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Abstract

Implicit time stepping typically requires solution of one or several linear systems with a matrix I − �J per
time step where J is the Jacobian matrix. If solution of these systems is expensive, replacing I − �J with its
approximate matrix factorization (AMF) (I−�R)(I−�V), R+V=J , often leads to a good compromise between
stability and accuracy of the time integration on the one hand and its e5ciency on the other hand. For example,
in air pollution modeling, AMF has been successfully used in the framework of Rosenbrock schemes. The
standard AMF gives an approximation to I−�J with the error �2RV , which can be signi8cant in norm. In this
paper we propose a new AMF. In assumption that −V is an M -matrix, the error of the new AMF can be shown
to have an upper bound �‖R‖, while still being asymptotically O(�2). This new AMF, called AMF+, is equal
in costs to standard AMF and, as both analysis and numerical experiments reveal, provides a better accuracy.
We also report on our experience with another, cheaper AMF and with AMF-preconditioned GMRES.
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1. Introduction

Typically, in air pollution modeling systems of millions of stiB ODEs, describing advection, ver-
tical mixing by vertical diBusion and cloud transport and reactions of the trace gases, have to be
integrated in time on intervals ranging from months to years [35,37].
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The huge scale of air pollution problems suggests the use of special time integration, e.g. the
widely used operator splitting, where the physical processes are handled separately. Normally, vertical
mixing and reactions are stiB processes and thus require implicit time stepping. On the other hand,
the step sizes used for these processes usually lead to CFL numbers below 1 for advection. Therefore,
when operator splitting is used, it is natural to apply an explicit scheme for advection and implicit
schemes for reactions and vertical mixing. Operator splitting is, however, not always a fortunate
choice in the stiB case because the splitting error may spoil the solution. This is especially pronounced
for the fast varying trace gases (the so-called radicals) [2–4,30].

The most straightforward way to avoid splitting while still treating advection explicitly is to
apply an implicit scheme, say a Rosenbrock scheme [6,12], with a Jacobian containing entries of
only reactions and vertical mixing terms. Another alternative is to use the so-called source splitting
[15–17], where the advection step is performed 8rst and added as the source during the implicit
vertical mixing-reaction substep. In both cases Rosenbrock schemes are attractive because they have
nice stability properties, often readily allow inexact Jacobians and require a 8xed number of linear
solves per time step.

The standard oB-the-shelf ODE solvers based on implicit multistep or Runge–Kutta formulas
and Newton iteration are typically not e5cient for air pollution problems [28,35,37]. The accuracy
requirements for these problems are very modest and simple second- or third-order Rosenbrock
schemes with a 8xed step size often turn out to be the best choice [27].

The semi-discrete ODE system representing the coupled vertical mixing-reaction process can be
written as

ẏ= f (y); f (y) = Vy+ r(y); y∈RN ; N = nznt; (1)

where V is the vertical mixing matrix, r(y) is the reaction term, nz is the number of vertical layers
and nt is the number of trace gases. Typically, 206 nz6 50 and 206 nt6 100. The linear systems
arising in linearly implicit schemes applied to (1) have the form

(I − �J)x= b; x; b∈RN ; (2)

where J is Jacobian of the reactions and vertical mixing, �=�Mt, � is a parameter of the Rosenbrock
scheme, Mt is the step size. In the following we write J = V + R where R is a Jacobian matrix
9r(y)=9y evaluated at a certain point.

A serious computational bottleneck is caused by the fact that J usually has a structure that prevents
the e5cient direct solution of (2). The matrix I − �J is rather large, of size N up to 104, and sparse
(see Fig. 1) but the sparsity would be largely lost during the LU factorization and thus the costs of
the factorization as well as of the backsolves would be dramatically increased. Increase of the costs
is often simply not feasible, since in air pollution models one has many independent linear systems
(2). Normally there is one system (2) per horizontal grid location, i.e., there are altogether nx × ny

systems, where nx, ny are horizontal grid size dimensions.
A natural way to avoid the expensive LU solve for linear systems (2) is to settle for an approximate

solution. As proposed in [36], for air pollution models this can be done with the help of approximate
matrix factorization (AMF)

I − �J ≈ (I − �R)(I − �V); (3)
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Fig. 1. Sparsity structure of the vertical mixing matrix V , the reaction Jacobian R and the coupled vertical mixing-reaction
system Jacobian J = V + R for nt = 29 and nz = 11. The nz diagonal blocks of R are of size nt × nt and correspond to
the chemistry Jacobians per grid point.

by computing x as

x := (I − �V)−1(I − �R)−1b: (4)

AMF was introduced in [1,7]. However, the idea of AMF can already be seen in the alternating
direction implicit (ADI) method of Peaceman and Rachford [21]. Apart from [36], recent papers on
AMF in implicit time integration include [10,14,18,19,33].

