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Abstract

He, S. and S. Strom, The electromagnetic inverse problem in the time domain for a dissipative slab and a point
source using invariant imbedding: Reconstruction of the permittivity and conductivity, Journal of Computa-
tional and Applied Mathematics 42 (1992) 137-155.

We consider the electromagnetic inverse problem for a point source above an inhomogeneous dissip~tive slab
of permittivity €(z) and conductivity o(z), where z is the depth. Two inversion algorithms based on the
invariant imbedding equations derived in previous work are used to reconstruct both the permittivity and the
conductivity. Both algorithms use two-sided reflection data and one of them also uses transmission data.
Results are presented for clean and noisy data.

Keywords: Wave splitting, invariant imbedding, inverse scattering, dissipative stratified media, reconstruction
of permittivity and conductivity.

1. Introduction

The problem of reconstructing the physical properties of a stratified medium from scattered
field data has received considerable attention and both time- and frequency-domain methods
have been used (see, e.g., [2,9,16,17] and earlier references given there). In the present paper
we consider the case of a transient point source above an inhomecgeneous slab in which the
permittivity e(z) and conductivity o(z) vary with the depth z. The inverse problem of
reconstructing these two functions from measured data on the slab surfaces is solved by means
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of two inversion algorithms based on invariant 1mbeddmg equations for this scattering problem
which have been derived in a prevxous paper {8]. In {8] it is shown that by means of a Hankel

P RIS 7ot ey | addieinnal

L GRIDE llll auu d.ll auunuuual applupuau.ly \-hUD\.«ll uauafuuuauuu, lh\v leb}\.«lll hau b\w fUlll u-
lated in terms of imbedding equations which are closely analogous to the imbedding equations

for plane wave normal incidence on a slab of this kind (see [9-12]). As a consequence, inversion
algorithms analogous to those considered in [10-12] can be applied to the present formulation
of the point source case. In particuiar it is noted that the “extension of data” property, which
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the point source case.

The present paper is organized as follows. In Section 2 we give a summary of those results
from [8] which are most relevant for the inverse aspect and in Section 3 we derive some
additional properties of the scattering kernels which lead to the extension of data property. In
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transmission data. An iterative inversion algorithm for which two-sided reflection data suffice is
given in Section 5. In Section 6 we illustrate the numerical performance of the inversion
algorithms for clean and noisy synthetic data.

The imbedding equations and jump relations for the various scattering kernels that describe
the scattering of a (vertical magnetic dipole) point source field from an inhomogeneous slab are
derived in {8]. In this section we summarize those reiations which wili be needed in ihe

imversion alm‘\nthmc As described in rR] the scatterine nroblem is formulated and solved in
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terms of a set of transformed ¢ nonphysncal” scattering kernels RE, T,t, V,*, W,*, where the
superscripts refer to incidence from a point source above (+) and below (—) the slab,
respectively The geometry of the problem is described in Fig. 1.

The Hertz potential U{r, z, t) of the magnetic dipole is Hankel-transformed according to
@
u(k, z, t) = [ U(r, z, t)Jo{xr)r dr, (1)
()

and the inverse probiem is soived for u(k, z, 1) (r is the radius in a cylindricai coordinate
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will be suppressed in the sequel, i.e., we write u(k, z, t) =u(z, t), etc. We consider, for
arbitrary z, the splitting

1
uf =4u—c(z) 7', (2)
o — 10, 4 afoya-1.. 1 72\
“1 T 2R TR <) U U] )
where 8, 'f = [§f(t') dt’, and ¢ =cy = (equy) "/ for 2 <0, c=c, =(e,pny) " /* for z> L. It is
convenient to change to the travel time coordinates
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Fig. 1. The scattering configuration.

and with u(z, t) = w(x, s), the wave equations and boundary conditions become
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In the new variables the splitting is given by
wi =4{w-9"w.], (12)
wi =3[w+37w]. (13)

For down-going incidence the associated reitection ana trar smission kernels R, (0, 1, s) and
T, (0, 1, s), respectively, are given by

wi (0, s)=st;'(0, 1, s—s)wi(0, s') ds’, (14)
0
wi(Ls+1) =170, Dw (0, s) + [ T7(0, 1, s =s')w{ (0, 5') ds’, (15)
[}
where
1
(0, 1)=exp[—5 fo "(A(x) - B(x)) dx]. (16)

The analogous relations for up-going incidence are given in [8]. In the invariant imbedding
approach (see, e.g., [3,5) one considers also the corresponding kernels Rf(x, y, s) and
T :(x, y, s) for the subregion [x, y], 0 <x <y < 1. We refer to [8] for further details.

