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a b s t r a c t

In this paper, we present numerical treatment for a compaction-driven Darcian flow
viscoelastic rock magma model. This problem is a strongly coupled system of one
quasi-linear parabolic equation and one integro-differential equation for the density
and the porosity of the flow. The numerical discretization uses cell-centered finite
difference method, combined with semi-implicit and implicit time stepping. Implicit–
explicit schemes, as well as implicit–explicit iterative algorithms have been developed
to solve the corresponding discrete problems. Some properties (positivity, boundness,
conservation) of the numerical solutions are investigated. Convergence study of the
iteration processes is also presented. The efficiency and the accuracy of the proposed
methods are illustrated numerically by test examples with near-real data.

© 2019 Published by Elsevier B.V.

1. Introduction

We consider a two-phase model for isothermal motion of magma in porous rock. This process is described by the laws
of conservation of mass for each phase, Darcy’s law for the fluid phase (taking into account the motion of a solid skeleton),
the rheological law and the equation of the conservation of momentum for the system [1–3]. For posing the differential
problem, we follow A. Papin and M. Tokareva [2]. The authors consider the following quasi-linear system

∂(1 − φ)ρs
∂t

+
∂

∂x
((1 − φ)ρsvs) = 0, (1)

∂(ρf φ)
∂t

+
∂

∂x
(ρf φvf ) = 0, (2)

φ(vf − vs) = −k(φ)
(
∂pf
∂x

− ρf gm

)
, (3)

∂vs

∂x
= −

1
ξ (φ)

pe, pe = ptot − pf , (4)

∂ptot
∂x

= −ρtotgm, ptot = φpf + (1 − φ)ps, ptot = φρf + (1 − φ)ρs, (5)
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with a solution, defined in the domain (x, t) ∈ QT = Ω × (0, T ), Ω = (0, 1). To complete the model, the following
boundary and initial conditions are imposed

vs(0, t) = vs(1, t) = 0, vf (0, t) = vf (1, t) = 0, (6)

φ(x, 0) = φ0(x), ρf (x, 0) = ρ0(x). (7)

The quantities in (1)–(5) have the following physical meaning: ρf , ρs, vf , vs are real density and velocity of fluid and solid
phases, respectively; φ is the porosity, pf and ps are pressures of the fluid and solid phases; pe is the efficiency pressure;
ptot is the total pressure; ρtot is the density of the two-phase medium; gm is the density of the mass forces; k(φ) is the
coefficient of filtration; ξ (φ) is the coefficient of the rock shear viscosity (specific function).

The problem (1)–(7) is written in Eulerian coordinates (x, t). The unknown functions are φ, ρf , vf , vs, pf , ps. The real
density of the solid particles ρs is assumed to be a constant. In the system (1)–(5) we use the equation of state of the
fluid pf = p(ρf ). An often used relation in the applications is

dpf
dρf

=
1
βf ρf

, (8)

or in the case of slightly compressible flow [4, p. 15]

dpf
dρf

=
1

βf ρ
0
f
, (9)

where ρf is the fluid compressibility, βf is the compressibility coefficient of the pore-fluid and ρ0
f is the density at the

reference pressure p0 [1,3–5].
In [2,6], the following dependencies of the functional parameters of the problem are used:

k(φ) =
k
µ
φn, ξ (φ) = vφ−r , (10)

where r ∈ [0, 2], n = 3, v, µ, k are positive environmental settings [6].
Numerical methods for standard two-phase models have been subject of extensive research in the last decades. The

problems are solved numerically by finite difference and finite element schemes [7], mixed finite element method [8,9],
cell-centered finite difference method, based on lowest order Raviart–Thomas elements [10,11], finite volume based
discretization [12–14].

Initial boundary-value problems for similar structured system of equations as (1)–(5) are numerically investigated by
Crank–Nicolson and alternating direction implicit finite difference schemes [6] and finite element method [15].

Finite volume method for 2D Darcy fluid non-linear non-local reaction–advection–diffusion problem is developed
in [16].

In all these papers the authors treat directly the corresponding model problems.
In this work we study the model system (1)–(7) without mass forces, i.e. gm = 0 in Eqs. (3), (5). The formulation of such

compact equations is mathematically simple, but the resulting system (see (12)–(16)) consists of one strongly non-linear
parabolic equation and one non-linear integro-differential equation. Analytical solutions to this strongly coupled system
are cumbersome even in particular cases. In this paper, we therefore present numerical solutions.

The rest of the paper is organized as follows. In the next section we formulate the transformed differential problem.
In Section 3, we develop different finite difference discretizations of the model problem. In Section 4 we discuss the
realization of the corresponding numerical schemes. Section 5 is devoted to the investigation of the properties of the
numerical solutions. Illustrative numerical examples are given and discussed in Section 6. Finally, we wind up the paper
with some concluding remarks.

2. The differential problem

In this section we follow [2,17], where the case gm = 0 is studied and in view of (5), ptot = p∗(t). To be self-contained,
we describe the derivation of the model, suggested in [17].

Suppose that x = x(τ , x, t) is a solution of the Cauchy problem

∂x
∂τ

= vs(x, τ ), x|τ=t= x.

We set x̂ = x(0, x, t), take x̂ and t for new independent variables, taking into account that 1−φ(x̂, t) = (1−φ0(x̂)) ∂ x̂
∂x (x̂, t)

and pass to mass Lagrangian variables (y, t) by the rule

(1 − φ0 (̂x))d̂x = dy, y(̂x) =

∫ x̂

0
(1 − φ0(η))dη ∈ [0, 1].
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Now, preserving the notation x for the variable y and with essential use of the zero mass forces, the authors of [17] obtain
from (1)–(5) the system

∂(1 − φ)
∂φ

+ (1 − φ)2
∂vs

∂x
= 0,

∂

∂t

(
ρf

φ

1 − φ

)
+
∂

∂x

(
ρf φ(vf − vs)

)
= 0,

φ(vs − vf ) = k(φ)(1 − φ)
∂p(ρf )
∂x

, (1 − φ)
∂vs

∂x
= −a1(φ)pe, pe = p∗(t) − p(ρf ).

Next, we introduce dimensionless variables

t ′ =
t
t1
, x′

=
x
L
, v′

s =
vs

v1
, v′

f =
vf

v1
, ρ ′

f =
ρf

ρs
,

p′

f =
pf
p1
, p′

s =
ps
p1
, p′

e =
pe
p1
, p′

tot =
ptot
p1
, a′

1(φ) =
a1(φ)
a0

, k′(φ) =
k(φ)
k1

,

(11)

where L =

∫ 1

0

(
1 − φ0(η)

)
dη, t1 =

L
v1

, a0 =
v1

Lp1
, k1 =

v1L
p1

, v1, p1 are fixed positive constants, having dimension of

velocity and pressure, accordingly.
Further, taking into account that the domain of x′ is the interval [0,1] and omit the dashed notation, we derive the

following dimensionless parabolic-ordinary differential equations system for finding functions ρf and φ:

∂

∂t

(
a(φ)ρf

)
−
∂

∂x

(
K (φ)b(ρf )

∂ρf

∂x

)
= 0, (12)

∂G(φ)
∂t

= p(ρf ) − p∗(t), p∗(t) =

∫ 1

0

a1(φ)
1 − φ

pf dx
[∫ 1

0

a1(φ)
1 − φ

dx
]−1

≡ P∗(φ, ρf ). (13)

Here, a1(φ) = 1/ξ (φ), the function G(φ) is defined by the equation
dG(φ)
dφ

=
1

(1 − φ)a1(φ)
(14)

and

a(φ) =
φ

1 − φ
, K (φ) = k(φ)(1 − φ), b(ρf ) = ρf

dp(ρf )
dρf

. (15)

The system (12)–(15) is subjected to the initial conditions (7) and boundary conditions
∂ρf

∂x
(0, t) = 0,

∂ρf

∂x
(1, t) = 0. (16)

In [2] is proved a local solvability of the problem (12)–(16) in Q t∗ for φ0
∈ C2+α(Ω), ρ0

∈ C2+α(Ω), i.e. there exist t∗,
such that (φ(x, t), ρf (x, t)) ∈ C2+α,1+α/2(Q t∗ ), α ∈ (0, 1]. Moreover, authors show that if

dpf (ρ0)
dx

⏐⏐
x=0 =

dpf (ρ0)
dx

⏐⏐
x=1 = 0, 0 < m0 ≤ φ0(x) ≤ M0 < 1, 0 < m1 ≤ ρ0(x) ≤ M1 < ∞, x ∈ Ω,

for given positive constants m0, M0, m1 and M1, then 0 < φ < 1 and ρf > 0 for (x, t) ∈ Q t∗ .
The problem (12)–(16) is challenging for a numerical investigation because of the several difficulties: non-linearity in

the diffusion and evolution terms, spatial non-local nature of p∗, the degeneration of the coefficient functions in (12)–(14)
and their derivatives.