The nice property of AMF is that, when AMF is used within a Rosenbrock scheme applied to the
coupled vertical mixing-reactions system, the total computational expenses are just the same as when
the Rosenbrock scheme is applied 8rst to vertical mixing and then to reactions within the operator
splitting. This was exploited in [36], where a second order L-stable Rosenbrock scheme ROS2 (see
[6, Chapter 9]) was successfully applied in combination with AMF to diBerent test problems typical
for air pollution modeling. The ROS2 scheme can be written as

yn+1 = yn + 3
2 k1 + 1

2 k2;

(I − �MtA)k1 = Mt f (yn);

(I − �MtA)k2 = Mt f (yn + k1) − 2k1: (5)

This two-stage method is second-order consistent for any matrix A. The matrix A is supposed to be
an approximation to the Jacobian matrix J = f ′(yn). If the AMF approximation is used, one chooses
A such that

I − �A= (I − �R)(I − �V); � = �Mt:

When using the exact Jacobian, the method has a stability function which is A-stable for �¿ 1
4 and

L-stable for � = 1 ± 1√
2
. The two-stage scheme (5) can be made third-order accurate and A-stable

by adapting the coe5cients [18,19]. Third-order accuracy does however require that A = J + O(�)
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which is not necessary for second order. This so-called ROS3 scheme has been successfully used in
combination with AMF [18,19].

An important point is that incorporation of AMF largely preserves stability. ROS2-AMF retains
A-stability, only L-stability is lost [36]. In [2,4], this ROS2-AMF scheme was tested against the
standard operator Strang splitting in the framework of two real-life air pollution models, the regional
LOTOS model [20] and the global TM3 model [31]. The test problems in [2,4] were diBerent, e.g.,
there was no advection in [2] while on the other hand there was no cloud transport in [4]. However,
in both situations, within the same amount of computational work, ROS2-AMF gave a better, more
accurate solution than operator splitting and source splitting. A possible alternative to AMF for the
approximate solution of the linear system (2) might be a modern Krylov iterative solver. This is
further discussed in Section 4.2.

In this paper we propose a new AMF. This new AMF, refered to as AMF+, is aimed at improving
AMF qualitatively. The standard AMF gives an approximation to I −�J with the error �2RV , which
can be signi8cant in norm in the stiB case. This means that the accuracy of an AMF-based scheme
can be inferior due to the approximate factorization, especially for the “stiB” trace gases. AMF+
is constructed to relieve this problem. Assuming that −V is a columnwise diagonally dominant
M -matrix 1 (this assumption is brieSy discussed in the next section), we show that the error of
AMF+, while still being asymptotically O(�2), has an upper bound �‖R‖1. AMF+ requires the
same computational costs as standard AMF and, as numerical experiments reveal, provides a more
accurate solution. The analysis suggests that the more diagonally dominant the matrix −V is, the
larger the pro8t provided by AMF+.

The structure of the paper is as follows. In Section 2 we give more details relevant to the topic.
Section 3 describes AMF+. In Section 4, two other possibilities to solve systems (2) are discussed,
namely (i) a cheaper variant of AMF and (ii) an preconditioned iterative solver. The results of
numerical tests are discussed in Section 5 and, 8nally, the conclusions are drawn in Section 6.

2. Vertical mixing matrix, reaction Jacobian and AMF

For typically used step sizes (≈ 30 min) one has

Mt‖V‖2 ∼ O(10); Mt‖R‖2 ∼ O(106); (6)

whereas smallest in modulus eigenvalues of both of the matrices multiplied with the step size are of
order O(10−5). This illustrates the stiBness of the problem and thus the need of (linearly) implicit
time integration for the vertical mixing-reaction part.

