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Abstract

Let {�n} be a monic orthogonal polynomial sequence on the unit circle (MOPS). The study of the orthogo-
nality properties of the derivative sequence {�′

n+1=(n+1)} is a classic problem of the orthogonal polynomials
theory. In fact, it is well known that the derivative sequence is again a MOPS if and only if �n(z) = zn.
A similar problem can be posed in terms of the reciprocal sequence of {�n} as follows:
If �n+1(0) �= 0, we can de8ne the monic sequence {Pn} by

Pn(z) =
(�∗

n+1)
′(z)

(n+ 1)�n+1(0)
n∈N= {0; 1; : : :};

where �∗
n denotes the reciprocal polynomial of �n, and to study their orthogonality conditions.

In this paper we obtain a necessary and su9cient condition for the regularity of {Pn} when the 8rst re:ection
coe9cient �1(0) is a real number. Also, we give an explicit representation for {�n} and {Pn}.
Moreover, we analyse some questions concerning to the associated functionals of them sequences and the

positive de8nite and semiclassical character.
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1. Introduction and motivation

Given a sequence of orthogonal polynomials, the problem of when the corresponding sequence of
derivatives is again orthogonal is a classical problem in the theory of orthogonal polynomials.
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In this sense, this is a property characterizing the classical orthogonal polynomials on the real
line [7].
On the unit circle, the results regarding this property are quite diFerent [8].
On the other hand, when one is working with orthogonal polynomials on the unit circle, the

behaviour of the reciprocal sequence is very important. The simple fact of entering in the recurrence
relations, indicates the triviality of this comment.
DiFerent authors have studied questions regarding the reciprocal sequence: relationship between

zeros of �n and �∗
n , orthogonality, etc.

Also, when we want to solve certain problems involving {�′
n} we get {(�∗

n)
′} entering the picture.

For example, in the study of the semiclassical orthogonal polynomials on the unit circle the sequence
{(�∗

n)
′} veri8es a structure relation similar to the sequence {�′

n}. This relation is crucial in obtaining
the diFerential equation satis8ed by the sequence of departure {�n} [11].
In this paper a new question regarding the behaviour of the reciprocal sequence is studied: the

orthogonality of the sequence of derivatives.
Speci8cally, we study the sequence de8ned by

Pn(z) =
(�∗

n+1)
′(z)

(n+ 1)�n+1(0)
; n∈N= {0; 1; : : :} and �1(0)∈R:

An equivalent form of posing this question, in terms of the Schur parameters [6] is: To study the
orthogonality conditions of the sequence {Pn} where

Pn(0) =
�1(0) + �1(0)�2(0) + · · ·+ �n(0)�n+1(0)

(n+ 1)�n+1(0)
; �1(0)∈R:

The organization of this paper is the following. Section 2 is devoted to the preliminary de8nitions
and results to be used later on. In Section 3 we analyse the regularity of the sequence {Pn}. Here,
we conclude that the linear functional of moments ũ of {Pn} is related with the linear functional of
moments u of {�n} by

ũ=
(

az2 + bz + Ka
z

)
u: (∗)

Therefore, in order to solve the posed problem we will use the known results regarding this kind
(∗) of functionals [9]. The main conclusion of this section is that the equation az2 +bz+ Ka=0 must
have a double root. Using this fact, we 8nd the general term of the sequences {�n(0)} and {Pn(0)}.
Section 4 is the main section of the paper. Here we give explicit formulas for the solutions {�n}

and {Pn}. Finally, in Section 5 we study some relevant properties of the solutions, such as their
positive de8nite and semiclassical character.

2. Preliminary results

Let � = span{zk ; k ∈Z} be the space of the Laurent polynomials with complex coe9cients and
let u : � → C be a linear functional.
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De�nition 1. Denoting by un = u(zn), for n∈Z, we say that [1,10]:
• u is hermitian if ∀n¿ 0; u−n = un.
• u is regular (positive de8nite) if the principal submatrices of the moment matrix are nonsingular
(positive), i.e.,

∀n¿ 0; 
n = det (u(zi−j))i=0:::n;j=0:::n �= 0 (¿ 0):

In any case we denote ∀n¿ 0; en = 
n=
n−1 with 
−1 = 1.

