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Abstract 

He, S. and S. Strom, The electromagnetic inverse problem in the time domain for a dissipative slab and a point 
source using invariant imbedding: Reconstruction of the permittivity and conductivity, Journal of Computa- 
tional and Applied Mathematics 42 (1992) 137-155. 

We consider the electromagnetic inverse problem for a point source above an inhomogeneous dissipr.tive slab 
of permittivity E(Z) and conductivity a(z), where z is the depth. Two inversion algorithms based on the 
invariant inbedding equations derived in previous work are used to reconstruct both the permittivity and the 
conductivity. Both algorithms use two-sided reflection data and one of them also uses transmission data. 
Results are presented for clean and noisy data. 

Keywords: Wave splitting, invariant imbedding, inverse scattering, dissipative stratified media, reconstruction 
of permittivity and conductivity. 

1. Introduction 

The problem of reconstructing the physical properties of a stratified medium from scattered 
field data has received considerable attention and both time- and frequency-domain methods 
have been used (see, e.g., [2,9,16,17] and earlier references given there). In the present paper 
we consider the case of a transient point source above an inhomogeneous slab in which the 
permittivity E(Z) and conductivity (T(Z) vary with the depth z. The inverse problem of 
reconstructing these two functions from measured data on the slab surfaces is solved by means 
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of two inversion algorithms based on invariant imbedding equations for this scattering problem 
which have been derived in a previous paper [8]. In [8] it is shown that by means of a Hankel 
transform and an additional appropriately chosen transformation, the problem can be formu- 
lated in terms of imbedding equations which are closely analogous to the imbedding equations 
for plane wave normal incidence on a slab of this kind (see [g-12]). As a consequence, inversion 
algorithms analogous to those considered in [lo-121 can be applied to the present formulation 
of the point source case. In particular it is noted that the “extension of data” property, which 
was found for the normal incidence case [9], can be exploited also in the present formulation of 
the point source case. 

The present paper is organized as follows. In Section 2 we give a summary of those results 
from [8] which are most relevant for the inverse aspect and in Section 3 we derive some 
additional properties of the scattering kernels which lead to the extension of data property. In 
Section 4 we describe an inversion algorithm that uses two-sided reflection data as well as 
transmission data. An iterative inversion algorithm for which two-sided reflection data suffice is 
given in Section 5. In Section 6 we illustrate the numerical performance of the inversion 
algorithms for clean and noisy synthetic data. 

2. Summary of some previous results 

The imbedding equations and jump relations for the various scattering kernels that describe 
the scattering of a (vertical magnetic dipole) point source field from an inhomogeneous slab are 
derived in [8]. In this section we summarize those relations which will be needed in the 
inversion algorithms. As described in [8], the scattering problem is formulated and solved in 
terms of a set of transformed “nonphysical” scattering kernels RF, 7’1*, T’,* , b-VI*, where the 
superscripts refer to incidence from a point source above ( +) and below ( -1 the slab, 
respectively. The geometry of the problem is described in Fig. 1. 

The Hertz potential U(r, z, t) of the magnetic dipole is Hankel-transformed according to 

U(K, Z, t) =/k( r, z, ‘)JO(~r)t- dr, 
0 

(1) 

and the inverse problem is solved for U(K, z, t) (r is the radius in a cylindrical coordinate 
system (r, q, 2)). The dependence ~1; the Hankel-transformed functions on the parameter K 

till be suppressed in the sequel, i.e., we write U(K, z, t) = u(z, t 1, etc. We consider, for 
arbitrary z, the splitting 

ul’ = $[u -c(z) a;‘u,], (2) 
u, = ;[u +c(z) a;*u*], (3) 

where ar-‘f= $f(t’> dt’, and c = c0 = (E~&-~/* for z < 0, c = c1 = (E~&-‘/~ for z > L. It is 
convenient to change to the travel time coordinates 

(4) 
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z=zo 

Z=k 

Fig. 1. The scattering configuration. 

and with u( z, t) = W(X, s), the wave equations and boundary conditions become 

W xx -w,, +A(x)w, +B(x)w, + C(x)w = 0, 0 <x < 1, 

W - XX Wss - K*C*l*W 0 = 0 9 

W - xx Wss - K*C*l*W 1 = 0 9 

w, *fix are continuous at x = 0, 1, 

x<o, x#x(), 

x> 1, 
. 