The sparsity structure of V shown in Fig. 1 corresponds to the following ordering of unknowns
in the vector x (cf. (2)):

x= {xkm}; k = 1; : : : ; nz; m = 1; : : : ; nt ;

x= (x11; x12; : : : ; x1nt ; : : : ; xnz1; xnz2; : : : ; xnznt):

1 Matrix A is called an M -matrix if A = sI − B where matrix B is elementwise nonnegative and s¿�(B), �(B) being
the spectral radius of B. A is a singular M -matrix if s = �(B).
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With another ordering, namely with

x= (x11; x21; : : : ; xnz1; : : : ; x1nt ; x2nt ; : : : ; xnznt); (7)

the matrix V transforms to a block-diagonal matrix with nz × nz dense diagonal blocks Vm,
m = 1; : : : ; nt . Each block Vm describes the vertical mixing process of the trace gas number m. Often

Vm = const(m); (8)

i.e., all trace gases are mixed in the same way. In the TM3 and TM5 global models [31,32], where the
vertical mixing operator also includes the so-called scavenging (i.e. washing out) process, matrices
Vm do depend on m. With only vertical diBusion present in the vertical mixing process, all matrices
Vm would be tridiagonal if it is assumed that the three-point discretization is used. Unlike vertical
diBusion, the cloud transport couples vertical layers in the model in a nonlocal manner thus causing
the matrices Vm to be dense.

Analysis of the new AMF+ is made in assumption that −V is an (possibly singular) M -matrix.
This assumption is in general not satis8ed in real air pollution models but does hold (see [2,13])
for the operational air pollution models TM3/TM5 [31,32] which motivated our study. If −V is not
an M -matrix our analysis, in particular estimate (11), does not remain true. However, we do not
see any reason why in this case the new AMF+ would be inferior to the standard AMF. For both
AMF and AMF+, one may expect that failure of −V to be an M -matrix will make pivoting in LU
factorization of I−�V necessary to avoid possible numerical stability problems. The LU factorization
of I − �V needed to compute x in (4) is done blockwise for each of the blocks I − �Vm. This costs
O(ntn3

z) operations, or O(n3
z) operations when all the blocks Vm are identical.

The reaction Jacobian R is a block-diagonal matrix with sparse diagonal blocks Rk , k = 1; : : : ; nz,
which are reaction Jacobians in a cell k (cf. Fig. 1). The sparsity of the blocks can be e5ciently
exploited in the course of the LU factorization of I − �R. Using a special preprocessor tool kinetic
preprocessor (KPP, [26]), an optimal ordering of the trace gases can be found for which the L and
U factors are as sparse as possible. In practice this means that the matrix L+U usually has only
few percent more 8ll-in than I−�R. This optimal ordering is kept 8xed during all time steps and no
pivoting is used in the LU factorization of I − �R. This has become a common practice when using
KPP and normally is not observed to cause serious stability problems (for further discussion see [26]).

Preserving sparsity of the reaction Jacobian is crucial and, in general, leads to certain limitations
in the choice of an e5cient approximate solver for (2). For example, for the case where cloud
transport is absent and thus V is tridiagonal, one could choose for the full LU factorization of
I − �J to be performed blockwise. This would however distort sparsity within the blocks, so that
the computational work would increase unacceptably.

3. AMF+: improving AMF

3.1. De7nition of AMF+

We call AMF+ the following approximation to I − �J :

I − �J ≈ (LV − �R)UV ; LVUV = I − �V ; (9)
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Fig. 2. Sparsity structure of the AMF+ matrix factors.

where LV and UV are the LU factors of I−�V and �=�Mt (� is the Rosenbrock scheme parameter).
The sparsity portraits of the AMF+ factors LV − �R and UV are shown in Fig. 2. Both factors can
be easily inverted since UV is triangular and LV − �R is block triangular. To invert the diagonal
blocks of LV − �R, sparse LU factorization is used, in the same way as in the standard AMF for
inversion of blocks in I − �R.

As discussed above, for our analysis we assume that −V is a columnwise weakly diagonally
dominant M -matrix, or a singular M -matrix with zero column sums. (These properties are not
guaranteed in general but do hold [2] in the TM3/TM5 models. From the relation

(LV − �R)UV = I − �V − �RUV = I − �J + �R(I −UV ); (10)

we see that the error term �R(I − UV ) does not seem to be of second order in �. Nevertheless it
will be of second order if we use the freedom to choose the diagonal elements in one of the LU
factors and take

Diag(UV ) = I :

The matrix I − UV is then strictly upper triangular with entries O(�). This can be proven by
mathematical induction with respect to the size of the matrix.