It is well known that if u is positive de8nite a 8nite and positive Borel measure � on the unit
circle exists such that:

∀P ∈�; u(P(z)) =
1
2�

∫ 2�

0
P(ei�) d�:

De�nition 2. Let {�n(z)}+∞0 be a complex polynomial sequence with deg�n(z) = n. We say that
{�n(z)}+∞0 is a sequence of orthogonal polynomials (OPS) with respect to u if:

∀n; m¿ 0; u
(
�n(z)�m

(
1
z

))
= en�nm with en �= 0:

In what follows we denote by {�n} the monic orthogonal polynomials sequence (MOPS) relative
to u. It is well known that {�n} satis8es the following recurrence relations:

∀n¿ 1; �n(z) = z�n−1(z) + �n(0)�∗
n−1(z); (2.1)

∀n¿ 1; �∗
n(z) = �∗

n−1(z) + �n(0)z�n−1(z); (2.2)

∀n¿ 1; �n(z) = (1− |�n(0)|2)z�n−1(z) + �n(0)�∗
n(z); (2.3)

∀n¿ 1; �∗
n(z) = (1− |�n(0)|2)�∗

n−1(z) + �n(0)�n(z); (2.4)

where �∗
n(z) = zn�n( 1z ) is the reciprocal of �n(z).

Also, we will use the relation:

∀n¿ 1; 1− |�n(0)|2 = en

en−1
; e0 = 1: (2.5)

Also, it is well known that the regular (positive de8nite) case is equivalent to |�n(0)| �= 1 (¡ 1).

De�nition 3. We de8ne the nth reproducing kernel for the linear functional u as a polynomial in
two variables Kn(z; y) given by Kn(z; y) =

∑n
k=0 �k(z)�k(y)=ek .

In what follows we denote by {Kn(z; y)} the sequence of n-kernels relative to u and by {K∗
n (z; y)}

the corresponding reciprocal sequence.



142 C. Su�arez / Journal of Computational and Applied Mathematics 157 (2003) 139–154

It is well known that Kn(z; y) satis8es:

∀n¿ 0; Kn(z; y) =
�∗

n+1(z)�
∗
n+1(y)− �n+1(z)�n+1(y)
en+1(1− z Ky)

: (2.6)

∀n¿ 0; Kn(z; y) =
�∗

n(z)�∗
n(y)− z Ky�n(z)�n(y)
en(1− z Ky)

: (2.7)

Moreover, we will use the following relation:

K∗
n (z; y) = ynKn

(
z;
1
Ky

)
; y �= 0:

De�nition 4. Let u be a regular and hermitian functional. For all n∈N, n¿ 1, we de8ne:

fn(x) =
z�2n−1(z) + �∗

2n−1(z)
2nzn

; (2.8)

gn(x) =
z�2n−1(z)− �∗

2n−1(z)
i2nzn

; (2.9)

where x = (z + z−1)=2. (See [2].)
The set {1} ∪ {fn; gn}n¿1 is a basis for �. The functions fn and gn can be written as follows:

fn(x) =
(1− �2n(0))�2n(z) + (1− �2n(0))�∗

2n(z)
2nzn(1− |�2n(0)|2) ; (2.10)

gn(x) =
(1 + �2n(0))�2n(z)− (1 + �2n(0))�∗

2n(z)
i2nzn(1− |�2n(0)|2) : (2.11)

De�nition 5. Let u be a regular and hermitian functional, and let a; b and c be any complex numbers.
We de8ne the linear functional L : � → C as follows:

∀P ∈�; L(P(z)) = u
(

az2 + bz + c
z

P(z)
)

:

We write L=
(

az2 + bz + c
z

)
u.

The regularity and some relevant properties about this functional has been studied in [9]. Here
we recall some results.

Theorem 1. (i) L is a hermitian functional if and only if a= Kc and b= Kb.
(ii) Assume (i) and a �= 0.
If a1; a2 are the roots of the equation az2 + bz + Ka= 0, then:
L is regular if and only if ∀n∈N, K∗

n (a1; a2) �= 0.
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In this case, denoting by {�n} the MPOS relative to L, we have

∀n¿ 1; (z − ai)�n−1(z) = �n(z)− �n(ai)
K∗

n−1(a1; a2)
K∗

n−1(z; aj); i; j = 1; 2:

(iii) Let L be regular and let  n = L(�n(z)�n( 1z )) then:

∀n¿ 1;  n−1 =−aen
K∗

n (a1; a2)
K∗

n−1(a1; a2)
:

Next we recall some facts concerning semiclassical functionals. For more details see [11].