where 

d 
A(x)= - p @(x)), 

B(x)= -1 
+(x)) 

E(W) ' 

C(x) = -K*c*( z( x))z*. 
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(6) 
(7) 
(8) / 

(9) 

\ 
(10) 

(11) 
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In the new variables the splitting is given by 

w;=: w- -[ a,- ‘w+l ’ (12) 

w;=; [w + as- ‘w_J . (13) 

For down-going incidence the associated reilection anu trar smission kernels R;C(O, 1, s) and 
TT (0, I, s), respectively, are given by 

w;(O, s) = (R;(O, 1, s -s')w;(O, s’) ds’, 
0 

(14) 

w,‘(i, s + 1) = t+(o, l)w;(o, s) + /‘T;(O, 1, s -s’)w;(O, s’) ds’, (13 
0 

where 

t'(0, 1) = exp [ - ;/,lMx) -R(x)) dxj. (16) 

The analogous relations for up-going incidence are given in 181. In the invariant imbedding 
approach (see, e.g., [3,5]) one considers also the corresponding kernels Rf(x, y, s) and 
T,‘(x, y, S) for the subregion [x, y 1, 0 <x < y < 1. We refer to [S] for further details. 

We note that other types of splittings have been considered, which may be said to be 
somewhat more physical in the present problem (cf. [6,7,15]). However, the motivation for our 
choice of formulation is that it can be developed as a generalization of the plane wave normal 
incidence case and that it provides a solution of the inverse scattering prGlem in which the 
permittivity 4~) and conductivity a(z) can be reconstructed simultaneously. Furthermore, the 
imbedding equations are simpler in the present formulation (cf. [6,7]). It should also be 
mentioned that the reflection or transmission kernels in the two different formulations are 
related through a Volterra equation of the second kind, which allows an accurate computation 
of the physical kernels from the nonphysical ones and vice versa (cf. [S]). 

The imbedding equations, initial values and boundary values of the reflection kernels 
Rc(x, y, s) for the subregion [x, y ] are [S] 

R,;,(x, y, s) = 2R1’; - B(x)R,+ - $[ A(x) + B(x)] R; * R; + R;+, 

R:(x, Y, O+) = +4x)-B(x)], 

R;'(Y, Y, s) = -2sJ,\v l 1 !-cfs) = 

where 

Ro x+ = +(x)(1+2* R;+l* R; 

1 
-2-J&=( Y)ls), 

S 

(the star * denotes a time convolutioni and 

Ri-y(x, Y, s) = -2R, + B(y)R, -t[A(y)-B(y)]R; * R, +R; 

R;(x, Y, O+) = :[A<Y> +B(Y)], 

1 
R;(x, x, s) = -2-J,(~c(x)ls), s 

s > 0, (17) 
X<Y, (18) 

s > Of (19) 

(20) 

s > 0, (21) 
x <Y, (22) 

s > 0, (23) 
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where 

R,Y- = fC(y)(l+2 * R-' + 1 * R, * R;). (24) 

These kernels are discontinuous across the plane s = -__.J, _ 2( y -xi, where they have the foiiuwllig 
jumps: 

R;(x, y, s) I::;;‘,-$ = M(Y) -B(Y)] exp[P(i’) dx’l, (25) 

R,(x, y, s))s,I;;;-x,:+= -$¶(x)t 

For times less than one round trip through 
interface has no effect on Rl*( x, y, s). Thus 

B(X)] exp[/‘B(x’) dx’]. 
x (26) 

the subregion [x, y], the position of the rear 

R,+(x, y, s) = R:(x, .c + (is)‘, s), s < 2(y -x), (27) 

K(x, Y, s) =R;(Y - (fS)+, Y, s), s <2(y -x). (28) 

The transmission kernels T,(x, y, s) (cf. [8, Eq. (ill)]) and its resolvent WI< x, y, s) satisfy the 
equation 

‘7’,(.~y,s)+w~(x, y.~)+/~T,(x, y, s-s’)W,(x, y, s’)ds’=O. (29) 
0 

The imbedding equation for WI is 

WIx(x, y, s) =$4(x) +B(x)](R; +R,f * WI) + W& s>O, (30) 

where 

W,x= $(x)(1 + 1 * R,+ + 1 * WI + 1 * R,f * WI). 