While for small � the AMF+ error term behaves as O(�2), for large � it grows at most linearly in
�. This can be seen from the fact that UV inherits the columnwise diagonal dominance from I − �V
and therefore

‖I −UV‖1 ¡ 1;

so that the norm of the AMF+ error can be estimated as

�‖R(I −UV )‖16 �‖R‖1‖I −UV‖1 ¡�‖R‖1: (11)

A similar estimate, but in the maximum-row norm ‖ ∗ ‖∞ can be obtained if −V is a rowwise
weakly diagonally dominant M -matrix or a singular M -matrix with zero row sums.

In fact, ‖I −UV‖1 can be rather small in practice and here lies the main attractiveness of AMF+.
As an illustration, consider the case where the diagonal block V of the matrix V , representing
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vertical mixing of one trace gas (cf. (7) and (8)), is a tridiagonal matrix:

I − �V =




a1 −b1 0

−b1 a2
. . .

. . . . . . −bnz−1

0 −bnz−1 anz



; ak ¿ 0; bk¿ 0; k = 1; : : : ; nz: (12)

Since V is either (weakly) diagonally dominant or has zero column sums, we have

ak − bk − bk−1 = �k¿ 1; k = 1; : : : ; nz; (13)

where it is assumed that b0 = bnz = 0. It is easy to check that

I − �V = LVUV ; UV =




1 −u1 0

0 1
. . .

. . . . . . −unz−1

0 0 1



;

u1 =
b1

a1
; uk =

bk

ak − bk−1uk−1
; k = 2; : : : ; nz

and, taking into account (13)

06 uk =
bk

ak − bk−1uk−1
6

bk

ak − bk−1
=

bk

bk + �k
: (14)

We see that uk can be small if the �k are su5ciently large, in other words, if I−�V is “su5ciently”
diagonally dominant. Estimates on entries of UV similar to (14) can also be obtained for more
general situations where I − �V is not tridiagonal. Note that similar estimates for the error term of
the standard AMF would not be possible (cf. (21)).

3.2. A simple stability analysis

Since in AMF+ we deal with triangular matrices, to analyze the stability of a Rosenbrock method
applied with AMF+ we cannot consider the usual scalar test equation ẏ=�y. Analyzing stability of
higher order Rosenbrock methods for the more general test case, a system of linear ODEs ẏ = Jy,
does not seem an easy task when an approximate Jacobian A(≈ J ) is involved, which does not
commute with J . We are able to perform stability analysis only for the 8rst order Rosenbrock
scheme combined with AMF+. Let us consider the following two linear test systems of nz ODEs:

ẏ = Jy; J = V + D; D = Diag(�1; : : : ; �nz); (15)

ẏ = Jy; J = V + �I; (16)
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where �¡ 0, �k ¡ 0 (k = 1; : : : ; nz), and V is a symmetric negative semide8nite matrix:

V = V T6 0:

Henceforth, matrix inequalities of the form A¡B (A¿B) mean that matrix A−B is negative de8nite
(respectively, positive de8nite) in the real vector space with standard inner product (x; y)=xTy. Note
that A− B is not required to be symmetric.

Both test problems (15) and (16) are simpli8ed versions of the vertical mixing-reaction problems
as they occur in air pollution models. There are two assumptions under which the reduction to (15) is
possible. The 8rst one is that the vertical mixing process is described by the same matrix Vm =V for
all trace gases m (this can be the case even in full-scale operational models). The second assumption
is that the reaction process is linear and the reaction matrix R (cf. Fig. 1) has diagonal blocks with
the same full set of eigenvectors. Diagonalization of R then would lead us to nt uncoupled test
problems (15), one for each trace gas. Under a stronger assumption, that blocks of R are identical,
these nt systems would have the form (16). Note that only in the latter case RV = VR.

The 8rst-order Rosenbrock scheme (which we will denote by ROS1) applied to a linear system
of ODEs ẏ = Jy can be written as

yn+1 = Syn; S = B−1(B + �J ); B ≈ I − �J; (17)

where � = Mt is the step size and the approximation B is computed by AMF. Assume that J is
symmetric and negative de8nite. We introduce the so-called “energy” vector and matrix norms as

‖y‖J =
√

(−Jy; y);

‖S‖2
J = inf{M | (−JSy; Sy)6M (−Jy; y)}:

We use the following result on stability of ROS1 due to Samarskii [11,24,25]:
Stability criterion. Assume that J = J T ¡ 0 and B¿ 0. Then the scheme (17) is stable, i.e.