De�nition 6. Given a linear, regular and hermitian functional u, we say that u is semiclassical if
there exist polynomials A(z) �= 0 and B(z) such that the following functional equation holds:

D(A(z)u) = B(z)u:

If degA(z)=p′ and max{p′ − 1; deg [(p′ − 1)A(z)+ iB(z)]}= q we say that u belongs to the class
(p′; q).
Given A(z)∈� the operator A(z)u is de8ned by

∀P ∈�; (A(z)u)(P(z)) = u(A(z)P(z))

and the derivative operator D is de8ned by

∀P ∈�; Du(P(z)) =−iu(zP′(z)):

3. The regularity

Throughout Section 3 we assume that {�n(z)}+∞n=0 is a MOPS such that �n(0) �= 0, and {Pn(z)}+∞n=0
is the sequence de8ned by

∀n¿ 0; Pn(z) =
(�∗

n+1)
′(z)

(n+ 1)�n+1(0)
where �∗

n(z) = zn�n

(
1
z

)
: (3.1)

Lemma 1. For all n∈N, n¿ 1, the following assertions hold:

z�′
n(z) = n(�n(z)− �n(0)P∗

n−1(z)): (3.2)

(n+ 1)�n+1(0)(Pn(z)− �n(z)) = n(�n(0)Pn−1(z)− �n+1(0)�n(0)P∗
n−1(z)): (3.3)

(n+ 1)�n+1(0)Pn(0) = n�n(0)Pn−1(0) + �n+1(0)�n(0): (3.4)

Proof. We know that z(�∗
n)

′(z)= n�∗
n(z)− (�′

n)
∗(z) [11]. Using (3.1) and applying the ∗n-operator

in the resulting expression we 8nd (3.2).

• Taking derivatives in (2.2) written for n+ 1 and substituting (3.2) we have (3.3).
• Taking z = 0 in (3.3) we get to (3.4).
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In what follows we will assume that {Pn(z)} is a MOPS and ũ the corresponding associated
functional.

Proposition 1. Denoting by En = ũ(Pn(z)Pn( 1z )) = ũ(Pn(z)z−n) then:

∀n∈N; n¿ 1; En =
(n+ 2)�n+2(0)�1(0)en+1

2(n+ 1)�n+1(0)�2(0)e1
: (3.5)

Proof. Denoting by An =−n�n(0)=(n+ 1)�n+1(0) and by Bn = n�n(0)=(n+ 1); from (3.3):

∀n¿ 1; �n(z) = Pn(z) + AnPn−1(z) + BnP∗
n−1(z): (3.6)

Using (2.1) we have

∀n¿ 0; z�n(z) + �n+1(0)�∗
n(z) = (z + An+1)Pn(z) + (Pn+1(0) + Bn+1)P∗

n (z):

Substituting (3.6) and (3:6)∗n:

An+1Pn(z) + (Pn+1(0) + Bn+1 − �n+1(0))P∗
n (z)

= z(An + �n+1(0)Bn)Pn−1(z) + z(Bn + An�n+1(0))P∗
n−1(z):

From (3.4) the coe9cient of P∗
n (z) is −An+1Pn(0). Substituting this value in the previous equation

and using (2.3) we get to

(An + Bn�n+1(0))Pn−1(z) + (Bn + �n+1(0)An)P∗
n−1(z) = An+1(1− |Pn(0)|2)Pn−1(z):

Since that the coe9cient of P∗
n−1(z) is zero:

∀n¿ 1; 1− |Pn(0)|2 = n(n+ 2)�n+2(0)�n(0)

(n+ 1)2�n+1(0)
2 (1− |�n+1(0)|2): (3.7)

Taking into account (2.5) and letting n take the successive values n= 1; 2; : : : we get to (3.5).

Corollary 1. Denoting by '=�2(0)�1(0)=�2(0)�1(0), for all n∈N, the following assertions hold:

�n+1(0)
�n+1(0)

=
1

'n−1
�2(0)
�2(0)

: (3.8)

'�n(0)�n+1(0) = �n(0)�n+1(0): (3.9)

Proof.
• Taking into account that (3.5) is a real number and letting n take the successive values n=1; 2; : : :
we get to (3.8).