The aim of the present work is to develop and analyze efficient numerical methods that preserve qualitative properties
of the differential problem, for solving the integro-differential initial boundary value problem (7), (12)–(16).

3. Difference schemes approximations

In this section we propose implicit and implicit–explicit finite difference discretizations of (7), (12)–(16), treating the
time derivative in (13) by two different ways.

In the space–time domain [0, 1] × [0, T ] we define a uniform mesh whτ = wh × wτ :

wh = {xi = ih, i = 0, 1, . . . ,N, Nh = 1},

wτ = {tj = tj−1 + τj, j = 1, 2, . . . , J, t0 = 0, tJ = T }.

The numerical solutions at grid nodes (xi, tj) are denoted by ρ j
i = ρf (xi, tj) and φ

j
i = φ(xi, tj). Further, for a mesh functions

y (defined on whτ ) and the derivative of the function G(φ), we use the following notations

yi := yji = y(xi, tj), ŷi := yj+1
i = y(xi, tj+1), g(v) =

dG(φ)
dφ

⏐⏐
φ=v
.
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Following [18], we approximate the system (12), (13) by two different finite difference schemes:
IMEX schemes (IMEX 1 and IMEX 2):

a(̂φi )̂ρi − a(φi)ρi
τj

=
1
h

[
K(̂φi+1)B(ρi+1)

ρ̂i+1 − ρ̂i

h
− K(̂φi)B(ρi)

ρ̂i − ρ̂i−1

h

]
, i = 1, 2, . . . ,N − 1,

a(̂φ0 )̂ρ0 − a(φ0)ρ0
τj

=
2
h

[
K(̂φ1)B(ρ1)

ρ̂1 − ρ̂0

h

]
,

a(̂φN )̂ρN − a(φN )ρN
τj

= −
2
h

[
K(̂φN )B(ρN )

ρ̂N − ρ̂N−1

h

]
,

(17)

G∗ (̂φi) − G∗(φi)
τj

= p(ρi) − p∗(tj), i = 0, 1, . . . ,N,

p∗(tj) = P∗

h (φ, ρ) :=

N∑
i=0

αi
a1(φi)
1 − φi

p(ρi)

(
N∑
i=0

αi
a1(φi)
1 − φi

)−1

,

(18)

where

G∗ (̂φi) =

{
g(φi )̂φi, IMEX1,
G(̂φi), IMEX2,

G∗(φi) =

{
g(φi)φi, IMEX1,
G(φi), IMEX2,

αi =

{
1
2 , if i = {0,N},

1, otherwise,

Bi(v) =
1
2
(b(vi−1) + b(vi)) , Ki(v) =

1
2
(K (vi−1) + K (vi)) .

Implicit schemes (IS 1 and IS 2):

a(̂φi )̂ρi − a(φi)ρi
τj

=
1
h

[
K(̂φi+1)B(̂ρi+1)

ρ̂i+1 − ρ̂i

h
− K(̂φi)B(̂ρi)

ρ̂i − ρ̂i−1

h

]
, i = 1, 2, . . . ,N − 1,

a(̂φ0 )̂ρ0 − a(φ0)ρ0
τj

=
2
h

[
K(̂φ1)B(̂ρ1)

ρ̂1 − ρ̂0

h

]
, (19)

a(̂φN )̂ρN − a(φN )ρN
τj

= −
2
h

[
K(̂φN )B(̂ρN )

ρ̂N − ρ̂N−1

h

]
,

G∗ (̂φi) − G∗(φi)
τj

= p(̂ρi) − p∗(tj+1), p∗(tj+1) = P∗

h (̂φ, ρ̂), i = 0, 1, . . . ,N, (20)

where

G∗ (̂φi) =

{
g (̂φi )̂φi, IS1,
G(̂φi), IS2,

G∗(φi) =

{
g (̂φi)φi, IS1,
G(φi), IS2.

4. Realization of the schemes

Our aim is to implement the numerical discretizations in more efficient way, such that to save a computational time.

4.1. IMEX schemes

A natural way for the realization of the scheme (17), (18) is first to solve the (18) in order to find φ̂ =
(̂
φ0, φ̂1, . . . , φ̂N

)
and then to compute ρ̂ =

(̂
ρ0, ρ̂1, . . . , ρ̂1

)
from (17), for already known φ̂. Thus, in general, at each time level, instead of

solving one systems of 2(N + 1) algebraic equations, we solve two systems of N + 1 equations.
Applying IMEX 1, from (18) we find φ̂ explicitly.
Regarding to IMEX 2, we compute φ̂ on two stages. First, from (18) we find G(̂φ). Next, to compute φ̂ at each space

grid node, we solve the non-linear equation

G(̂φ) =

∫ φ̂

φ0

1
(1 − v)a1(v)

dv. (21)
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Fig. 1. Time-stepping with IMEX schemes for solving (12)–(16).

For example, in view of (10), (14), for some particular values of r , we have

G(̂φ) = ν

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ln
(
φ̂(1 − φ0)(φ0)−1(1 − φ̂)−1

)
− (̂φ)−1

+ (φ0)−1, r = 2,

2 arctanh(̂φ1/2) − 2φ̂−1/2
− 2 arctanh

(
(φ0)1/2

)
+ 2(φ0)−1/2, r = 1.5,

ln
(
φ̂(1 − φ0)(φ0)−1(1 − φ̂)−1

)
, r = 1,

2 arctanh(̂φ1/2) − 2 arctanh
(
(φ0)1/2

)
, r = 0.5.

Similarly, for p defined by (8) we determine

p(ρ) = β−1
f ln

ρ

ρ0
f

+ p0 (22)

and in the case of (9), we get

p(ρ) = β−1
f

(
ρ

ρ0
f

− 1

)
+ p0. (23)

To solve (21) we require iteration method (for example, Newton method), using as initial guess φ - the solution at old
time level.

On Fig. 1 we illustrate the realization of the IMEX schemes.

4.2. Implicit scheme

To find the solution (̂ρi, φ̂i) of the non-linear system of algebraic equation (19)–(20), generated from the fully implicit
discretization, we need iterative methods. To this aim, we initiate Picard-like iterative process.

Iteration schemes (ItS 1 and ItS 2). Let m = 0, 1, . . . be the number of iteration and denote the mth approximation
of the solutions by the vectors

φ(m)
=

(
φ

(m)
1 , φ

(m)
2 , . . . , φ

(m)
N

)
, ρ(m)

=

(
ρ
(m)
1 , ρ

(m)
2 , . . . , ρ

(m)
N

)
.

For each m = 0, 1, . . . we perform the following two stages.
First, from the (20) we compute φ(m+1):

G∗

(
φ

(m+1)
i

)
− G∗(φi)

τj
= p

(
ρ
(m)
i

)
− p∗(tj+1), p∗(tj+1) = P∗

h (φ
(m), ρ(m)), i = 0, 1, . . . ,N, (24)
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where

G∗

(
φ

(m+1)
i

)
=

⎧⎨⎩ g
(
φ

(m)
i

)
φ

(m+1)
i , ItS1,

G
(
φ

(m+1)
i

)
, ItS2,

G∗(φi) =

{
g
(
φ

(m)
i

)
φi, ItS1,

G(φi), ItS2.