‖S‖J 6 1

if and only if

B +
�
2
J¿ 0: (18)

(Note that B is not required to be symmetric.)
We analyze stability of ROS1-AMF+ using the test problems (15), (16) and stability condition

(18). With

B = (LV − �R)UV ; LVUV = I − �V;

we will check whether the matrix B + (�=2)J is positive de8nite:

B +
�
2
J = LVUV − �RUV +

�
2
V +

�
2
R = I − �

2
V +

�
2
R(I − 2UV ):

Since V =V T ¡ 0, the matrix I−(�=2)V is positive de8nite. Consider the last term, (�=2)R(I−2UV ).
This term can be large because R is a “stiB” reaction matrix. Since R is negative de8nite, one might
hope that (�=2)R(I −2UV ) is positive de8nite if I −2UV is negative semide8nite. However, it is not
negative semide8nite for arbitrary matrices V from the class we are considering (namely, matrices
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V such that −V is a (singular) Stieltjes matrix 2 with columnwise weak diagonal dominance or zero
column sums):

Lemma 1.

{((I − 2UV )x; x) | (x; x) = 1} ⊂ (−3; 1): (19)

Proof.

((I − 2UV )x; x) = (x; x) − 2 1
2 ((UV + UT

V )x; x) = (x; x) − (Û x; x);

where the matrix Û = UV + UT
V is a symmetric irreducibly diagonally dominant matrix with 2 as

main diagonal entries: D̂ = Diag(Û ) = 2I . It is easy to check that

(x; x) − (Û x; x) = −(x; x) + 2((I − D̂−1Û )x; x):

Since I − D̂−1Û is the Jacobi iteration matrix of the diagonally dominant matrix Û , its spectral
radius is less than one and

−2(x; x)6 2((I − D̂−1Û )x; x)6 2(x; x);

because I − D̂−1Û is symmetric.

We can guarantee that I − 2UV is negative de8nite for the following class of tridiagonal matrices
I − �V :

Lemma 2. Let I − �V be a tridiagonal diagonally dominant matrix given by (12), (13) and

�k¿ bk ; k = 1; : : : ; nz − 1: (20)

Then the matrix I − 2UV is negative de7nite.

Proof. It is easy to check that (14) and (20) guarantee that

uk6 1
2 ; k = 1; : : : ; nz:

De8ne matrix Û as in the proof of Lemma 1. Then we have

((2UV − I)x; x) = ((Û − I)x; x)¿ 0;

because the diagonal entries of Û are equal to 2 and its oB-diagonal entries do not exceed 1
2 , so

that the matrix Û − I is irreducibly diagonally dominant.

Lemma 3. The assumptions of Lemma 2 on I − �V are ful7lled for any �¿ 0 if V stems from
the standard second-order 7nite di<erence approximation

[(Kuz)z]k ≈
Kk+1=2(uk+1 − uk) − Kk−1=2(uk − uk−1)

h2 ; K = K(z)¿ 0;

of the di<usion operator L[u] = (Kuz)z with Dirichlet boundary conditions.

2 A matrix is called a Stieltjes matrix if it is a symmetric M -matrix.
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Proof. By construction of V .

As we see, I−2UV can be shown to be negative semide8nite for a rather wide class of tridiagonal
matrices V . Assume now that I − 2UV is negative semide8nite. To satisfy the stability condition
(18) for the ROS1-AMF+ scheme we want (�=2)R(I − 2UV ) to be positive de8nite. This is true for
the case R = �I (test problem (15)) and, as discussed in [5], is very likely to be true for the case
R = D (test problem (16)) since the diagonal elements of D usually vary smoothly.

Thus we conclude that ROS-AMF+ can be expected to provide good stability in real-life situa-
tions. Unfortunately, we do not know how to extend these stability results to the second- and
third-order Rosenbrock schemes ROS2 and ROS3. We note, however, that scalar case stability analysis
of Verwer et al. [36] shows A-stability of ROS2-AMF (application of AMF leads to the loss of
L-stability). Since we can expect that AMF+ is a better approximation to I − �J than the standard
AMF, we can also hope that stability properties of ROS2-AMF+ will be attractive too.

4. Other ways to solve the linear systems

In this section, we report on our experience with two other possible ways to approximately solve
the linear systems (2).