• The relation (3.9) is immediate from the previous one.
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Lemma 2. For all n∈N, n¿ 1, the following assertion holds:

n'�n(0)Pn−1(0) = (+ n�n(0)Pn−1(0); (3.10)

where (=
�1(0)

2
�2(0)− �1(0)2�2(0)

�1(0)�2(0)
= '�1(0)− �1(0).

Proof. We proceed by induction on n. When we apply the induction step we use (3.9) and (3.4).

A crucial result in this section is the following proposition.

Proposition 2. For all n∈N, n¿ 1, the following assertion holds:

(z2 + Cnz + ')Pn−1(z)

=
(
z − (n+ 1)�n+1(0)

n�n(0)

)
�n(z) +

(
(n+ 1)�n+1(0)

n
+ 'Pn−1(0)

)
�∗

n(z); (3.11)

where

Cn =
(
n
− en

en−1

(
(n+ 1)�n+1(0) + (n − 1)�n−1(0)'

n�n(0)

)
+ 2�n(0)Pn−1(0):

Proof. From (3.6), (2.1) and (3.4):

�n(z) =
(
z − n�n(0)

(n+ 1)�n+1(0)

)
Pn−1(z) +

(
�n(0) +

n�n(0)Pn−1(0)
(n+ 1)�n+1(0)

)
P∗

n−1(z):

Applying the ∗n-operator:

�∗
n(z) =

(
�n(0) +

n�n(0)Pn−1(0)
(n+ 1)�n+1(0)

)
zPn−1(z) +

(
1− z

n�n(0)
(n+ 1)�n+1(0)

)
P∗

n−1(z):

Below we solve the system formed by the two previous equations and whose unknowns are Pn−1(z)
and P∗

n−1(z).
Denoting by Dn(z) the determinant of the matrix of the coe9cients. We have:

Dn(z) =
−z2n�n(0)

(n+ 1)�n+1(0)
+ z

[
n2|�n(0)|2

(n+ 1)2|�n+1(0)|2 + 1−
∣∣∣∣�n(0) +

n�n(0)Pn−1(0)
(n+ 1)�n+1(0)

∣∣∣∣
2
]

− n�n(0)

(n+ 1)�n+1(0)
:

It is easy to see that Dn(z) has the property Dn(z) = D∗
n(z), that is to say, it is self-reciprocal.
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Taking into consideration the fact that Dn(z) is a self-reciprocal polynomial of degree two, then
it must be of the form:

Dn(z) =− n�n(0)
(n+ 1)�n+1(0)

(z − an)
(
z − 1

an

)
:

From (3.9): an=an = '.
Denoting by Cn =−(an + 1=an), we have:

Cn =−
[

n2|�n(0)|2
(n+ 1)2|�n+1(0)|2 + 1−

∣∣∣∣�n(0) +
n�n(0)Pn−1(0)
(n+ 1)�n+1(0)

∣∣∣∣
2
]
(n+ 1)�n+1(0)

n�n(0)
:

For n= 1 we obtain

C1 =−2e1 �2(0)
�1(0)

+ '�1(0) + �1(0): (3.12)

For n¿ 2 the value of Cn in the statement is obtained after a simple calculation in conjunction
with (3.7), (3.9) and (3.10).
Since that,

Dn(z) =− n�n(0)
(n+ 1)�n+1(0)

(z2 + Cnz + ');

solving the system, we get to (3.11).

Proposition 3. For all n∈N, n¿ 1, it is veri;ed Cn = C1.

Proof. Writing (3.11) for n+ 1 and using (2.1) and (2.2):

∀n¿ 0; (z2 + Cn+1z + ')Pn(z)

=
[
z − (n+ 2)�n+2(0)

(n+ 1)�n+1(0)
(1− |�n+1(0)|2)

+'Pn(0)�n+1(0)
]
z�n(z) + (z�n+1(0) + 'Pn(0))�∗

n(z): (3.13)

On the other hand,

(z2 + Cn+1z + ')Pn(z) = (z2 + Cnz + ')Pn(z) + (Cn+1 − Cn)zPn(z):

Substituting in the previous (3.11) and (3:11)∗(n+1) and equating to (3.13):