The kernels V,‘<x, y, s) satisfy 

(31) 

R;(x, y, s) = I/1*(x, y, s) +/$x, y, s -s’)Vlk(x, y, s’) ds’ 
0 

(32) 

and 

V,‘(x, y, s) =R,‘(x, y, s) + j'R:(x, y, s -s’)Wl(x, y, s’) ds’. 
0 

(33) 

The measured values of the total field for 0 < r < 00, z = 0 determine the Hertz potential 
U(r, 0, t). In the inverse problem, we first choose a fixed K in the Hankel transform (1). From 
the (nonphysical) splitting given by (2) and (3), the reflection and transmission kernels Rf and 
T,* are determined according to (14) and (15) and the corresponding equations for up-going 
incidence, and the inversion will be carried out for these Hankel-transformed quantities. 
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The permittivity E(Z) and conductivity U(Z), which are the unknowns in the inverse problem, 
are related to the coefficients A(x) and L?(A) in (6) through (cf. (9) and (10)) 

where 

1 
u( z(x)) = - iEoB(X) exp 2/IA(x’) dx’ , 

0 1 
z x ( 1 = co2 dx” dx’. 1 

(3 ) 5 

(36) 

The coefficient C( x 1 in (6) is determined by A( x1 through (cf. ( 11)) 

C(x) = --K’$’ exp[ -2p(x’) dr’]. (37) 

Thus, we consider A(x) and B(X) as our ut&nown functions and we need two additional 
independent relations between A(x), B(x) and C(x) in order to reconstruct both the 
permittivity and the conductivity. Algorithms for this are given in Sections 4 and 5. 

3. The extension of data property of R,f and Tl 

It has been shown that in the plane wave normal incidence case (which corresponds to 
C(x) = 0) thz kernels I&(x, y, s) and V,‘( x, y, c) vanish for s > 2( y - x j, i.e., after one round 
trip (cf. [9.14]). When C(x) f 0, this is no longer the case, but one has the result that 
W,(x, y, st and I/1*(x, y, s) are constants for s > 2( y -x1, cf. [13]. Here we derive this 
property for the whole slab, but the arguments can be applied to any subregion of the slab. The 
derivation follows closely the one given in 19, Appendix A], with only minor changes necessi- 
tated by the fact that now C(x) f 0. Furthermore, we keep the assumption that E(Z) is 
continuous everywhere. In view of the above, our presentation is somewhat brief. 

The solution w of (6) can be expressed in terms of transmission data w\(s) as 1131 

w(x, s) = w\(x, s) + wY(x, s) 

= [t+(x, I)]-‘(w;(s-x)+ ;/2-xw!Js-sr)N(x, s’) ds’), O<x<l, 
X 

(38) 

where the function N(x, s) satisfies 

NXX -N,,+B(x)(N,+N,)+D(x)N=O, 0~~1, (39) 

N(x, x) = $[B(l-) -A(l-)] +(s’) ds’, (40) 
x 

N(x, 2 -x) = #(l-)-A(l)] exp[/lB(s’) ds’], 
x 

(41) 
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where 

D(x) = C(x) + f(P -A2) + @‘-A’). (42) 
Here the prime denotes differentiation with respect to x. Differentiating (38) with respect to x, 
setting x = 0 in the resulting equation and integrating this equation from 0 to s, we obtain 

-w\(s) + w\(s) = -[t+(O, 1)]-‘(w:(s)- $v!&‘)F(s-s’) ds’), (43) 

where 

and 

F(s) = a -I- bH(s - 2) + f[ N,(O, s’) 
0 

- $( A - B) 1 o-N(O, s’)] H(2 -s’) ds’, (44) 

a = -(A -B)lc,+-N(O,O), b= -N(O, 2), 

H(s) = ( 0, if s < 0, 
1 

9 if s>O. 