4.1. AMFe: economical AMF

Standard AMF (3) gives an O(�2) approximation to I − �J :

(I − �R)(I − �V) = I − �J + �2RV : (21)

A second-order approximation can also be achieved with the following more general class of AMF:

I − �J ≈ (I − �(R1 + V1))(I − �(R2 + V2));

R= R1 + R2; V = V1 + V2: (22)

When the number of vertical layers nz in the model is large, say more than 30, LU factorization of
nz × nz diagonal blocks of I − �V can become rather expensive. The LU factorization of I − �V
can be avoided if one chooses in (22)

R1 = R; R2 = 0;

V1 = VL ≡ lower triangular part of V ;

V2 = VU ≡ upper triangular part of V

which leads to the following economical AMF (AMFe):

I − �J ≈ (I − �(VL + R))(I − �VU): (23)

The sparsity patterns of these matrix factors coincide with those of AMF+ (see Fig. 2).
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Table 1
Computational costs of AMF and AMFe (costs associated with reactions depend on sparsity of R and are not speci8ed)

Reaction costs Vertical mixing costs

AMF nz LU factorizations nt LU factorizations
of sparse nt × nt blocks, of full nt × nt blocks: 2

3 ntn3
z Sops

backsolves backsolves: ntnz(nz + 1) Sops
AMFe Same as for AMF Backsolves: ntn2

z Sops

The main diagonals in VL and VU are computed in the following way. Each diagonal element in
VL and VU is 8rst set equal to the sum of the oB-diagonal elements of its column taken with the
opposite sign. To assure that

Diag(V) = Diag(VL) + Diag(VU);

the diagonals are then updated as

D+ := Diag(V) − Diag(VL) − Diag(VU);

Diag(VL) := Diag(VL) + 1
2 D+;

Diag(VU) := Diag(VU) + 1
2 D+: (24)

Since −V is an M -matrix, with this choice of diagonals matrices −VL and −VU are (possibly
singular) M -matrices too. As a consequence, matrices (I −�VL)−1 and (I −�VU)−1 are elementwise
nonnegative, just as the matrix (I − �V)−1 is. This property is desirable for preserving positivity.

A simple stability analysis for the ROS1-AMFe scheme, similar to the analysis for ROS-AMF+
from the previous section, can be found in [5]. This analysis shows that the scheme has good stability
properties in practical situations. The costs of AMFe are summarized in Table 1.

Because of the explicit nature of AMFe, we expect that the accuracy properties of AMFe-based
schemes will be poor. The poor accuracy properties are often encountered in explicit unconditionally
stable schemes, as e.g. in the Du Fort–Frankel scheme [22] and in a scheme of Samarskii similar to
ROS1-AMFe where the spatially discretized operator is split into lower and upper triangular matrices
[25]. However, since the step sizes typically used in air pollution models are not very large with
respect to the vertical mixing process (cf. (6)), one may hope that the accuracy will not degrade
too much. Moreover, one may consider the following way to repair the accuracy of AMFe: if it is
known that an active vertical mixing takes place in the layers k1; : : : ; k2 (k1 ¡k2) then we may leave
elements of the submatrix of V occupying the k1; : : : ; k2 rows and columns unsplit in the VU part.
This would lead to the sparsity structure shown in Fig. 3.

4.2. Experience with GMRES: no gain

Here we report brieSy on our experience with solving the linear systems (2) by a modern Krylov
iterative scheme. As an option, we have used the AMF matrix (I −�R)(I −�V) as a preconditioner.
We have made numerical experiments to compare ROS2-AMF against ROS2 equipped with the
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Fig. 3. Sparsity structure of the matrix factors in the “repaired” AMFe. k1 = 4 and k2 = 6.

AMF-preconditioned nonrestarted GMRES method as a linear solver [23]. When the Jacobian matrix
is not symmetric, among all modern Krylov iterative solvers, GMRES is an ideal candidate for use
in time integration. First of all, nonrestarted GMRES is guaranteed to converge [23] thus turning
ROS-GMRES into the exact Jacobian ROS2 integrator with all its nice stability properties. Secondly,
since the number of iterations will normally be kept restricted (6 20 in most cases), the restarting
often applied in GMRES for a large number of iterations can be avoided. Hence, the only serious
drawback of full GMRES, growth of work and memory requirements with the number of iterations,
will not be pronounced. Note that nonrestarted GMRES is an optimal scheme (it minimizes the
residual norm among all other Krylov subspace methods) which is superior (in number of iterations)
to other popular schemes for nonsymmetric matrices as BiCGSTAB [34], BiCGStab(‘) [29], QMR
[9], and TFQMR [8]. These schemes were designed as a cheaper alternative to the full GMRES and
do not have the optimality property.