Next, for already known φ(m+1), from (20) we find ρ(m+1) :

a
(
φ

(m+1)
i

)
ρ
(m+1)
i − a(φi)ρi

τj
=

1
h

[
K
(
φ

(m+1)
i

)
B
(
ρ
(m)
i+1

) ρ(m+1)
i+1 − ρ

(m+1)
i

h

−K
(
φ

(m+1)
i

)
B
(
ρ
(m)
i

) ρ(m+1)
i+1 − ρ

(m+1)
i

h

]
, i = 1, . . . ,N − 1,

a
(
φ

(m+1)
0

)
ρ
(m+1)
0 − a(φ0)ρ0

τj
=K

(
φ

(m+1)
0

)
B
(
ρ
(m)
1

) ρ(m+1)
1 − ρ

(m+1)
0

h2 ,

a
(
φ

(m+1)
N

)
ρ
(m+1)
N − a(φN )ρN

τj
= − K

(
φ

(m+1)
N

)
B
(
ρ
(m)
N

) ρ(m+1)
N − ρ

(m+1)
N−1

h2 .

(25)

As initial guess we use the solution value (ρi, φi) at previous time level i.e. ρ(0)
i = ρi, φ

(0)
i = φi, i = 0, 1, . . . ,N .

Note that the scheme (25) is a linear with respect to ρ(m+1) and the coefficient matrix is a tridiagonal. To solve the
system of algebraic equations (25) we apply modified Thomas method.

Let us rewrite Eqs. (25) in the form

− A(m)
i ρ

(m+1)
i−1 + C (m)

i ρ
(m+1)
i − B(m)

i ρ
(m+1)
i+1 = Fi, i = 0, 1, . . . ,N, (26)

where

A(m)
i = K

(
φ

(m+1)
i

)
B
(
ρ
(m)
i

) τj
h2 , B(m)

i = K
(
φ

(m+1)
i+1

)
B
(
ρ
(m)
i+1

) τj
h2 , i = 1, 2, . . . ,N − 1,

A0 = 0, B0 = 2K
(
φ

(m+1)
1

)
B
(
ρ(m)(m)

1

) τj
h2 , AN = 2K

(
φ

(m+1)
N−1

)
B
(
ρ(m)

N−1
) τj
h2 , BN = 0,

C (m)
i = A(m)

i + B(m)
i + a(̂φ(m+1)

i ), Fi = a(φi)ρi, i = 0, 1, . . . ,N.

By recurrent formulas we compute three sweep coefficients (right sweep) [18]:
Forward elimination

α
(m)
i+1 =

B(m)
i

C (m)
i − α

(m)
i A(m)

i

, i = 1, 2, . . . ,N − 1, α(m)
1 =

B(m)
0

C (m)
0

,

β
(m)
i+1 =

A(m)
i β

(m)
i + F (m)

i

C (m)
i − α

(m)
i A(m)

i

, i = 1, 2, . . . ,N − 1, β (m)
1 =

F0
C (m)
0

.

(27)

Backward substitution

ρ
(m+1)
N =

FN + A(m)
N β

(m)
N

C (m)
N − A(m)

N α
(m)
N

, ρ
(m+1)
i = α

(m)
i+1ρ

(m+1)
i+1 + β

(m)
i+1, i = N − 1, . . . , 1, 0. (28)

We measure the distance between the vectors ρs and ρ l by the strong norm

d(ρs, ρ l) = ∥ρs, ρ l
∥ = max

i=1,...,N
|ρs

i − ρ l
i |. (29)

The convergence of the process is controlled by the difference between to consecutive iterations

∥ρ(m+1)
− ρ(m)

∥ < ε, (30)

where ε > 0 is a small constant. The iteration process continues until the inequality (30) is satisfied.
If the inequality (30) does not hold even for one solution component ρ(m+1)

l , l ∈ {0, 1, . . . ,N}, the procedure (27), (28),
(30), implies post computation of all ρ(m+1)

i , i = 0, 1, . . . ,N . When the number of such components ρl(m+1) is small, this
post computation is practically non-useful.

Improvement. In order to save a computational time, we make the following. On the first iteration the computations
are fully performed by formulas (27), (28). At the checking of the convergence with the inequality (30) we store all



M.N. Koleva and L.G. Vulkov / Journal of Computational and Applied Mathematics 366 (2020) 112338 7

Fig. 2. Time-stepping with ItS schemes for solving (12)–(16).

numbers l for which this inequality fails. Then, on the next iteration only the coefficients α(m)
l+1, β

(m)
l+1 in (27) and the solution

ρ
(m+1)
l in (28) are post computed and the others are taken from the previous iteration.
On Fig. 2 we illustrate the realization of ItS 1 and ItS 2.

5. Properties of the numerical solution

In this section we discuss positivity, boundness and conservation properties of the numerical solution, obtained by the
proposed numerical schemes. Also, we investigate convergence of the iteration process (24)–(25).

We observe conservation properties of the differential problem (12)–(16). Indeed, integrating the (12) over interval
[0, 1] and taking into account the boundary conditions (16), we get∫ 1

0
a(φ)ρf dx =

∫ 1

0
a(φ0)ρ0

f dx. (31)

Further, integrating (13), first over interval [0, t] and then over [0, 1], we derive∫ 1

0

(
G(φ) − H(φ, ρf )

)
dx =

∫ 1

0

(
G(φ0) − H(φ0, ρ0

f )
)
dx, (32)

where H(φ, ρ) = P(ρf ) − P∗(φ, ρf ) and

P(ρf ) − P(ρ0
f ) =

∫ t

0
p
(
ρf (x, s)

)
ds, P∗(φ, ρf ) − P∗(φ0, ρ0

f ) =

∫ t

0
P∗
(
φ(x, s), ρf (x, s)

)
ds.

Let us represent (13) in the form

dφ
dt

= [g(φ)]−1 (p(ρf ) − p∗(t)
)
. (33)
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As before, integrating (33) over [0, t] and then over [0, 1], we obtain∫ 1

0

(
φ − H(φ, ρf )

)
dx =

∫ 1

0

(
φ0

− H(φ0, ρ0
f )
)
dx, (34)

where H(φ, ρ) = P(ρf ) − P∗(φ, ρf ) and

P(ρf ) − P(ρ0
f ) =

∫ t

0
[g(φ(x, s))]−1p

(
ρf (x, s)

)
ds,

P∗(φ, ρf ) − P∗(φ0, ρ0
f ) =

∫ t

0
[g(φ(x, s))]−1P∗

(
φ(x, s), ρf (x, s)

)
ds.

Further, we use the following notations

∥f (x, t)∥∞ = max
(x,t)∈ΩT

|f (x, t)|, v+
= max{0, v}, v−

= max{0,−v}, vmax = max
0≤i≤N

vi, vmin = min
0≤i≤N

vi.

and set the typical for the model assumptions:

βf > 0; ξ (φ) > 0, a1(φ) > 0 for φ > 0;

0 < m1 ≤ ρ0(x) ≤ M1 < ∞, 0 < m0 ≤ φ0(x) ≤ M0 < 1 for x ∈ [0, 1] and

p(ρf ) > 0, a(φ) > 0, K (φ) ≥ 0, b(ρ) > 0, g(φ) > 0 for ρ > 0, 0 < φ < 1.