We note that other types of splittings have been considered, which may be said to be
somewhat more physical in the present problem (cf. [6,7,15]). However, the motivation for our
choice of formulation is that it can be developed as a generalization of the plane wave normal
incidence case and that it provides a solution of the inverse scattering provlem in which the
permittivity €(z) and conductivity o(z) can be reconstructed simultaneously. Furthermore, the
imbedding equations are simpler in the present formulation (cf. [6,7]). It should also be
mentioned that the reflection or transmission kernels in the two different formulations are
related through a Volterra equation of the second kind, which allows an accurate computation
of the physical kernels from the nonphysical ones and vice versa (cf. [8)]).

The imbedding equations, initial values and boundary values of the reflection kernels
RE(x, y, s) for the subregion [x, y] are [8]

Ri(x,y,s)=2R;,—B(x)R} — 3[A(x) +B(x)|R{ * Ry +R:*, s>0, (17)

R{(x,y,0")=—3[A(x) - B(x)], x<y, (18)
1 1
Ry (y,y,s)= —Z;JZ(V’—C(y)s) = —2-Jy(xe(»)ls), s>0, (19)
where
R = —-3C(x){1+2% R} +1=* R} = R} (20)

(the star * denotes a time convolution) and
Ry, (x, y,s)=—2R;;+B(y)Ry —3[A(y)-B(y)IRy * Rf +R}~, s>0, (21)
Ri(x,y,0%)=1[A(y)+B(y)], x<y, (22)

1
Ry (x, x, 5) = —2=Jy(xe(x)ls), $>0, (23)
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where
Ry™=3C(y){1+2% R'+ 1% R; + R}). (24)
These kerneis are discontinuous across the piane s = 2(y —x), where they have the foliowing
jumps:
+ s=2(y-x)" _ 1 |_[y ’ ,1
RE(x, v, ) B85 = 1 A(y) - B(y)] ex| [ B(=") dx (25)
X
0 [ ]
R (x y AIS=2y=X) 10 Ay B ] agn I YOI P /AN
10X5 Y5 §)is=2y-x) slAtx) T B(x)] exp| | B(x7)dx7). (£0)
X

For times less than one round trip through the subregion [x, yl, the position of the rear
interface has no effect on R*(x, y, s). Thus
. A e AN \
Ri(x,y,s)=Ry|x, c+(35) ,s), s<2(y-—x), (27)
_ - +
Ry (x,y, s)=R; (y—(%s) ,y,s), s<2(y—x). (28)
The transmission kernels T(x, y, s) (cf. [8, Eq. (111)]) and its resolvent W (x, y, s) satisfy the
equation
S
T{x,y,s)+W(x,y.s)+ [ T(x,y,s—s"YWyx,y,s')ds'=0 (29)

W (v v =Ll A(vNLR(\NIRT L R+ &« W\ 4+ WX > {30\
Wi.(x,y,s)=31A4(x)+B(x)|{R; + R] wi+Wwy, s>0, (30)
where
WrE=1C(x){1+1* R} +1+ W, +1% R} + W,}. (31)
[o ) PR TSRS, DU & 2% ¥ 4 . i P P
I'he kernels V,*(x, y, s) satisfy
")
Ri(y. v. V=Vit(x.v.s Y+ [ TAx. v s—s'W.t(x. v, s'Yds’ (32)
Ax] Ay S 9y I \*y Yo oy JO-l\"717v J71 o\ U J \ 7
and
rS ) ) o PN
Vi*(x,y,8)=R(x,y,s) +j RE(x,y,s—s")Wy(x,y,s")ds". (33)
0
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incidence, and the inversion will be carried out for these Hankel-transformed quantities.