The results of our tests were unfavorable for ROS2-GMRES. Due to the e5cient use of sparsity
in I − �R, for typical values of nz and nt , the AMF solution (4) is done very cheaply, with the
costs comparable to one matrix-vector multiplication y := (I − �J)x. This means that doing just one
unpreconditioned iteration of GMRES or any other Krylov method per time step is twice as expensive
as AMF action (4). Furthermore, one AMF-preconditioned GMRES iteration implies a factor four
increase in costs. One could hope that taking a larger step size for the GMRES-based scheme might
make it more competitive. However, the step size typically used for ROS2-AMF (Mt ≈ 30 min)
is already nearly the maximum one for capturing important solution properties. At least for this
particular problem, this leaves no chance to any Krylov iterative solver. Even if we assume that
an ideal Krylov solver exists that converges in one iteration and costs for the preconditioning are
negligible, the total costs per time step will be at least twice as high as for ROS2-AMF.

The unpreconditioned GMRES performed very poor: the residual norm was hardly damped within
a reasonable number of iterations. The AMF-preconditioned GMRES performed well, converging
within about 10 iterations, allowing the scheme to work with a step size larger than for ROS2-AMF
(up to 40–45 min) but also providing a slightly more accurate solution than ROS2-AMF. However,
this was by far not enough to compensate for the extra costs in GMRES.
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5. Numerical experiments

Along with the variants of AMF considered above, one could also use the following alternative
factorizations (cf. (3), (23) and (9)):

AMF : I − �J ≈ (I − �V)(I − �R);

AMFe : I − �J ≈ (I − �VL)(I − �(VU + R));

AMF + : I − �J ≈ L̃V (ŨV − �R); L̃V ŨV = I − �V ;

Diag(L̃V ) = I : (25)

We will refer to these AMF versions as the R2 versions (indicating that R appears now in the
second factor). Correspondingly, the standard AMF (3), AMF+ (9), and AMFe (23) will be called
the R1 versions. In our numerical experiments we have tested matrix factorizations in both the R1
and R2 modes.

As a test problem we take system (1) with the chemistry model carbon bond mechanism IV
(CBM-IV) involving nt = 32 tracers. All parameters are chosen in the same way as in the CBM-IV
urban scenario from [27], i.e. emissions are high. Our vertical mixing matrix V is taken from the
TM3 code [31], −V is a columnwise weakly diagonally dominant M -matrix. Unlike [36], where
the vertical mixing matrix was tridiagonal, coming from a three-point discretization of the diBusion
operator, our matrix V is dense. The way matrix V is computed is described in detail in [2]. Note,
however, that the scavenging eBect has not been included in our model and that all tracers are
vertically mixed.

The time interval is 5 days. The initial conditions y(0) = y0 are chosen in the same way as in
[36]: y0 is the solution after a 1-day very accurate time integration with a reasonable initial value
vector. During the integration, matrix V is read from disk every 6 h and its LU decomposition is
recomputed (except for AMFe, where the LU decomposition is not carried out).

We compare solutions of ROS2 applied with each of the three AMF variants (AMF, AMF+,
AMFe) against the solution of the full ROS2 where no AMF is used (A= J in (5)). This is done
for a large 8xed Mt = 1800 s (=30 min). The error measured with respect to the full ROS2 is
triggered only by the inexact AMF solves, the contribution of the local error of ROS2 is not of
interest in our study. Since the full ROS2 scheme has proven a reliable and robust method for
atmospheric chemistry [2,4,35,36], we choose to use the solution of the full ROS2 as a reference.

In our computations we use clipping: negative concentrations that occasionally occur are set to
zero. Normally, negative values occur rarely and are relatively small, so that the mass conservation
is almost preserved. Clipping is often used for atmospheric models.

5.1. Testing AMF+ versus AMF

For most of the tracers, both ROS2-AMF and ROS2-AMF+ produce solutions hardly diBerent
from the solution of the full ROS2 (see Fig. 4). For eleven tracers, most of which are fast reacting,
both ROS2-AMF and ROS2-AMF+ produce signi8cant errors. Comparison of ROS2 solution with
a solution obtained with a very small time step size suggests that these errors are a consequence
of using AMF. Similar, even more favorable for ROS2-AMF observations were made in [2] for
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Fig. 4. Solutions of ROS2 (solid line), ROS2-AMF (dotted line) and ROS2-AMF+ (dash-dotted line) for tracers O3,
HNO3 and isoprene, layers 1 (left) and 5 (right). Version R1 of AMF and AMF+ is used.
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the TM3 model: there, the diBerence between ROS2 and ROS2-AMF solutions was negligible for
almost all tracers. The more accurate behavior of ROS2-AMF in [2] can be explained by the fact
that in TM3 several fast reacting tracers do not participate in the vertical mixing, thus reducing the
AMF error.