(35)

5.1. IMEX schemes (17), (18)

First, we establish that the implicit–explicit numerical schemes preserve the conservation properties (31), (32) or (34).
Indeed, multiplying the first (i = 0) and the last (i = N) equation in (17) by h/2 and all other equations (i = 1, 2, . . . ,N−1)
by h, then summing up all resulting equations, we get

h
N∑
i=0

αia(̂φi )̂ρi = h
N∑
i=0

αia(φ
j
i )ρ

j
i . (36)

Hence, applying (36) at each time level and returning to the notations φj+1
= φ̂, ρ j+1

= ρ̂, we reach to the trapezoidal
rule approximation of (31)

h
N∑
i=0

αia(φ
j+1
i )ρ j+1

i = h
N∑
i=0

αia(φ
j
i )ρ

j
i = h

N∑
i=0

αia(φ
j−1
i )ρ j−1

i = · · · = h
N∑
i=0

αia(φ0
i )ρ

0
i .

Consider (18), IMEX 2. As before, multiplying the first (i = 0) and the last (i = N) equation in (17) by h/2 and all other
equations (i = 1, 2, . . . ,N − 1) by h, then summing up all resulting equations to obtain

h
N∑
i=0

αiG(̂φi) − h
N∑
i=0

αiG(φi) = τj

(
h

N∑
i=0

αip(ρi) − h
N∑
i=0

P∗

h (φi, ρi)

)
. (37)

Write (37) for each time layer j = 0, 1, . . . , J and summing up all these equation, we get

h
N∑
i=0

αiG(φ
j+1
i ) − h

N∑
i=0

αiG(φ0
i ) =

j∑
l=0

τl

(
h

N∑
i=1

αip(ρ l
i ) − h

N∑
i=1

αiP∗

h (φ
l
i, ρ

l
i )

)
. (38)

Note that the right-hand side of (38) is the approximation (by trapezoidal rule in space and rectangular rule in time) of∫ 1

0

(
P(ρf ) − P(ρ0

f )
)
dx −

∫ 1

0

(
P∗(φ, ρf ) − P∗(φ0, ρ0

f )
)
dx,

while the left-hand side of (38) is the approximation (by trapezoidal rule) of∫ 1

0
G(φ)dx −

∫ 1

0
G(φ0)dx.

Therefore, (38) is the discrete version of (32).
Treating (18), IMEX 1 similarly, we derive

h
N∑
i=0

αiφ
j+1
i − h

N∑
i=0

αiφ
0
i =

j∑
l=0

τl

(
h

N∑
i=1

αi[g(φl
i)]

−1 (p(ρ l
i ) − P∗

h (φ
l
i, ρ

l
i )
))
, (39)

which is a discretization of (34).
The numerical schemes IMEX 1 and IMEX 2 differ by different treating the (18). So, we will discuss them separately.
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Theorem 1 (Positivity and Boundness, IMEX 1). Let the assumptions (35) hold and the time step satisfy the inequality

τj < min

{
min
0≤i≤N

φig(φi)(
p(ρi) − p∗(tj)

)− , min
0≤i≤N

(1 − φi)g(φi)(
p(ρi) − p∗(tj)

)+
}
. (40)

Then, at each time level, for the numerical solution of IMEX 1 we have ρ̂ > 0, 0 < φ̂ < 1.

Proof. Suppose that the statement of the theorem is fulfilled at time level tj, namely ρ > 0, 0 < φ < 1. From (18), in
view of (35), we have

φ̂i = φi + τj
(
p(ρi) − p∗(tj)

)
[g(φi)]−1

≥ φi − τj
(
p(ρi) − p∗(tj)

)− [g(φi)]−1 . (41)

Therefore φ̂i > 0, i = 0, 1, . . . ,N , if

τj < min
0≤i≤N

φig(φi)(
p(ρi) − p∗(tj)

)− . (42)

Similarly, we obtain

φ̂i − 1 = φi − 1 + τj
(
p(ρi) − p∗(tj)

)
[g(φi)]−1

≤ φi − 1 + τj
(
p(ρi) − p∗(tj)

)+ [g(φi)]−1 .

Now, it is clear that φ̂i − 1 < 0, i = 0, 1, . . . ,N for

τj < min
0≤i≤N

(1 − φi)g(φi)(
p(ρi) − p0(tj)

)+ . (43)

Let us rewrite the equations in (17) in the form

− Aiρ̂i−1 + Ciρ̂i − Biρ̂i+1 = Fi, i = 0, 1, . . . ,N, (44)

where

Ai = K(φi)B(ρi)
τj

h2 , B̂i = K(̂φi+1)B(ρi+1)
τj

h2 , i = 1, 2, . . . ,N − 1,

A0 = 0, B0 = 2K(̂φ1)B(ρ1)
τj

h2 , AN = 2K(̂φN−1)B(ρN−1)
τj

h2 , BN = 0,

Ci = Ai + Bi + a(̂φi), Fi = a(φi)ρi, i = 0, 1, . . . ,N.

Taking into account that φ̂ is known (see Section 4.1) and 0 < φ̂ < 1, if the time step satisfies the conditions (42),
(43), in view of (35), we deduce that the coefficient matrix of the system (44) is strictly diagonal dominant with positive
main diagonal elements and non-positive off-diagonal entries. Therefore, being a tridiagonal M-matrix, the inverse of the
coefficient matrix of (44) is a totally positive [19, Theorem 2.2]. Since Fi is positive, we conclude that ρ̂ > 0 [20].

Collecting the conditions (42), (43), we obtain (40). The proof is completed, applying the same considerations at each
time level. □

Theorem 2 (Positivity and Boundness, IMEX 2). Let the function (14) is continuous in the interval (0,1), the assumptions (35)
hold and the time step satisfy the inequality

τj < min

{
min
0≤i≤N

G(φi) − G(0 + ϵ)(
p(ρi) − p∗(tj)

)− , min
0≤i≤N

G(1 − ϵ) − G(φi)(
p(ρi) − p∗(tj)

)+
}
, 0 < ϵ ≪ 1. (45)

Then, at each time level, for the numerical solution of IMEX 2 we have ρ̂ > 0, 0 + ϵ ≤ φ̂ ≤ 1 − ϵ.

Proof. Suppose that at time level tj, the statement of the theorem is fulfilled, namely ρ > 0, 0+ ϵ ≤ φ ≤ 1− ϵ. Consider
the (18), where φ̂ is the solution of (21). Thus, we have

F (̂φi) := G(̂φ) −

∫ φ̂i

φ0i

1
(1 − v)a1(v)

dv

= G(φi) + τj
(
p(ρi) − p∗(tj)

)
−

∫ φ̂i

φ0i

1
(1 − v)a1(v)

dv

=

∫ φi

φ0i

1
(1 − v)a1(v)

dv + τj
(
p(ρi) − p∗(tj)

)
−

∫ φ̂i

φ0i

1
(1 − v)a1(v)

dv

= τj
(
p(ρi) − p∗(tj)

)
−

∫ φ̂i

φi

1
(1 − v)a1(v)

dv = 0, i = 0, 1, . . . ,N.
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We investigate the conditions that guarantee the solvability of F (̂φi) = 0, i = 0, 1, . . . ,N in the interval [0 + ϵ, 1 − ϵ].
Let p(ρi) − p∗(tj) > 0. In this case, we obtain

F(1 − ϵ) = τj
(
p(ρi) − p∗(tj)

)+
−

∫ 1−ϵ

φi

1
(1 − v)a1(v)

dv,

F(0 + ϵ) = τj
(
p(ρi) − p∗(tj)

)+
+

∫ φi

0+ϵ

1
(1 − v)a1(v)

dv > 0.

Therefore, F(1 − ϵ) < 0, if

τj < min
0≤i≤N

∫ 1−ϵ
φi

1
(1−v)a1(v)

dv(
p(ρi) − p∗(tj)

)+ = min
0≤i≤N

G(1 − ϵ) − G(φi)(
p(ρi) − p∗(tj)

)+ . (46)

Similarly, for p(ρi) − p∗(tj) < 0, we get

F(1 − ϵ) = −τj
(
p(ρi) − p∗(tj)

)−
−

∫ 1−ϵ

φi

1
(1 − v)a1(v)

dv < 0,

F(0 + ϵ) = −τj
(
p(ρi) − p∗(tj)

)−
+

∫ φi

0+ϵ

1
(1 − v)a1(v)

dv.