The V;’ kernel can be expressed as 

V,+(O, 1, s) = +[N(O, s)H(2-s)-F(s)]. (45) 

From (44) and (45): one can see that V;‘<O, 1, s) is constant for s > 2. In order to determine this 
constant, consider 

f(x) = /2-x[N,( x, s’) - $4 - B)N(x, s’)] ds’. 
X 

(46) 

By considerations analogous to those given in [8, Appendix A] one finds 

f(0) = k + k’( C(x)[ ,f2-xN(~, s’) ds’] exp[ ikx[ A(x’) +B(x’)] dx’]) dxr (47) 
X 

and 

A(x’) +B(x’)] dx’ II dx, 02, 

(48) 

which is a constant. Similarly, 

V;-(0, 1, s) = -w,(O, 1, s) 

2-x ’ N(x, s’) ds’ exp -2 1 I/ *[A(x’)+B(x’)] dx’ 
0 

s > 2. (49) 

Thus, for C(x) = 0 we have f(0) = k and IV1 and VI* have compact support, as in [9]. For the 
present case with C(x) $0 we have 

IV0 = W,(O, 1, s) = -Vl*(o, 1, s), s > 2. (50) 
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The property (50) is sufficient to establish the extension of data for Rf and TI. Again one 
can proceed in close analogy with the C(x) = 0 case. From the resolvent equation (29), we can 
determine &(O, 1, s), 0 < s < 2, from one round trip transmission data, i.e., T,(O, 1, s), 0 < s < 2. 
Since &(O, 1, s) is continuous, we obtain the constant IV,, by letting s + 2- and thus 

0, 1, s) is known for all s. For s > 2, (29) may be written 

qo, 1, s) + w. + /‘I#, 1, s’)w,(O, 1, s - s’) ds’ 
0 

+ 
I 
'TI(O, 1, s’)w,(O, 1, s -s’) ds’ = 0. 
2 

(51) 

In the first integral in (51) we have 0 < s’ < 2, i.e., this integral is a known function of s. In the 
second integral we have 2 <s’ <s. i.e., for s > 2 (51) is an integral equation for I&(0, 1, s), 
s > 2, from which this function can be determined. Thus 7’1(0, 1, s) for 0 <s < 2 determines 
T,(3, 1, s) for all s (extension of data). 

This result can now be used in (32) to obtain the corresponding property for R,'(O, 1, s). For 
s > 2 we have from (32) and (50) 

R:(O, 1, s) = Q’(O, 1, s) + fT,(O, 1, s -s’)VI’(O, I, s’) ds’ 
0 

= - w. - w,IIT,(o, 1, s - s’) ds’ + 1, s - s’)V,‘(O, 1, s’) ds’. 
2 

j27J0, 
0 

(5 2 1 

The first integral in (52) is a known function of s and in the second integral VI*(O, 1, s) is 
determined from knowledge of RF(O, 1, s) and W,(O, 1, s) for 0 < s < 2 according to (331, and 
thus Rf(O, 1, s) for s > 2 is determined by the same data. Therefore, all the information 
concerning the reflected and transmitted field is contained in one round trip reflection and 
transmission data for R,' and & 

4. Inversion based on reflection and transmission data 

We shah consider two inversion algorithms which both are patterned on the treatment given 
in [lo] for the plane wave normal incidence case. The first of them, which uses both reflection 
and transmission data, will be discussed in this section. We indicate how the previously derived 
equations can be exploited to arrive at the required two independent relations fo: A(x) and 
B(x) in terms of scattering data. 

We note that the extension of data concerning the travel time coordinate 3 given in Section 3 
can be applied to any subregion [x, y ] so that we have 

y’(& Y, s) = --&(x9 Y, s) = -&(x9 Y, 2(Y -4 s > 2(Y -4. (53) 

Here we should notice that W,( x, y, s) and T,(x, y, s) are continuous functions, but 
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V,‘<x, y, s) and RF(x, y, s) have a jump at s = 2(y -xl. Therefore, we write (32) for y = 1 
more explicitly as 

R,(x, 1, s) = -Wr(x, 1,2(1 -x)) + /z(i-Xj Tr(x, 1, s -s’)V;(x, 1, s’) ds’ 
0 

- Wl(x, 1,2(1 -x))[” 
%(l -x) 

Tl(x, 1, s-s’) ds’, s>2(1 -x). 