(Cn+1 − Cn)Pn(z)

=
[
(n+ 1)�n+1(0)

n�n(0)
− (n+ 2)�n+2(0)
(n+ 1)�n+1(0)

en+1

en
− '

Pn(0)�n+1(0)
n

− Pn−1(0)Pn(0)
]
�n(z)

+
[
−�n+1(0)

n
− 'Pn−1(0) +

(n+ 1)�n+1(0)
n�n(0)

Pn(0)
]
�∗

n(z):
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From (3.9) and (3.4) the coe9cient of �∗
n(z) is zero. Identifying coe9cients of degree n:

Cn+1 − Cn =
[
(n+ 1)�n+1(0)

n�n(0)
− (n+ 2)�n+2(0)
(n+ 1)�n+1(0)

en+1

en
− '

Pn(0)�n+1(0)
n

− Pn−1(0)Pn(0)
]
:

Eliminating (n+ 2)�n+2(0)en+1=en with (3.7):

Cn+1 − Cn = Pn(0)
(
Pn(0)

(n+ 1)�n+1(0)
n�n(0)

− '
�n+1(0)

n
− Pn−1(0)

)
:

Again applying (3.4) we get to Cn+1 − Cn = 0.

Remark 1. Eq. (3.11) suggests that {Pn} can be orthogonal with respect to a functional of the kind
((az2 + bz + c)=z)u (see De8nition 5). This fact is proved in the following Proposition.
On the other hand, the development of the more general case �1(0)∈C requires the distinction

of several situations. Here, we focus our attention on the case �1(0)∈R.

Proposition 4. The functional ũ veri;es:

ũ=− �1(0)
2�2(0)e1

(
z2 + C1z + 1

z

)
u: (3.14)

Furthermore, if �1(0) is a real number, then: '=1, (=0 and ∀n∈N, n¿ 1, the Schur parameters
�n(0) and Pn(0) are real numbers.

Proof. Let ũ be the functional given in the statement and Pn−1(z) as in (3.11). Then,

ũ(Pn−1(z)z−k) =




�1(0)
2�2(0)e1

(n+ 1)�n+1(0)
n�n(0)

en = En−1 if k = n − 1;

0 if 06 k6 n − 2:

Therefore {Pn−1}n¿1 is orthogonal with respect to ũ.
The last relations in the statement are consequences of Theorem 1(i) in conjunction with the

hypothesis �1(0)∈R.

Remark 2. Notice that as '= 1 then the roots of z2 + C1z + 1 = 0 must be real numbers.

The previous results can be summed up in the following corollary.

Corollary 2. For all n∈N, n¿ 1, the following assertion holds:

(z2 + C1z + 1)Pn−1(z)

=
(
z − (n+ 1)�n+1(0)

n�n(0)

)
�n(z) +

(
(n+ 1)�n+1(0)

n
+ Pn−1(0)

)
�∗

n(z); C1 ∈R: (3.15)
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Furthermore:

C1 =− en

en−1

(
(n+ 1)�n+1(0) + (n − 1)�n−1(0)

n�n(0)

)
+ 2�n(0)Pn−1(0): (3.16)

Corollary 3. If ũ is regular and * and 1=* are the roots of the equation z2 + C1z + 1 = 0 then,

∀n¿ 0;
(n+ 1)�n+1(0)

�1(0)
=




*2�2n(*)−(�∗
n (*))

2

*n(*2−1)en if *2 �= 1;
Kn(*;*)

*n if *2 = 1;
(3.17)

∀n¿ 1; (n+ 1)Pn(0) =
*nKn(*; 1=*)

Kn(*; *)
: (3.18)

Proof. Putting z = * and z = 1=* in (3.15) and solving the resulting system [5,9].

Corollary 4. Let

Fn(x) =
zP2n−1(z) + P∗

2n−1(z)
2nzn

; (3.19)

Gn(x) =
zP2n−1(z)− P∗

2n−1(z)
i2nzn

(3.20)

with x = (z + z−1)=2.
Then, there exist real numbers ãn and b̃n such that:(

x +
C1
2

)
Fn(x) = fn+1(x) + ãnfn(x); (3.21)

(
x +

C1
2

)
Gn(x) = gn+1(x) + b̃ngn(x); (3.22)

where fn(x) and gn(x) are de;ned by (2.8) and (2.9).