Hence, to ensure that F(0 + ϵ) > 0, we have to restrict the time step by

τj < min
0≤i≤N

∫ φi
0+ϵ

1
(1−v)a1(v)

dv(
p(ρi) − p∗(tj)

)− = min
0≤i≤N

G(φi) − G(0 + ϵ)(
p(ρi) − p∗(tj)

)− . (47)

The conditions (46), (47) ensure that the equation F (̂φi) = 0 has at least one root φ̂i ∈ [0 + ϵ, 1 − ϵ].
Observing that F (̂φi) is increasing function for φ̂i ∈ [0 + ϵ, 1 − ϵ], because dF (̂φi)

dφ̂i
=

dG(̂φi)
dφ̂i

> 0 (in view of (35)), we
conclude that φ̂i is the unique solution in [0+ϵ, 1−ϵ]. Therefore, if the condition (45) is satisfied, we have 0+ϵ ≤ φ̂ ≤ 1−ϵ.

The proof that ρ̂ > 0 is the same as in Theorem 1. □

Taking into consideration the particular form of the function g(φ) = a0ν[(1−φ)φr
]
−1 (see (11), (14)), we obtain more

precise time step restrictions. For example, consider IMEX 1. Observing that for r > 0, g(φ) attains minimum value in
(0, 1) at φmin = r/(r + 1) and g(φmin) < a0ν, from (41) we deduce that φ̂i > 0, i = 0, 1, . . . ,N , if

τj < a0ν

⎧⎪⎨⎪⎩
min
0≤i≤N

φi(
p(ρi) − p∗(tj)

)− , 0 ≤ r < 1,

∥
(
p(ρ) − p∗(tj)

)−
∥

−1, 1 ≤ r ≤ 2.
(48)

Similarly, φ̂i < 1, i = 0, 1, . . . , if the time step is restricted as follows

τj < a0ν∥
(
p(ρ) − p∗(tj)

)+
∥

−1. (49)

Moreover, taking into account that pjmin ≤ p∗(tj) ≤ pjmax, ∥p(ρ j) − p∗(tj)∥ ≤ pjmax and in view of (22), (23), (35) we
obtain rough, but illustrative estimates for the solution of IMEX 1.

For clarity, let us restore the notations φj+1
= φ̂, assume that at time layer tj the solution satisfies the inequalities

0 < mj
0 ≤ φ

j
i ≤ M j

0 < 1, 0 < mj
1 ≤ ρ

j
i ≤ M j

1 < 1 (m0
0 = m0, m0

1 = m1, M0
0 = M0, M0

1 = M1) and set p0 = 0. Thus, from
(11) and (41) we consequently derive

φ
j+1
i ≥ φ

j
i − τj

pjmax

a0νp1
≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mj

0 − τjD1 ln
M j

1

m0
1
, for p defined by (22),

mj
0 − τjD1

M j
1

m0
1
, for p defined by (23),

D1 =
L

νv1βf
.

Let 0 < mj+1
0 < mj

0. Hence, φ
j+1
i ≥ mj+1

0 , i = 0, 1, . . . ,N , if

τj ≤
1
D1

(
mj

0 − mj+1
0

)⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
ln

M j
1

m0
1

]−1

, for p defined by (22),

m0
1

M j
1

, for p defined by (23).

(50)
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In the same manner, we get

φ
j+1
i ≤ φ

j
i + τj

pjmax

a0νp1
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M j

0 + τjD1 ln
M j

1

m0
1
, for p defined by (22),

M j
0 + τjD1

M j
1

m0
1
, for p defined by (23).

Suppose that there exists M j+1
0 , such that M j

0 < M j+1
0 < ∞. Then, φj+1

i ≤ M j+1
0 , i = 0, 1, . . . ,N , if the time step satisfies

the inequality

τj ≤
1
D1

(
M j+1

0 − M j
0

)⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
ln

M j
1

m0
1

]−1

, for p defined by (22),

m0
1

M j
1

, for p defined by (23).

(51)

Next, we consider Eqs. (44). Evidently, in view of (35) we have

Ciρ̂i ≤ Aiρ̂max + Biρ̂max + a(φi)ρmax, i = 0, 1, . . . ,N,

Ciρ̂i ≥ Aiρ̂min + Biρ̂min + a(φi)ρmin, i = 0, 1, . . . ,N.

Since a(φ), 0 < φ < 1 is strictly increasing function, we obtain

ρ̂max ≤ M j+1
1 , ρ̂min ≥ mj+1

1 , M j+1
1 =

mj
0M

j
1

(
1 − M j+1

0

)
(
1 − mj

0

)
M j+1

0

, mj+1
1 =

(
1 − mj+1

0

)
M j

0m
j
1

mj+1
0

(
1 − M j

0

) . (52)

5.2. Implicit scheme (19), (20)

Similarly to the IMEX schemes, one can show that IS 1 and IS 2 preserve conservation properties (31) and (32) or (34),
respectively. The only difference is that now in (38) and (39) the time layer summation

∑j
l=0 is replaced by

∑j+1
l=1 .

In view of the realization of the implicit discretization by the iteration schemes ItS 1, ItS 2, we may consider positivity
and boundness of the numerical solution at each time level and at each iteration. Applying similar considerations as for
the IMEX schemes, we obtain the following results.

Theorem 3 (Positivity and Boundness, ItS 1). Let the assumptions (35) hold and the time step satisfy the inequality

τj < min

⎧⎪⎨⎪⎩min
0≤i≤N

φig(φ
(m)
i )(

p
(
ρ
(m)
i

)
− P∗

h (φ(m), ρ(m))
)−
, min
0≤i≤N

(1 − φi)g(φ
(m)
i )(

p
(
ρ
(m)
i

)
− P∗

h (φ(m), ρ(m))
)+

⎫⎪⎬⎪⎭ .
Then, at each time level and at each iteration, for the numerical solution of IMEX 1 we have ρ(m+1) > 0, 0 < φ(m+1) < 1.

Theorem 4 (Positivity and Boundness, ItS 2). Let the function (14) is continuous in the interval (0,1), the assumptions (35)
hold and the time step satisfy the inequality

τj < min

{
min
0≤i≤N

G(φi) − G(0 + ϵ)(
p(ρi) − P∗

h (φ(m), ρ(m))
)− , min

0≤i≤N

G(1 − ϵ) − G(φi)(
p(ρi) − P∗

h (φ(m), ρ(m))
)+
}
, 0 < ϵ ≪ 1.

Then, at each time level, and at each iteration, for the numerical solution of IMEX 2 we have ρ(m+1) > 0, 0+ϵ ≤ φ(m+1)
≤ 1−ϵ.

For the particular representation of the functions g(φ), p(ρ), we may deduce similar to (48)–(52) results. On this base,
further we assume:

(A1) There exists positive constants mj
0, M

j
0, m

j
1, M

j
1, j = 0, 1, . . . , J , such that for a sufficiently small time step τj, we

have

0 < mj
0 ≤ φ

j
i ≤ M j

0 < 1, 0 < mj
1 ≤ ρ

j
i ≤ M j

1 < 1, j = 0, 1, . . . , J.

(A2) Function a(φ), K (φ), [g(φ)]−1, f (φ) = a1(φ)/(1 − φ), p(ρ), b(ρ) and their derivatives are bounded for 0 < m0∗ ≤

φ ≤ M∗

0 < 1, 0 < m1∗ ≤ ρ ≤ M∗

1 < 1.
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Theorem 5 (Convergence of the Iteration Process, ItS 1). Let the time step τj is sufficiently small, and the assumptions (A1),
(A2) hold. Then, for the iteration process ItS 1, we have

lim
m→∞

(
∥ρ(m+1)

− ρ(m)
∥ + ∥φ(m+1)

− φ(m)
∥
)

= 0.