Setting s = 2(1 -x)+ in the above equation yields 

R,(x, 1,2(1 -x)+) 

= - Wl(x, 1, 2(1 -x)) + j2’*-x)Tl(x, 1, s -s’)VJx, 1, s’) ds’. 
0 

In (55) we introduce V;‘(x, 1, s’) as given by (33) and use (29) to obtain 

R,(x, 1,2(1 -x)+) 

= -wr(x, 1,2(1 -x)) - /2(1-x)Wl(x, 1, 2(1 -x) -s’)R;(x, 1, s’) ds’. 
0 

Using (28), we obtain the jump in R, as 

R,(x, 1, s)@;I”x;‘I= -Wr( Y., 1, 2(1 -x)) 

- 
/ 

2(1-*)Wl(x, 1,2(1 -x) -s’)R,(O, 1, s’) ds’ 
0 

- R,(O, 1,2(1 -x)-), 

and in view of (26) we thus have 

/ 
2(1-*)Wl(x, 1,2(1 -xj -s’)R;(O, 1, s’) ds’ 

0 

+ k&(x, 1,2(1 -x)) + R,(O, 1,2(1 -x)-) 

= $4(x)+B(x)] exp[j’B(x’) dx’]. 
x 

From (181, we have 

R,+(x, 1, 3’) = -$[A(x)--B(x)]. 

(57) 

(58) 

(59 
From the above it is seen that the following data are sufficient to reconstruct both A(x) and 
B(x): 

R,+(O, 1, s), 0 <s <2, R,(O, 1, s), 0 <s < 2, 

‘Tr(O, 1, Sj5 o<s<2, G(l), 

where 

‘B(x)) dx’ , 
I 

which is a measurable constant associated with the attenuation of the field within the slab. 
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Fig. 2. Trr,? order in which the values of R,f are determined when solving the inverse problem. 

Assuming that a set of grid points in (x, &space has been established (cf. Fig. 2), the 
inversion algorithm for reconstructing -4(x! and B(x) can now be described in terms of the 
following steps. 

(1) Use (29) for y = 1 to determine W,(O, 1, s), 0 < s c 2, from the known data T,(O, 1, s), 
o<s<2, 

T,(O, 1, s) + W,(O, 1, s) + /‘Z-,(0, 1, s - s’)W,(O, 1, s’) ds’ = 0. 
0 

(2) Use (58) and (59) to determine starting values A(0) and B(0). 
13) Use W,(O, 1, s) and the known data R,f(O, 1, s) to provide starting values for stepping -WI 

forward in x according to (30) for y = 1. 
(4) Use (17) for y = 1 for stepping RT forward in x at s = 0. 
(5) Use (17) to step R,+ forward in s for the new x grid point. 
This sequence of steps (2)-(5) can now be repeated to move one step deeper into the slab, 

and so on. Some numerical examples which illustrate the performance of this algorithm are 
discussed in Section 6. 

5. An iterative inversion algorithm based on reflection data 

In analogy with the one-dimcnsiona! case an iterative inversion algorithm can also be 
constructed (see [lo& which uses only reflection data for one round trip, i.e., R,f(O, 1, s) and 
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R;(O, 1, s) for 0 < s < 2. This iteratiorl scheme is based on integrated versions of (17) and (21). 
From (17) with y = 1 we obtain 

R;+(x, 1, s) 

=RC(O, 1, s+2x) 

-QB(x’)R:(x’, 1, s + 2(x -XI)) 

+;[A(x’)+B(x’)](R;t * R,f)(x’, 1, s +2(x -xl)) 

+$C(c’)(l+Z* R,C+l* R,+ * R,+)(x’, 1, s +2(x -XI))) dx’. (60) 
Similarly, we can rewrite (21) with x = 0 in integrated form as 

R,(O, Y, s) 

= R,(O, 1, s + 2(1 -y)) 

-j’(B(y’)R;(O, Y’, s+~(Y’-y)) 
Y 

-$[A(Y’) -B(y’)](R, * R,)(O, Y’, s + Z(Y’-Y)) 

++C(y’)(l+2 * R; + l* pi; * R,)(O, Y’, s +2(u’ -Y))} dy’e (61) 
The first terms on the right-hand side of both the above equations are the known data. Denote 
them by 

F”(s) = Rf(0, 1, 8). (62) 
Equations (60) and (61) can be used as bases for iterative schemes as follows: 

Rl+,n+Lx, 1,s) 
= F+(s + 2x) 

-~{B,,(x’)R~,(x’, 1, s + 2(x -x’)) 