Proof. See [5].

Now we show that the equation z2 + C1z + 1 = 0 must have a double root, i.e., C1 =±2.

Proposition 5. If ũ is regular then:

ũ=− �1(0)
2�2(0)e1

(
z2 ± 2z + 1

z

)
u: (3.23)

Proof. Assume that * and 1=* with * �= 1=* are the roots of z2 + C1z + 1 = 0.
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From (2.10) and (2.11):

fn

(
−C1
2

)
=

�2n(−C1=2) + �∗
2n(−C1=2)

(1 + �2n(0))(−C1)n
;

gn

(
−C1
2

)
=

�2n(−C1=2)− �∗
2n(−C1=2)

i(1− �2n(0))(−C1)n
:

From (2.8) to (2.9) in conjunction with (2.1) and (2.2):

fn+1

(
−C1
2

)
=
−(C1=2)(−(C1=2)+�2n+1(0))�2n(−C1=2)+(1− (C1=2)�2n+1(0))�∗

2n(−C1=2)
(−C1)n+1

;

gn+1

(
−C1
2

)
=

C1=2((C1=2) + �2n+1(0))�2n(−C1=2)− (1 + (C1=2)�2n+1(0))�∗
2n(−C1=2)

i(−C1)n+1
:

We distinguish the following cases:
(i) There exists n∈N, n¿ 1, such that fn(−C1=2) = 0. (�2n(−C1=2) =−�∗

2n(−C1=2))
From (3.21) fn+1(−C1=2) = 0.
Since that fn+1(−C1=2)=−(1−C2

1 =4)
�2n(−C1=2)
(−C1)n+1

=0 and C1 �= ±2 then �2n(−C1=2)=0. Therefore
�∗
2n(−C1=2) = 0 in contradiction with the fact that �n(z) and �∗

n(z) have not common roots.
(ii) There exists n∈N, n¿ 1, such that gn(−C1=2) = 0.
We proceed as in (i) and again we get to a contradiction.

(iii) For all n∈N, n¿ 1, fn(−C1=2) �= 0 and gn(−C1=2) �= 0.
From (3.17), (2.7) and (2.6):

∀n¿ 1; n�n(0) =
�2

n(*)− (�∗
n(*))

2

*n−1(*2 − 1)en
�1(0):

Since that �n(0) �= 0 then �n(*) �= ±�∗
n(*) and *�n(*) �= ±�∗

n(*).
From Theorem 1(ii):

∀n¿ 1; (z − *)Pn−1(z) = �n(z)− �1(0)�n(*)
n�n(0)

K∗
n−1

(
z;
1
*

)
(3.24)

and

∀n¿ 1;
(
z − 1

*

)
Pn−1(z) = �n(z)− �1(0)�n(1=*)

n�n(0)
K∗

n−1(z; *): (3.25)

Applying the ∗n-operator in (3.24):(
z − 1

*

)
P∗
n−1(z) =−1

*
�∗

n(z) +
�1(0)�∗

n(1=*)
n�n(0)

zK∗
n−1(z; *)

and eliminating K∗
n−1(z; *) with (3.25) we get to

enKn(z; *) = �n(*)zPn−1(z) + �∗
n(*)P

∗
n−1(z):
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Let Ãn = e2n
�2n(*)+�∗

2n(*)
, then,

Fn(x) = Ãn

(
K2n(z; *) + K∗

2n(z; *)
2nzn

)
:

From (3.21):

(z2 + C1z + 1)Ãn

(
K2n(z; *) + K∗

2n(z; *)
22n+1z2n+1

)
= fn+1(x)− fn+1(−C1=2)

fn(−C1=2)
fn(x);

wherefrom:

(z2 + C1z + 1)Ãn(1 + �2n(0))fn

(
−C1
2

)
(K2n(z; *) + K∗

2n(z; *))

= z�2n(z)
[
zfn

(
−C1
2

)
(1 + �2n(0))

+
(
�2n+1(0)fn

(
−C1
2

)
(1 + �2n(0))− 2fn+1

(
−C1
2

))]

+�∗
2n(z)

[
z
(
�2n+1(0)fn

(
−C1
2

)
(1 + �2n(0))

−2fn+1

(
−C1
2

))
+ fn

(
−C1
2

)
(1 + �2n(0))