The permittivity () and conductivity o(z), which are the unknowns in the inverse problem,
are related to the coefficients A(x) and B{x) in (6) through (cf. (9) and (10))

X
elz{x\) =¢g_ e |[2 ( Alx') d__'] (34)
SRZNX)) =S CXPjey AL K 2%
X
ml-l‘\\=.=,£» ptv\nvn[of Alv’\ﬂv’] (25)
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0
where
-t ) — 1[2....[_ 4 om .J.,"] A’ {26\
4’\." _‘(.ol.’ Apl ] {I\A ’ ua J A \JU}
() 0
The coefficient C(x) in (6) is determined by A(x) through (cf. (11))
Py IR 2 222 ~ f.“ a g A | g] I L AY
C(x)= —«cyl expl—z] A{x") dx J (37)
()}

Thus, we consider A(x) and B(x) as our uninown functions and we need two additional
independent relations between A(x), B(x) and C(x) in order to reconstruct both the
permittivity and the conductivity. Algorithms for this are given in Sections 4 and 5.

3. The extension of data property of R and T,
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.¥.5; and V*(x, y, s) are constants for s> 2(y —x), cf. [13]. Here we derive this
nroperty for the whole slab, but the arguments can be applied to any subregion of the slab. The
derivation follows closely the one given in [9, Appendix Al], with only minor changes necessi-
tated by the fact that now C{(x)# 0. Furthermore, we keep the assumpiion thai e{z) is

contimons evervwhere Inm view of the abave anr nrecentation ic comewhat hrief
continuous Sverywnere. 1n vicw of (hc aoove, our préseniation 1s scmewhat orict.

The solution w of (6) can be expressed in terms of transmission data w', (s) as [13]

]

wlx ﬂ__w'( ,SY+wiix, §)
J GRS

! 1 3 \
[ )W (s—x)+ = [ wi(s—s)N(x, s')ds’}, 0<x<1,

\ “«x ]
(38)
\ 7

where the function N(x, s) satisfies

N, —N,+B(x)(N,+N,)+D(x)N=0, 0<x<1, (39)
N(x, x)=4[B(17)-a(17)] - [ D(s') ds’ (40)
\ 7 4 \ J \ 7/ 7 \ ’
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where
D(x)=C(x)+3(B*~A°) + 3(B' - 4"). (42)

Here the prime denotes differentiation with respect to x. Differentiating (38) with respect to x,
setting x = 0 in the resulting equation and integrating this equation from 0 to s, we obtain

: ) 1 s
Wi (5w (s) = =[O D)t ()= 5 [ (IR —sn as) @)
where
F@)=a+bH@—2y+fﬁNxmsq—§@4—3nmNm“ynH@—qqdy, (44)
0
and
= —(A —B)|o—N(0, 0), = —N(0, 2),
0, ifs<0,
H(s)={1, it 550
The V; kernel can be expressed as
Vi(0,1, s)= —;[N(0, s)H(2 —s) — F(s)]. (45)

From (44) and (45), one can see that V; (0, 1, s) is constant for s > 2. In order to determine this
constant, consider

£(x) =j;2_x[Nx(x, s') = 1(A - B)N(x, s')] ds". (46)

By considerations analogous to those given in [8, Appendix A] one finds

f(0)y=k +f01{C(x)[f2_xN(x, s') ds’] exp[—;—j;x[A(x’) +B(x')] dx’]} dx, (47)

and
Vi(o,1,s)
2 l{C(x)[fz_xN(x s') ds’] exp[lfx[A(x’) +B(x")] dx'” dx, s>2
479 x ’ 27 ’

(48)
which is a constant. Similarly,
V0,1, s)=-Wy(0,1, s)

N %—/;)I{C(x)[j;z_xN(x’ s') ds'] exp[%fox[A(x’) + B(x')] dx’]} dx,

§>2. (49)

Thus, for C(x) =0 we have f(0) =k and W, and V;* have compact support, as in [9]. For the
present case with C(x) # 0 we have

W,=Ww,0,1, s)=-V*0,1,s), s>2. (50)
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The property (50) is sufficient to establish the extension of data for R;* and T,. Again one
can proceed in close analogy with the C(x) =0 case. From the resolvent equation (29), we can
determine W(0, 1, s), 0 <s < 2, from one round trip transmission data, i.e., T(0, 1, 5),0 <s < 2.
Since W0, 1, s) is continuous, we obtain the constant W, by letting s —2~ and thus
W0, 1, s) is known for all s. For s > 2, (29) may be written

2
T(0,1, s) + W+ [ T(0, 1, s')W,(0, 1, s~ ") ds’
0

+ [T0,1, W0, 1, s = 57) ds’ =0, (51)
2

In the first integral in (51) we have 0 < s’ < 2, i.e., this integral is a known function of s. In the
secord integral we have 2 <s’<s. ie., for s> 2 (51) is an integral equation for T(0, 1, s),
s> 2, from which this function can be determined. Thus T,(0, 1, s) for 0 <s <2 determines
T(9, 1, s5) for all s (extension of data).