+ +[ A,(x’) + B,(x’)]( RLn * R;J(x’, 1, s + 2(x -xl)) 

+;C,(x’)(l + 2 * Rln + 1 * Rl’ln * Rl+,J(x’, 1, s +2(x -xl))) dx’, 

(63) 

with 0 fx < 1,O < s < 2(1 -x), n = 1, 2, 3,. . . , and 

R<,+1(09 y, s) 

= F-(s + 2(1 -y)) 

-@,(y’)R;,(O. Y', s+~(Y'-Y)) 

-$[A,(Y’)-B,(Y’)](&-, * Rl,,J(O, Y', S+~(Y'-Y)) 

+ +C,( y’)(l + 2 * Rcn + 1 * RLn * I’Q(O, y’, s + 2( Y’ -Y))) dy’, 

(64) 

withO,<y<l,O<s<2y,and n=l,2,3 ,... . 
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The functions A,, B,, and Cn are given by the initial conditions (18) and (22) according to 

A,(x) = 2[ R,,(O, 

B,(x) = 2[ R,(O 

xv 0’) -R;&, 1, O’)], (65) 

9 . x, 0”) +&(x, 1, O’)], (66) 

Cn(x) = (67) 

atural choices of starting values for these iterations are 

R;:(x, l,s)= F+(s+ ‘Lx), (68) 
R,,(O, y, sj = F-(s + 2(1 -y)). (69) 

Sufficient conditions for this iterative scheme to converge are given in [lo] for the C(x) = 0 
case. An analogous consideration can be carried out when C(x) f 0, but we do not go into 
further details here. When we have convergence, so that R& + Rc, the limits of the left-hand 
sides of (65) and (66) also exist and thus A(x) and B(x) are obtained (cf. (18) and (22)). The 
numerical performance of this iterative algorithm is discussed in Section 6. 

I I I I 
0.5 1.0 1.5 2.0 

Time t (I) 

Fig. 3. Restoration of the peaks of R;C after smooth- 
ing. The solid line represents the clean I?:, obtained 
from the profile with relative permittivity E, = 4 - 
3 cos@IOrrz), conductivity u = 0.02 + 0.01 sinOOTz) 
(n&o/m) (0 <z f 0.1 m) and the transform parameter 
K (with unit m- ‘) = 1. The fine dashed line represents 
the noisy data with rms S/N = 8.0. The dashed and 
dotted lines represent Rc after smoothing the noisy 

data once without and with restorine, respectively. 

8.0 

7.0 

6.0 

r” 
_2 5.0 
= 
E 
z 
a 4.0, 

$ 

2 3.0 
a 

2.0 

1.0 

0.0 -r 
0.0 0.2 0.4 0.6 

Depth z (m) 

0.8 1.0 

Fig. 4. Reconstruction of permittivity using one round 
trip data for I?,+. The conductivity is CT = 0.002 + 0.001 
- sin(3az) (mho/m) (0 i z G 1 m). K = 1 m-l. The 
reconstruction uses 200 data points in (a), (c) and 400 

data points in (b), Cd). 

(a) 
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8.0 

6.0 

(b) 

012 014 0:s 

Deoth z (ml 

Fig. 4(b). 

018 II0 

6. Some numerical examples 

The inversion algorithms described in Sections 4 and 5 have been implemented numerically 
and we present some typical results which are based on clean and noisy synthetic data, 
respectively. When noise is introduced, it is smoothed by means of a five-point linear 

0.2 0.4 0.6 

DeDtt? z On) 

Fig. 4(c). 
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Fig. 5. The Rc(O, 1, s) kernel for the the profiles irl 
Figs. 4(b) and 4(c). 

least-squares smoother. Sharp peaks will then be smoothed away to a considerable extent. On 
the other hand, the peaks play a key role in the reconstruction and it has therefore been found 
necessary to introduce a procedure for restoring the peaks. It has been chosen as follows: the 
smoother is applied twice and the difference between the first and second smoothing is then 
added to the result of the first smoothing. The result of this procetiure is illustrated on noisy 
data in Fig. 3. There the solid line is the original data, the fine dashed line is the noisy data 
with a root mean square signal to noise ratio (rms S/N) of 8.0, the dashed line is the smoothed 
data, and the dotted line is the “restored” result, obtained as described above. An additional 
illustration of the effect of restoring the peaks after the smoothing is given in Figs. 6(a) and 6(b) 
where reconstructions of the permittivity and conductivity using data obtained by smoothing 
noisy data twice, with or without restoring, are shown. 