Proof. From (A1) follows that there exists constants m0∗ = minj m
j
0, M

∗

0 = maxj M
j
0, m1∗ = minj m

j
1, M

∗

1 = maxj M
j
1, such

that 0 < m0∗ ≤ φ
j
i ≤ M∗

0 < 1, 0 < m1∗ ≤ ρ
j
i ≤ M∗

1 < 1, i = 0, 1, . . . ,N , j = 0, 1, . . . , J .
Let

w
(m+1)
i = ρ

(m+1)
i − ρ

(m)
i , z(m+1)

i = φ
(m+1)
i − φ

(m)
i , i = 0, 1, . . . ,N (53)

and for 0 < θ si < 1, s = {1, 2, 3, 4} involve the notations˜̃φi = φ
(m+1)
i + θ1i φ

(m)
i , φ̃i = φ

(m)
i + θ2i φ

(m−1)
i , ˜̃ρ i = ρ

(m+1)
i + θ3i ρ

(m)
i , ρ̃i = ρ

(m)
i + θ4i ρ

(m−1)
i . (54)

Consider the iteration procedure ItS 1 at the time layer tj. Subtracting the (24) at the mth iteration from (24) at the
m + 1-st iteration and applying Taylor series expansion around (φ(m−1)

i , ρ
(m−1)
i ), resulting in

z(m+1)
i =τj[g

(
φ

(m)
i

)
]
−1
(
p
(
ρ
(m)
i

)
− P∗

h

(
φ

(m)
i , ρ

(m)
i

))
− τj

[
g
(
φ

(m−1)
i

)]−1
(
p
(
ρ
(m−1)
i

)
− P∗

h

(
φ

(m−1)
i , ρ

(m−1)
i

))
=τj

(
d
[
g (̃φ)

]−1

dφ
(̃φi)

)(
p
(̃
ρi
)
− P∗

h

(̃
φi, ρ̃i

))
z(m)
i + τj

[
g
(̃
φi
)]−1 dp(ρ)

dρ
(̃ρi)w

(m)
i

−τj
[
g (̃φ)

]−1
(
P∗

h

(
φ

(m)
i , ρ

(m)
i

)
− P∗

h

(
φ

(m−1)
i , ρ

(m−1)
i

))
.

Therefore, in view of the conditions of the theorem, for 0 < m0∗ ≤ φ ≤ M∗

0 < 1, 0 < m1∗ ≤ ρ ≤ M∗

1 < 1 we may
estimate

∥z(m+1)
∥ ≤τj

d
[
g(φ)

]−1

dφ

 ∥p(ρ)∥
z(m)

+ τj

dp(ρ)dρ

[
g(φ)

]−1
 w(m)


+ τj

[g(φ)]−1(P∗

h

(
φ(m), ρ(m))

− P∗

h

(
φ(m−1), ρ(m−1))) .

(55)

Let us consider the term P∗

h

(
φ

(m)
i , ρ

(m)
i

)
−P∗

h

(
φ

(m−1)
i , ρ

(m−1)
i

)
. Applying Taylor series expansion for P∗

h

(
φ

(m)
i , ρ

(m)
i

)
around

(φ(m−1)
i , ρ

(m−1)
i ) and using the notations (54), we obtain

P∗

h

(
φ

(m)
i , ρ

(m)
i

)
− P∗

h

(
φ

(m−1)
i , ρ

(m−1)
i

)
=

N∑
i=0

dp(ρ)
dρ (̃ρi)f (̃φi)∑N

i=0 f (̃φi)
w

(m)
i

+

N∑
i=0

⎛⎜⎝ df (φ)
dφ (̃φi)p(̃ρi)∑N

i=0 f (̃φi)
−

df (φ)
dφ (̃φi)

∑N
i=0 p(̃ρi)f (̃φi)(∑N

i=0 f (̃φi)
)2

⎞⎟⎠ z(m)
i .

Consequently,P∗

h

(
φ(m), ρ(m))

− P∗

h

(
φ(m−1), ρ(m−1)) ≤

dp(ρ)dρ

 ∥w(m)
∥ + 2∥p(ρ)∥

df (φ)dφ
[f (φ)]−1

 ∥z(m)
∥. (56)

Taking into account (56), from (55) we get

∥z(m+1)
∥ ≤ τj∥p(ρ)∥

(d[g(φ)]−1

dφ

+ 2
df (φ)dφ

[f (φ)g(φ)]−1
)z(m)

+ 2τj

dp(ρ)dρ
[g(φ)]−1

 w(m)
.

Hence,

∥z(m+1)
∥ ≤ τjC1∥z(m)

∥ + τjC2∥w
(m)

∥, (57)

where

C1 = C11C12, ∥p(ρ)∥∞ ≤ C11,

d[g(φ)]−1

dφ


∞

+ 2
df (φ)dφ

[f (φ)g(φ)]−1


∞

≤ C12, 2
dp(ρ)dρ

[g(φ)]−1


∞

≤ C2.
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Now, we consider equations (25), 1 ≤ i ≤ N − 1. Subtract the ith equation at mth iteration from the same equation,
but corresponding to the m + 1-st iteration. The resulting equation is

1
τj

(
a
(
φ

(m+1)
i

)
ρ
(m+1)
i − a

(
φ

(m)
i

)
ρ
(m)
i

)
=

1
h2

(
K
(
φ

(m+1)
i+1

)
B
(
ρ
(m)
i+1

)(
ρ
(m+1)
i+1 − ρ

(m+1)
i

)
−K

(
φ

(m)
i+1

)
B
(
ρ
(m−1)
i+1

)(
ρ
(m)
i+1 − ρ

(m)
i

)
− K

(
φ

(m+1)
i

)
B
(
ρ
(m)
i

)(
ρ
(m+1)
i − ρ

(m+1)
i−1

)
+K

(
φ

(m)
i

)
B
(
ρ
(m−1)
i

)(
ρ
(m)
i − ρ

(m)
i−1

))
.

Applying Taylor series expansion, rearranging the expression and in view of the notations (53), (54), we derive(
a(̃̃φi)
τj

+
K
(̃̃
φi+1

)
B
(̃
ρi+1

)
+ K

(̃̃
φi
)
B
(̃
ρi
)

h2

)
w

(m+1)
i −

K
(̃̃
φi+1

)
B
(̃
ρi+1

)
h2 w

(m+1)
i+1 −

K
(̃̃
φi
)
B
(̃
ρi
)

h2 w
(m+1)
i−1

= −
1
τj

da
dφ

(̃̃φi )̃̃ρ iz
(m+1)
i

+

(
1

2h2

dK
dφ

(̃̃φi+1)B
(̃
ρi+1

)(̃̃
ρ i+1 − ˜̃ρ i

))
z(m+1)
i+1 −

(
1

2h2

dK
dφ

(̃̃φi−1)B
(̃
ρi
)(̃̃
ρ i − ˜̃ρ i−1

))
z(m+1)
i−1

+

(
1

2h2

dK
dφ

(̃̃φi)B
(̃
ρi+1

)(̃̃
ρ i+1 − ˜̃ρ i

)
−

1
2h2

dK
dφ

(̃̃φi)B
(̃
ρi
)(̃̃
ρ i − ˜̃ρ i−1

))
z(m+1)
i

+

(
1

2h2

db
dρ

(̃ρi+1)K
(̃̃
φi+1

)(̃̃
ρ i+1 − ˜̃ρ i

))
w

(m)
i+1 −

(
1

2h2

db
dρ

(̃ρi−1)K
(̃̃
φi
)(̃̃
ρ i − ˜̃ρ i−1

))
w

(m)
i−1

+

(
1

2h2

db
dρ

(̃ρi)K
(̃̃
φi+1

)(̃̃
ρ i+1 − ˜̃ρ i

)
−

1
2h2

db
dρ

(̃ρi)K
(̃̃
φi
)(̃̃
ρ i − ˜̃ρ i−1

))
w

(m)
i .