This result can now be used in (32) to cobtain the corresponding property for R;(0, 1. s). For
s > 2 we have from (32) and (50)

5
20,1, 5)=V,*(0, 1, s) + jo T,(0,1, s —s')V,2(0, 1, s') ds’

S 2
= —WO—W(,LTI(O, 1,s—s') ds’+j;Tl(0, 1, s —s" )20, 1, s') ds'.
(52)

The first integral in (52) is a known function of s and in the second integral V,*(0, 1, s) is
determined from knowledge of R{f(0, 1, s) and W (0, 1, s) for 0 <s < 2 according to (33), and
thus R0, 1, s) for s> 2 is determined by the same data. Therefore, all the information
concerning the reflected and transmitted field is contained in one round trip reflection and
transmission data for R and T;.

4. Inversion based on reflection and transmission data

We shall consider two inversion algorithms which both are patterned on the treatment given
in [10] for the plane wave normal incidence case. The first of them, which uses both reflection
and transmission data, will be discussed in this section. We indicate how the previously derived
equations can be exploited to arrive at the required two independent relations for A(x) and
B(x) in terms of scattering data.

We note that the extension of data concerning the travel time coordinate 5 given in Section 3
can be applied to any subregion [x, y] so that we have

Vit(x, y, s)= —W(x, y, s) = =Wy(x, y,2(y —x)), s>2(y—x). (53)

Here we shouid notice that Wy(x, y,s) and T(x, y,s) are continuous functions, but
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Vi¥(x, y, s) and R{¥(x, y, s) have a jump at s = 2(y —x). Therefore, we write (32) for y =1
more explicitly as

D—(:+ 1 o\ _ - M1y [
Ny\X, 1, 5] WX, 1, 4l JLUTJ

—Wi(x, 1,20-x)[  Tyx1,s-s)ds’, s>21-x). (54)
2(1~x)
Setting s =2(1 —x)* in the above equation yields
Ry(x,1,2(1-x)")
2(1-x)

= —W(x, 1,2(1 -x)) +[o Ty(x,1, s —sW;(x,1,s')ds". (55)

In (55) we introduce V; X(x, 1, s’) as given by (33) and use (29) to obtain
Ri(x,1,2(1-x)")
= —Wy(x, 1,20 -x) = [* W (x, 1,201 ~x) =s')R7 (x, 1, ') ds'. (56
0
Using (28), we obtain the jump in R as

R (x, 1, )78 = ~Wy(x, 1, 2(1 - x))
—fzu—x)Wl(x, 1,2(1 —x)—s")R; (0, 1, 5) ds’
0

~R;7(0,1,2(1-x)7), (57)
and in view of (26) we thus have

[ 7w (x, 1,201 - x) = s)R7 (0, 1, 57) s’
0

+Wy(x,1,2(1-x))+R(0,1,2(1-x) )

=3[ A(x) + B(x)] exp[fxlB(x’) dx’]. (58)
From (18), we have
R{(x,1,0%) = —¢[A(x) - B(x)]. (59)

From the above it is seen that the following data are sufficient to reconstruct both A(x) and
B(x):

R7(0,1,s), 0<s<2, R7(0,1,5), 0<s5<2,
T{(0,1,s), 0<s<2, G(1),
where

G(1) =exp[—f0‘B(x') dx’],

which is a measurable constant associated with the attenuation of the field within the slab.
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Fig. 2. The order in which the values of R} are determined when solving the inverse problem.

Assuming that a set of grid points in (x, s)-space has been established (cf. Fig. 2), the
inversion algorithm for reconstructing A(x) and B(x) can now be described in terms of the
foiiowing sieps.

{1\ Tlce ‘70\ for y= 1 to determ'

O ivx

0<s<2,

L ad

<@

(3) Use W{{0, 1, s) and the known data R;(0, 1, s) to provide startmg values for stepping )
..... > PRypIgEgS LI

fUlelu il X aLlurumg w \JU] lUl y = 1
(4) Use (17) for y =1 for stepping R forward in x at s=0.