We note that one-sided data are not sufficient to reconstruct both the permittivity and the 
conductivity. However, if one of them is assumed to be known, we need only one round trip 
data R’(O, 1, s), 0 <s < 2, to reconstruct the other parameter by propagating the boundary 
values I?,+(& 1, s) to the initial condition (18). Figures 4(a)-4(d) illustrate reconstructions of 
the permittivity in this way. Figure 4(a) shows the reconstruction of a smooth oscillating 
function E(Z). The inversion algorithm is based on the assumption that E(Z) is continuous. 
However, it is of interest to investigate how the algorithm works for a rapid variation of E(Z). 
For profiles with a linear rapid variation of E(Z), it has been found that one needs at least five 
grid points in each slope region, such as illustrated in Figs. 4(b)-4(d), in order to get reliable 
reconstructions. Figure 5 shows the R;‘(O, 1, s) kernel for the profiles in Figs. 4(b) and 4(c). 
The sharpening of the peaks in RT associated with a more rapid E(Z) variation is clearly seen 
here. 
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Fig. 6. Simu’taneous reconstructions of E(Z) (Fig. 6(a)) and a(z) (Fig. 6(b)) using the inversion algorithm in Section 
1. The solid lines are true values. The dotted lines are the reconstructed values using clean data. The dashed lines 
and circles are reconstructions by smoothing the noisy data twice without and with restoring, respectively (not all 

circ!es are displayed). Each reconstruction uses 400 data points. K = 1 m- ‘. 

Figures 6(a) and 6(b) illustrate the simultaneous reconstruction of E(Z) and a(t) in a model 
where both are slowly oscillating functions, using the inversion algorithm in Section 4. 
Reconstructions using noise-free as well as noisy data with rms S/N of 8.0 are shown 
(uniformly distributed and Gaussian random noise give very similar results). The noisy data 
have been smoothed and restored using the procedure described above in connection with Fig. 
3. Also shown in Figs. 6(a) and 6(b) are the previously mentioned recontructions from data 
which have been smoothed twice (but not restored). 

Figures 7(a)-7(e) illustrate the simultaneous reconstruction of E(Z) and a(z) by means of 
the iterative inversion algorithm described in Section 5. Figures 7(a)-7(c) show the starting 
values for the functions A(x), B(x), C(x) (cf. (6%(69)). As shown in Figs. 7(d) and 7(e), 
although the initial reconstructions from the values given by (68) and (69) are rather poor, after 
20 iterations the reconstructions have improved considerably. After 100 iterations the recon- 
structions and the true values essentially coincide on the scale of Figs. 7(d) and 7(e). 

7. Concluding remarks 

In the present paper we have shown that one can formula +e the inverse scattering problem 
for a vertical magnetic dipole field impinging on a stratified slab in such a way that the solution 
can be obtained using methods and results which are analogous to those available for the case 
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Fig. 7. Simultaneous reconstructions of E(Z) and u(z) using the iterative algorithm in Section 5. The solid lines are 
true values. The dotted lines are the initial values. The dashed lines in (d) and (e) are the reconstructions after 20 

iterations. IEach reconstruction uses 400 data points. K = 1 m- ‘. 

of a normally incident plane wave. However, independent checks of the numerical results are 
desirable. In this context we note that the extension of the treatment of the dissipative, 
stratified, half-space scattering problem in [6], by means of the “phjsical” kernels, to the case 
of a slab of finite thickness provides one such possibility. The use of the Green functions 
technique is then of particular interest (cf. [6]). 
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Fig. 7(b). 
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In the present work and in [6] the splitting is introduced in the free space outside the 
medium. However, it is also of interest to investigate a formulation based on a splitting inside 
the dissipative medium and work on this aspect has begun [7]. 

Furthermore it can be expected that it will be possible (by appropriate modifications; cf. 
[11,12] in this context) to remove the restriction to permittivity profiles which are continuous at 
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z = 0 and t = L. Such a development can be expected 
comparisons with simple cases with known solutions. 
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