]
:

Developing the left-hand member with (2.7) we get to

H2n�2n(z) =−H2n�∗
2n(z);

where

H2n=fn

(
−C1
2

)
(1 + �2n(0))

*2�2n(*) + �∗
2n(*)

*(�2n(*) + �∗
2n(*))

+�2n+1(0)fn

(
−C1
2

)
(1 + �2n(0))− 2fn+1

(
−C1
2

)
:

Taking in consideration that �n(z) and �∗
n(z) have not common roots, we have

2fn+1

(
−C1
2

)
=
[
�2n+1(0) +

*2�2n(*) + �∗
2n(*)

*(�2n(*) + �∗
2n(*))

]
(1 + �2n(0))fn

(
−C1
2

)
:

Substituting fn+1(−C1
2 ) and fn(−C1

2 ):

�2n

(
−C1
2

)
=−2 *2�2n(*)− �∗

2n(*)
(*2 + 1)(�2n(*)− �∗

2n(*))
�∗
2n

(
−C1
2

)
: (3.26)
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Let B̃n = e2n
�2n(*)−�∗

2n(*)
, then:

Gn(x) = B̃n

(
K2n(z; *)− K∗

2n(z; *)
i2nzn

)
:

Proceeding as before we 8nd:

2gn+1

(
−C1
2

)
=
[
−�2n+1(0) +

*2�2n(*)− �∗
2n(*)

*(�2n(*)− �∗
2n(*))

]
(1− �2n(0))gn

(
−C1
2

)
;

wherefrom we obtain

�2n

(
−C1
2

)
= 2

*2�2n(*) + �∗
2n(*)

(*2 + 1)(�2n(*) + �∗
2n(*))

�∗
2n

(
−C1
2

)
: (3.27)

From (3.26) and (3.27):
If �∗

2n(−C1=2) = 0 then �2n(−C1=2) = 0 and this case is impossible. Therefore:

*2�2n(*) + �∗
2n(*)

(�2n(*) + �∗
2n(*))

=−*2�2n(*)− �∗
2n(*)

(�2n(*)− �∗
2n(*))

and this implies *2�2
2n(*) = (�

∗
2n(*))

2 in contradiction with the hypothesis.
Consequently *= 1=*, i.e., C1 =±2.

Corollary 5. The sequences {�n(0)}+∞n=0 and {Pn(0)}+∞n=0 are given by

�n+1(0) =
Kn(*; *)
(n+ 1)*n�1(0); (3.28)

Pn(0) =
*n

(n+ 1)
; (3.29)

where *=±1.

Remark 3. The OPS whose Schur parameters are of the form |Pn(0)|=1=(n+1) have been studied
in [3].

4. The solutions

Theorem 2. Let {�n} be a monic sequence of polynomials such that, for all n∈N, deg�n = n,
�n(0) �= 0 and �1(0)∈R, �1(0) �= 0, |�1(0)| �= 1.

Let {Pn} be a monic sequence of polynomials de;ned by Pn(z) = (�∗
n+1)

′(z)=(n+ 1)�n+1(0).
If {�n} and {Pn} are sequences of orthogonal polynomials then:

(a)

∀n¿ 1; �n(z) = zn +
�1(0)

1− (n − 1)�1(0)

(
zn − 1
z − 1

)
; �1(0) �= 1

n
: (4.1)
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In this case:

Pn(z) = zn +
n

n+ 1
zn−1 +

n − 1
n+ 1

zn−2 + · · ·+ 2
n+ 1

z +
1

n+ 1
: (4.2)

(b)

∀n¿ 1; �n(z) = zn +
�1(0)

1 + (n − 1)�1(0)

(
zn + (−1)n−1

z + 1

)
; �1(0) �= −1

n
: (4.3)

In this case:

Pn(z) = zn − n
n+ 1

zn−1 +
n − 1
n+ 1

zn−2 + · · ·+ 2(−1)n+1
n+ 1

z +
(−1)n
n+ 1

: (4.4)

Proof. From (3.16) we have:
(a) If C1 =−2 then �2(0) = �1(0)=(1− �1(0)). From (3.28) we 8nd Pn(0) = 1=(n+ 1).
Using (3.4): �n+1(0) = �n(0)=(1− �n(0)), wherefrom:

∀n¿ 1; �n(0) =
�1(0)

1− (n − 1)�1(0)
:

In [5] we can see that the sequence whose Schur parameters are Pn(0) = 1=(n+ 1) is (4.2). Taking
into account the de8nition of Pn(z) we get to (4.1).
(b) If C1 = 2, we proceed as in (a) and we 8nd:

Pn(0) =
(−1)n
n+ 1

and �n(0) =
(−1)n+1�1(0)
1 + (n − 1)�1(0)

:

In order to compute Pn(z) we use the following result [5]:
The MOPS {Mn(z)} with sequence of Schur parameters {ein’Pn(0)} veri8es:

Mn(z) = ein’Pn(e−i’z):

Using (4.2) and the previous result with ’= � the proof is complete.

5. The linear associated functionals, the measures and the semiclassical character

In this section we denote by L0 the functional associated with the normalized Lebesgue measure
� and by �a the Dirac distribution at a point a.
The following theorem is the reciprocal of Theorem 2.

Theorem 3. (a) The sequence given by (4.1) ((4.3)) is orthogonal with respect to the functional:

u= (1± �1(0))L0 ∓ �1(0)�±1:

(b) The sequences given by (4.2) ((4.4)) is orthogonal with respect to the functionals:

ũ=∓ 1
2(1± �1(0))

(z ∓ 1)2
z

u:
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Proof. Denoting by un = u(zn) and by ũ n = ũ(zn), for n∈N, we have the following cases:
(a) From the de8nition of u in the statement we have

un =

{
1 if n= 0;

−�1(0)((−1)n�1(0)) if n �= 0:
Wherefrom:

u(�n(z)z−k) =

{
0 if 06 k6 n − 1;
− n(u1−1)(u1+1=n)

1+(n−1)u1 �= 0 (− n(u1+1)(u1−1=n)
1−(n−1)u1 �= 0) if k = n:

(b) Proceeding as in (a):

ũ n =



1 if n= 0;

− 1
2 (
1
2) if n= 1;

0 if n¿ 2:

ũ(Pn(z)z−k) =

{
0 if 06 k6 n − 1;

n+2
2(n+1) �= 0; ( n+2

2(n+1) �= 0) if k = n:

Remark 4. (i) It is well known that the Jacobi measure on the unit circle is given by SzegPo [10]:

�′(�) =
(
sin

(
�
2

))2* (
cos

(
�
2

))20
; −�6 06 � *; 0¿ − 1

2

and the corresponding sequence of Schur parameters is

∀n¿ 0; Jn(0) =
*+ (−1)n0
n+ *+ 0

:

(ii) Given a probability measure � on the unit circle a new probability measure on the unit circle
can be de8ned as follows:

2=
1

1 +M
(� +M�z1); z1 ∈T; M ¿ 0:

The sequences of orthogonal polynomials associated with 2 have been study in [4].

Theorem 4. (a) If �1(0)∈ (−1; 0) (�1(0)∈ (0; 1)), the sequence given by (4.1) ((4.3)) is orthogonal
with respect to the measure:

2= (1± �1(0))
(
� ∓ �1(0)

1± �1(0)
�±1

)
:

(b) The sequence given by (4.2) ((4.4)) is a sequence of Jacobi kind and the corresponding
measure is

3′(�) = sin2
(

�
2

)
:

(
cos2

(
�
2

)
:
)
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Proof. In order to obtain (a) we impose the condition |�n(0)|¡ 1 [10] in (a) of Theorem 3.
The case (b) is obvious from (i) of the previous remark.

Theorem 5. (a) The sequence given by (4.1) ((4.3)) is semiclassical of class (2; 2) and veri;es:

D((z ∓ 1)2u) = 2iz(z ∓ 1)u:
(b) The sequence given by (4.2) ((4.4)) is semiclassical of class (1; 1) and veri;es:

D((z ∓ 1)ũ) = i(2z ± 1)ũ:

Proof. If in De8nition 6 we take P(z) = zn we obtain that the functionals in the statement verify
the following diFerence equations:
(a)

(n+ 2)un+2 ∓ 2(n+ 1)un+1 + nun = 0:(b)

(n+ 2)ũ n+1 ∓ (n − 1)ũ n = 0:

Now, using the results given in Proof 12 the statement follows.
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