(5) Use (17) to step R; forward in s for the new x grld point.
This sequence of steps (2)—(5) can now be repeated to move one step deeper into the slab,
and so on. Some numerical examples which illustrate the performance of this algorithm are

dicmiccad in Qoantinn &
UIDVUEIOWU 111 JVVLIVIIL U,

5. An iteraiive inversion aigorithm based on reflection data

In analogy with the one-dimensional case an iterative inversion algorithm can also be
constructed (see [10]), which uses only reflection data for one round trip, i.e., R (0, 1, 5) and
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R7(0, 1, s) for 0 <s < 2. This iteration scheme is based on integrated versions of (17) and (21).
From (17) with y =1 we obtain

R{(x,1,5)
=R{ (0,1, s +2x)

—fox{B(x')Rf(x', 1, s+2(x~x"))

+3[A(x") + B(x)[(R} * Ry)(x', 1, s +2(x —x7))
+37C(c)1+2% Rf +1% R} = RY)(x', 1, s +2(x—x'))} dx’.  (60)
Similarly, we can rewrite (21) with x = 0 in integrated form as
Ry (0, y, s)
=R; (0,1, s+2(1-y))

- [{BONRI (O, v, s +2(y' ~y))

=3[ A(y") = BOYOI(RT * RTYO, ¥, s +2(y' ~y))
+3C(y")A+2% Ry + 1% Ry = R7)(0, ', s +2(y' —y)} dy’.  (61)

The first terms on the right-hand side of both the above equations are the known data. Denote
them by

F*(s)=R(0, 1, 5). (62)
Equations (60) and (61) can be used as bases for iterative schemes as follows:
Rinii(x, 1, )
=F*(s+2x)

—jox{s,,(x')R;j,,(x', 1,5 +2(x ~x"))

[ A,(2) + BN (R * RE(H 1, 5+2(x—x"))
+3C(x")1+2% R, + 1+ Rf, = R{,)(x', 1, s+ 2(x—x'))} dx’,
(63)
with0<x<1,0<s<2(1-x),n=1,2,3,...,and
Rl_,n+l(0’ y, S)
= F (s +2(1-y))

= [ {BAYIRLAO, ¥, 5+ 20y - ))
—3[4.09") = B.(y)(R7, * RL,)(0, y', s +2(y' —¥))

+3C,(y)(1+2+* Ry, +1% R7, * R(,)(0, y', s+2(y' -y))} dy’,
(64)

withd<y<1,0<s<2y,and n=1,2,3,....
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The functions A4, B, and C, are given by the initial conditions {18) and (22) according to
A, (x)=2[R{,0, x.0") =R} (x,1,0%)], (65)

l.n

B,(x) =2[Ri,(0, x,0%) + R (x,1,07)], (66)

C,(x) = —k*c3l? exp[—Zf A, (x") dx’
0

}. (67)

Natural choices of starting values for these iterations are

n(x, 1, s)=F*(s +2x),
R0, y,s)=F (s+2(1-y)).

(68)
(69)

Sufficient conditions for this iterative scheme to converge are given in [10] for the C(x)=0
case. An analogous consideration can be carried out when C(x) # 0, but we do not go into
further details here. When we have convergence, so that R, = R, the limits of the left-hand
sides of (65) and (66) also exist and thus A(x) and B(x) are obtained (cf. (18) and (22)). The
numerical performance of this iterative algorithm is discussed in Section 6.
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0.0
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0.0 0.5 10 1.5 20
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Fig. 3. Restoration of the peaks of R, after smooth-
ing. The solid line represents the clean R, obtained
from the profile with relative permittivity e, =4 —
3 cos(40wz), conductivity o = 0.02 + 0.01 sin(307z)
(mho/m) (0 <z < 0.1 m) and the transform parameter
« (with unit m~') = 1. The fine dashed Yine represents
the noisy data with rms S§/N = 8.0. The dashed and
dotted lines represent R} after smoothing the noisy
data once without and with restorine, respectively.
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reconstruction uses 200 data points in (a), (c) and 400
data points in (b), (d).
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6. Some numerical examples

The inversion algorithms described in Sections 4 and 5 have been implemented numerically
and we present some typical results which are based on clean and noisy synthetic data,
respectively. When noise is introduced, it is smoothed by means of a five-point linear

8.0
(c)

o
=3
|

Relative permittivity
P
[=]
|

n
o
1

¢.0 I 1 ) 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Deoth z (m)

Fig. 4(c).