Further, forasmuch as the conditions of the theorem and (35), we apply maximum principle and for 0 < m0∗ ≤ φ ≤

M∗

0 < 1, 0 < m1∗ ≤ ρ ≤ M∗

1 < 1, we estimate

w(m+1)
 ≤

(
da
dφ (φ)ρ

a(φ)

+
τj

h2

4dKdφ (φ)
B
(
ρ
)
ρ

a(φ)


)z(m+1)

+
τj

h2

4 db
dρ

(ρ)
K
(
φ
)
ρ

a(φ)

 w(m)


=

(
C21 +

τj

h2 C22

) z(m+1)
+

τj

h2 C23
w(m)

, (58)

where


da
dφ (φ)ρ

a(φ)


∞

≤ C21,

4dKdφ (φ)
B
(
ρ
)
ρ

a(φ)


∞

≤ C22,

4 db
dρ

(ρ)
K
(
φ
)
ρ

a(φ)


∞

≤ C23.

Substituting (57) in (58), we derivew(m+1)
 ≤ τjC1

(
C21 +

τj

h2 C22

) z(m)
+

(
τjC2

(
C21 +

τj

h2 C22

)
+ C23

τj

h2

) w(m)
. (59)

The sum of (57) and (59) leads to the inequalityz(m+1)
+

w(m+1)
 ≤ τjC1

(
C21 +

τj

h2 C22 + 1
) z(m)

+

(
τjC2

(
C21 +

τj

h2 C22 + 1
)

+ C23
τj

h2

) w(m)
. (60)

Let C23 > 0. Then, if

τj < min
{

h2

C23ψ1
,
C23ψ1

C1C̃
,
C23ψ1

ψ2C2C̃

}
, C̃ = C23ψ1(C21 + 1) + C22,

1
ψ1

+
1
ψ2

< 1, ψ1, ψ2 > 1, (61)

from (60) we getz(m+1)
+

w(m+1)
 ≤ I

(z(m)
+

w(m)
) , where 0 < I < 1. (62)

Thus, z(m+1)
+

w(m+1)
 ≤ Im (z(1)+

w(0)
) . (63)
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Consider the case C23 = 0. If the time step satisfies the restriction

τj < min
{

h
ψ1C22 max{C1, C2}

,
1

ψ2 max{C1, C2}(C21 + 1)

}
, (64)

we consequently obtain (62), (63), which leads to the statement of the theorem. □

Studding the functions in (A1) and their derivatives, from their particular representations (8), (9), (10), (11) (14), (15),
(22) and (23), we find

C1 = D1p
{

3, if r ∈ {0} ∪ [1, 2],
mr−1

0∗ (3r + (1 − 3r)m0∗), if r ∈ (0, 1), p =

⎧⎪⎨⎪⎩
ln

M∗

1

m1∗
, for (22), p0 = 0,

M∗

1

m1∗
, for (23), p0 = 0,

C21 = D2
M∗

1

m0∗(1 − m0∗)
, C22 = 8D2

⎧⎨⎩ M∗

1 , for (8),
(M∗

1 )
2

m1∗
, for (9),

C23 = 4D2

{ 0, for (8),
M∗

1

m1∗
, for (9),

C2 = 2
D1

M∗

1
, D2 =

k
µv1Lβf

.

So, the time step restrictions (61), (64) become:
– for p, given by (8), (22), p0 = 0:

τj <
min

{
h

8ψ1D2M∗
1
,

m0∗(1−m0∗)
ψ2(m0∗(1−m0∗)+D2M∗

1 )

}
D1 max

{
3 ln M∗

1
m0∗
, 2

M∗
1

} , r ∈ {0} ∪ [1, 2];

τj <
min

{
h

8ψ1D2M∗
1
,

m0∗(1−m0∗)
ψ2(m0∗(1−m0∗)+D2M∗

1 )

}
D1 max

{
mr−1

0∗ (3r + (1 − 3r)m0∗) ln
M∗

1
m0∗
, 2

M∗
1

} , r ∈ (0, 1);

– for p, given by (9), (22), p0 = 0 and K = D1(ψ1D2M∗

1 + (ψ1 + 2M∗

1 )m0∗(1 − m0∗)):

τj <

{
m1∗h2

4D2M∗

1ψ1
,
m1∗m0∗(1 − m0∗)ψ1

3M∗

1K

}
, r ∈ {0} ∪ [1, 2]; (65)

τj <

{
m1∗h2

4D2M∗

1ψ1
,

m1∗m0∗(1 − m0∗)ψ1

min
{
2ψ2m∗

1/M
∗

1 ,M
∗

1m
r−1
0∗ (3r + (1 − 3r)m0∗)

}
K

}
, r ∈ (0, 1).

Theorem 6 (Convergence of the Iteration Process, ItS 2). Let the time step τj is sufficiently small, and the assumptions (A1),
(A2) hold. Then, for the iteration process ItS 2, we have

lim
m→∞

(
∥ρ(m+1)

− ρ(m)
∥ + ∥φ(m+1)

− φ(m)
∥
)

= 0.

Proof. Consider the iteration process ItS 2 at time layer tj. Let us subtract the (24) at mth iteration from (24) at m+ 1-st
iteration and apply Taylor series expansion around (φ(m−1)

i , ρ
(m−1)
i ). Thus in view of the notations (53), (54), we get

G(φ(m+1)
i ) − G(φ(m)

i ) = τj

(
dp(ρ)
dρ

(̃ρi)w
(m)
i − P∗

h

(
φ

(m)
i , ρ

(m)
i

)
+ P∗

h

(
φ

(m−1)
i , ρ

(m−1)
i

))
.

Regarding to [2, Lemma 2], for the particular function a1(φ) = a0(φ)φλ1 (1− φ)λ2 , λ1, λ2 > 0, 0 < φ < 1, there exist a
positive constant Cφ ≥ a0(φ), such that Cφ |G(φ1) − G(φ1)| ≥ |φ1 − φ2|. To prove this result, authors use the definition of
functions G(φ), a1(φ) and show that

G(φ1) − G(φ1) =

∫ φ2

φ1

ds
(1 − s)a1(s)

≥ C−1
φ (φ1 − φ2).

Taking into account (21), incorporated in the iteration procedure of ItS 2, we have

G(φ(m+1)
i ) − G(φ(m)

i ) =

∫ φ
(m+1)
i

φ
(m)
i

ds
(1 − s)a1(s)
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and therefore, since (A1) is satisfied, we state that |G(φ(m+1)
i ) − G(φ(m)

i )| ≥ C−1
φ |φ

(m+1)
i − φ

(m)
i |. Further, using this result,

applying Taylor series expansion around point (φ(m−1)
i , ρ

(m−1)
i ) and from the conditions of the theorem and (56), we obtain

∥z(m+1)
i ∥ ≤ 2τjC−1

φ

dp(ρ)dρ

 w(m)
+ 2τjC−1

φ

df (φ)dφ
[f (φ)]−1

 ∥p(ρ)∥
z(m)


= τjC1

z(m)
+ τjC2

w(m)
,

where

2C−1
φ

df (φ)dφ
[f (φ)]−1

 ∥p(ρ)∥ ≤ C1, 2C−1
φ

dp(ρ)dρ

 ≤ C2.

Next, we proceed similarly as in the proof of Theorem 5 and reach to the inequalities (62), (63) under conditions (61),
(64). □

6. Numerical simulations

In this section we verify the order of convergence and the efficiency of the proposed numerical schemes IMEX 1, IMEX
2, ItS 1 and ItS 2, for coefficient functions chosen as in (10), (11), (14), (15), r = 1, n = 3 and p(ρf ), given by (9), (23),
p0 = 0.

For convergence test we deal with dimensionless exact solution φ(x, t) = 0.5e−t cos2(0.5πx) + 0.45, ρf (x, t) =

0.5et sin2(0.5πx)+ 3. To this aim, we add appropriate residual terms in the right-hand sides of Eqs. (12), (13) and choose
the initial solution according to the exact one.

