lé T +y§ ool [yl
T2|—|Y2
Ty T + Yy 2|~ lym]
Tm—Ym

Then, [u,v; F] = I — (AB + uC), where B = (by;)7%_, with by = ag(27 + i + y7)
and b;; =0ifi # j, C = (cl-j)?fj:l with ¢; = ay; |xlf| |yl and ¢;; =0if i #£ j .
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Note that the divided difference of first order of the function F' satisfies a condition of
type
[z, y; Fl=[u,v; Fl| < L+ K (|lz—ul|+[ly—v[); L, K > 0;2,y,u,v € Qi # y;u # v, (36)
in R™, instead of a condition of Lipschitz or Holder type. Then, we can solve equations
where the operator F' is non-differentiable, as for example equation (35).

Now, we consider f = 0 in (35), m = 8 and 2 = B(0, 7). Then, the system of nonlinear
equations (35) is of the form

F(x)=x— Az, zj =Ml 4+ plz|, j=1,...,m.
Obviously, in this case, x* = 0 is a solution of F'(x) = 0. In these conditions, we have
1,y F] = [, v FI|| < 37[A[JA[[(lIx = ull + [ly = vI[) + 2[ul [[All
and then, it follows
13, y; F] = x5, % FlI| < 27 AL ANl ([[x = x*|| + lly = x[]) + 2[| [[A]l-
So, we obtain the following functions
w(s,t) = [[A[|(3T[A[(s + 1) +2|u[) and @(s,t) = [[A[[(JA[27(s + t) + 2|u]),

Indeed, if we choose 7 = 3.5 and X with ; =0.01, j =1,...,8, and A = = 1/9, we
obtain
|A|| = 0.123632, & =0.01, a=1.05495, B =1.0130.

where § = |[o, & F] ||
For Steffensen and Backward-Steffensen methods, (20) and (22), has as unique solution
for R = 1.576497 and it is verified

(1+a)R=3239623 <7 and Bu((1+aa)R, 0+ (1+ a)R)=0.498376 < 1.

Then, the hypotheses of Theorem 4 are fulfilled. The ball of convergence and the domain
of uniqueness of solution are, respectively

{x € R®: |Ix|| < 1.576497} and {x € R®: ||x|| < 5.81157} N K.

With the same initial conditions, we will show the behavior of the distinct methods.
Then, we obtain the following results

The Central-Steffensen method, equation (24), The equation (25) has as unique solu-
tion R = 1.10266 and it is verified

(1+a)R=226591 <7 and B((1+aa)R,d+ (14 a)R) = 0.470658 < 1.

Then, the hypotheses of Theorem 4 are fulfilled.
In the case of Generalized Steffensen-type method, we consider, for example, a = b =
0.25. The equation (27) has as unique solution R = 2.0079 and

R =max{R, (1+aa)R, (1+ba)R} = 2.53749, B&((1+aa)R,s+(1+ba)R) = 0.523613 #£ 1
and therefore B(z*, R) C . Then, the hypotheses of Theorem 4 are fulfilled.
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7

Conclusions

Many problems can be written in the form of equation (1) using Mathematical Modeling.
In this study, in particular, we provide a local convergence analysis for iterative processes
free of derivatives (4), when the operator F' is not necessarily Féchet differentiable. The
sufficient convergence conditions are weaker and more flexible than in earlier studies. An
application is provided involving mixed Hammerstein nonlinear integral equation with
application in real world problems. Finally, we show that the dynamical analysis of the
generalized method can be as good as we want by menas of choosing appropriate values
of the parameters a and b (small and close).
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