150 S. He, S. Strom / A time-domain inverse method for a dissipative slab

8.0 - 5.09
{d)

4.0
3.0
2.0

1.0+

permittiv-ty

Ri+

Relative

20 ¥

-3.0

-4.0

0.0

' ! ! -5.0 T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0
Depth 2z (m)

Time t (i)

Fig. 4(d). Fig. 5. The R{ (0, 1, s) kernel for the the profiles ix
Figs. 4(b) and 4(c).

least-squares smoother. Sharp peaks will then be smoothed away to a considerable extent. On
the other hand, the peaks play a key role in the reconstruction and it has therefore been found
necessary to introduce a procedure for restoring the peaks. It has been chosen as follows: the
smoother is applied twice and the cifference between the first and second smoothing is then
added to the result of the first smoothing. The result of this procedure is illustrated on noisy
gata in Fig. 3. There the solid line is the original data, the fine dashed line is the noisy data
with a root mean square signal to noise ratio (rms S/N) of 8.0, the dashed line is the smoothed
data, and the dotted line is the “restored” result, obtained as described above. An additional
illustration of the effect of restoring the peaks after the smoothing is given in Figs. 6(a) and 6(b)
where reconstructions of the permittivity and conductivity using data obtained by smoothing
noisy data twice, with or without restoring, are shown.

We note that one-sided data are not sufficient to reconstruct both the permittivity and the
conductivity. However, if one of them is assumed to be known, we need only one round trip
data R{(0, 1, 5), 0 <s <2, to reconstruct the other parameter by propagating the boundary
values R (0, 1, s) to the initial condition (18). Figures 4(a)—4(d) illustrate reconstructions of
the permittivity in this way. Figure 4(a) shows the reconstruction of a smooth oscillating
function e(z). The inversion algorithm is based on the assumption that e(z) is continuous.
However, it is of interest to investigate how the algorithm works for a rapid variation of e(z).
For profiles with a linear rapid variation of e(z), it has been found that one needs at least five
grid points in each slope region, such as illustrated in Figs. 4(b)-4(d), in order to get reliable
reconstructions. Figure 5 shows the R (0, 1, s) kernel for the profiles in Figs. 4(b) and 4(c).

The sharpening of the peaks in R, associated with a more rapid e(z) variation is clearly seen
here.
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Figures 6(a) and 6(b) illustrate the simultaneous reconstruction of €(z) and o(z) in a model
where both are slowly oscillating functions, usmg the inversion algorlthm in Section 4.
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have been smoothed and restored using the procedure descrtbed above in connection with Fig.
3. Also shown in Figs. 6(a) and 6(b) are the previously mentioned recontructions from data

which have been smoothed twice (but not restored).
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the iterative inversion algorithm described in Section 5. Fig 7(a)-7(c) show the starting

values for the functlons A(x) B(x), C(x) (cf. (65)-(69)). As shown in Figs. 7(d) and 7(e),
although the initial reconstructions from the vaiues given by (68) and (69) are rather poor, after
20 1terat10ns the reconstructions have improved considerabiy. After 100 iterations the recon-
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7. Concluding remarks

In the present paper we have shown that one can formulate the inverse scattering problem
for a vertical magnetic dipole field impinging on a stratified slab in such a way that the solution
can be obtained using methods and results which are analogous to those available for the case
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of a normally incident plane wave. However, independent checks of the numerical results are
desirable. In this context we note that the extension of the treatment of the dissipative,
stratified, half-space scattering problem in [6], by means of the “physical” kernels, to the case
of a slab of finite thickness provides one such possibility. The use of the Green functions
technique is then of particular interest (cf. [6]).
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Fig. 7(b).
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In the present work and in [6] the splitting is introduced in the free space outside the
medium. However, it is also of interest to investigate a formulation based on a splitting inside
the dissipative medium and work on this aspect has begun [7].

Furthermore it can be expected that it will be possible (by appropriate modifications; cf.
{11,12] in this context) to remove the restriction to permittivity profiles which are continuous at
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Fig. 7(d).
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z=0 and z=L. Such a development can be expected to provide the possibility to make
comparisons with simple cases with known solutions.
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