We set the following model parameters for andesite magma [6,15,21,22]:
– fluid compressibility βf = 4.10−10 Pa−1;
– fluid viscosity µ = 2.6.10−4 Pa.s;
– rock share viscosity ν = 100Pa.s;
– permeability porosity proportional constant k = 5.10−7 m2

and for the dimensionless procedure (11), we take v1 = 5.106 m/s.
Eq. (21) is solved by Matlab function ‘fsolve’ with default stopping criteria, while the tolerance in (30) is ε = 10−12.
We provide computational results for the following methods:
– IMEX 1 and IMEX 2, where the generated system of algebraic equations (44) is solved by Thomas method (i.e. (27),

(28), written for the system (44));
– ItS 1, ItS 2, realized by improved Thomas method (27), (28);
– ItS 1(1), where the system (27), (28) is solved by the MATLAB fast direct solver ‘mldivide’, which "employs different

solvers to handle different kinds of coefficient matrices. The various cases are diagnosed automatically by examining the
coefficient matrix’’.1

Let φ(xi, T ) and ρf (xi, T ) be the solutions of the exact test solution problem (12)–(16) for x = xi and t = T , while φJ
i

and ρ J
i are the corresponding numerical solutions at grid node (xi, tJ ). We give errors eNφ = φ(xi, T )−φ

J
i , e

N
ρ = ρf (xi, T )−ρ

J
i

in maximal discrete norm (EN
φ , E

N
ρ ) and L2 norm (EN

φ , E
N
ρ ):

EN
φ = max

0≤i≤N
|eNφ |, EN

ρ = max
0≤i≤N

|eNρ |, EN
φ = h

(
i=N∑
i=0

(
eNφ
)2)1/2

, EN
ρ = h

(
i=N∑
i=0

(
eNρ
)2)1/2

and the order of convergence:

CRN
φ = log2

E2N
φ

EN
φ

, CRN
ρ = log2

E2N
ρ

EN
ρ

, CRN
φ = log2

E2N
φ

EN
φ

, CRN
ρ = log2

E2N
ρ

EN
ρ

,

at final time T = 0.5.
For the considered test example, the theoretical time step restriction (61), (65) is:

τj ≲ min{0.04h2, 0.003}, ψ1 =
9
8
, ψ2 = 9, i.e. τj ≲ 0.04h2 for N ≥ 20.

It is not a surprise that we may compute the solution successfully for more relaxed time step restriction. As the expected
order of convergence (in maximal norm) of the presented discretizations is O(|τj| + h2), |τj| = max0≤j≤J τj, for the
convergence test we set fixed time step τ = hγ .

1 see MATLAB documentation https://www.mathworks.com/help/matlab/math/systems-of-linear-equations.html.

https://www.mathworks.com/help/matlab/math/systems-of-linear-equations.html
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Fig. 3. Convergence rate in maximal discrete norm for φ (left) and ρ (right) for IMEX 1 (line with squares), IMEX 2 (line with triangles), ItS 1 (line
with circles), ItS 2 (line with diamonds) and ItS 1(1) (line with stars), τ = h2; comparison line (solid black line), indicating the slope for the exact
second order of convergence.

Fig. 4. Convergence rate in L2 discrete norm for φ (left) and ρ (right) for IMEX 1 (line with squares), IMEX 2 (line with triangles), ItS 1 (line with
circles), ItS 2 (line with diamonds) and ItS 1(1) (line with stars), τ = h2; comparison line (solid black line), indicating the slope for the exact order
of convergence 2.5.

Let γ = 2. On Figs. 3 and 4 we plot errors in maximal and L2 norms, respectively, versus the number of space grid
nodes N in logarithmic scale. The slopes of the obtained lines correspond to the order of convergence in space — second
in the maximal norm and 2.5 in L2 norm. Because of the fixed ratio between the time and the space step size (τ = h2),
we deduce that the order of convergence (in maximal norm) in time is not less than one. We detect better accuracy for
ItS 1 and ItS 1(1).

On Figs. 5 and 6 we depict errors in maximal and L2 norms, respectively, versus the CPU time (in seconds) in logarithmic
scale. Obviously, the iteration scheme ItS 1 is more efficient in comparison with the corresponding non-iteration scheme
(IMEX 1), while for IMEX 2 and ItS 2we have just the opposite situation. We observe better efficiency of ItS 1 in comparison
with all other considered methods.

In Table 1 we give the average number of iterations at each time level (required to reach the desired precision) for
different number of space grid nodes, for ItS 1, ItS 2 and ItS 1(1). Although, the ItS 2 requires smaller number of iterations,
the computational process is more time consummative in juxtaposition with ItS 1 and ItS 1(1), see Figs. 5 and 6.

Let γ = 1. With this test example, we show that despite of the theoretical time step restriction, the numerical solution,
computed by ItS 1, τ = h converges to the exact one. In this case, N = J and the time step is dominated over h2. Thus,
by the computations with consecutively double refined meshes, we get the order of convergence in time.
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Fig. 5. Error in maximal discrete norm vs. CPU time for φ (left) and ρ (right) for IMEX 1 (line with squares), IMEX 2 (line with triangles), ItS 1 (line
with circles), ItS 2 (line with diamonds) and ItS 1(1) (line with stars), τ = h2 .

Fig. 6. Error in L2 discrete norm vs. CPU time for φ (left) and ρ (right) for IMEX 1 (line with squares), IMEX 2 (line with triangles), ItS 1 (line with
circles), ItS 2 (line with diamonds) and ItS 1(1) (line with stars), τ = h2 .

Table 1
Average number of iterations at each time level for ItS 1, ItS 2 and ItS 1(1), τ = h2 .
N 20 40 80 160 320 640 1280

ItS 1 5.915 4.768 4.079 3.413 3.000 3.000 2.679
ItS 2 3.980 3.995 3.000 3.000 3.000 2.000 2.000
ItS 1(1) 5.915 4.768 4.079 3.413 3.000 3.000 2.679

On Fig. 7 we plot errors in maximal norm versus the number of space grid nodes N in logarithmic scale for ItS 1, ItS
1(1) and IMEX 1. The slopes of the obtained lines correspond to first order of convergence in time. A better precision is
achieved by ItS 1 and ItS 1(1).

Fig. 8 represents errors in maximal norm versus the CPU time (in seconds) in logarithmic scale for ItS 1, ItS 1(1) and
IMEX 1. It is evident, that ItS 1 performs faster than ItS 1(1) and IMEX 1. The average number of iterations at each time
level for ItS 1 and ItS 1(1), τ = h are given in Table 2.

7. Conclusions

We proposed accurate implicit and implicit–explicit difference schemes to simulate one-dimensional motion of magma.
Specifically, we developed robust iterative algorithms for solving the non-linear systems of difference equations. Positivity,
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Fig. 7. Convergence rate in maximal discrete norm for φ (left) and ρ (right) for IMEX 1 (line with squares), ItS 1 (line with circles), ItS 1(1) (line
with stars), τ = h; comparison line (solid black line), indicating the slope for the exact first order of convergence.

Fig. 8. Error in maximal discrete norm vs. CPU time for φ (left) and ρ (right) for IMEX 1 (line with squares), ItS 1 (line with circles) and ItS 1(1)
(line with stars), τ = h.

Table 2
Average number of iterations at each time level for ItS 1 and ItS 1(1), τ = h.
N 80 160 320 640 1280 2560 5120 10241 20481 40961

ItS 1 8.341 7.086 6.230 5.470 5.003 4.407 4.140 4.000 3.538 3.217
ItS 1(1) 8.341 7.086 6.230 5.470 5.000 4.407 4.140 4.000 3.539 3.217

boundness and conservation properties of the numerical solutions are studied. The proposed schemes are tested on magma
motion examples with near-real data. We observe better performance of the iteration scheme ItS 1, which is realized by
improved Thomas method.

Our future work will be focused on the following directions — derivation and numerical analysis of the 2D extension of
the model (12)–(16); investigation of the cases, when the porosity (volume-fraction of fluid) vanishes, see e.g. [8,10,11].
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