Comparing AMF and AMF+, we clearly see that ROS2-AMF+ is typically signi8cantly more
accurate than ROS2-AMF (see Fig. 5). In fact, we see that ROS2-AMF+ performs worse than
ROS2-AMF only for one tracer and then only for several, nonsurface layers. In overall, ROS2-AMF+
is pronouncedly more accurate, especially for the eleven tracers for which larger errors are observed.
This is true for both R1 and R2 versions of AMF and AMF+. It is not possible to say which
version, R1 or R2, is preferable. In general, the R1 version seems to be more accurate. However,
the R2 version seems to be more stable: without clipping ROS2-AMF remains stable only in the
R2 mode. (ROS2-AMF+ can work without clipping in both R1 and R2 modes.) To complete the
whole integration, both ROS2-AMF and ROS2-AMF+ required roughly the same CPU time, about
3:5 s on a PC with an AMD-K6 processor.

5.2. Testing AMFe

Unlike ROS2-AMF and ROS2-AMF+, with the step size Mt=1800 s ROS2-AMFe is unacceptably
inaccurate (the relative error is ∼ 100%). Reduction of the step size by a factor two does not
su5ciently help. However, with the step size Mt = 450 s ROS2-AMFe works reasonably well (Fig.
6). The error is then only signi8cant for the same eleven fast tracers, just as for ROS2-AMF and
ROS2-AMF+. Again, switching between the R1 and R2 versions does not inSuence the situation
much. Note that for Mt = 450 s we have Mt‖V‖2 ≈ 6:13, so that the vertical mixing still could not
be treated explicitly (in the ROS2 framework, this can be straightforwardly implemented, see e.g.
[36]).

The question is whether ROS2-AMFe, applied with a step reduced by a factor four, would still be
cheaper than ROS2-AMF or ROS2-AMF+ in terms of the CPU time. In our tests the all-round CPU
time of ROS2-AMFe was approximately 7 s, twice as much as the CPU time of ROS2-AMF and
ROS2-AMF+. This, however, can be quite diBerent. Indeed, let Mt be the step size of ROS2-AMF,
T be the total integration time and the vertical mixing be updated once in a Mtvmix time (in our tests
Mtvmix = 6 h). Assume now that ROS2-AMFe works well with the step size Mt=s, s¿ 1 and t̃LU

and t̃step are the CPU times to compute LU factorization of V and make a ROS2 step, respectively.
A rough estimation shows that ROS2-AMFe will be faster if

sT
Mt

t̃step ¡
T
Mt

t̃step +
T

Mtvmix
t̃LU

or

(s− 1)t̃step ¡
Mt

Mtvmix
t̃LU:

This can easily be true in the future generation air pollution models, where the number of vertical
layers is to be ∼ O(100) (recall that t̃LU ∼ O(n3

z)) and the vertical mixing matrix is to be updated
more often (Mtvmix is small).
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Fig. 5. Solutions of ROS2 (solid line), ROS2-AMF (dotted line) and ROS2-AMF+ (dash-dotted line) for tracers OH,
NO3 and C2O3, layers 1 (left) and 5 (right). Version R1 of AMF and AMF+ is used.



M.A. Botchev, J.G. Verwer / Journal of Computational and Applied Mathematics 157 (2003) 309–327 325

Fig. 6. Solutions of ROS2 (solid line), ROS2-AMF (dotted line) and ROS2-AMFe (dash-dotted line) for tracers NO3 and
isoprene, layer 1. Version R1 of AMF and AMFe is used.

As shown in [5], performance of the AMFe could be also improved by applying the modi8cation
shown in Fig. 3. We have good experience with using this “repaired” AMFe but this is rather ad
hoc and case-dependent.

5.3. Parallel computation aspects

Since system (1) has to be treated implicitly, its solution is di5cult to parallelize. This also applies
to ROS2 combined with AMF, AMFe, or AMF+. In air pollution modeling one often distributes
the 3D physical domain horizontally among the processors, so that each processor has the whole
range of grid cells in z-direction (see e.g., [31,35,37]). Systems (1) are then solved locally within
one processor. The use of ROS2-AMF with constant step sizes, as advocated in this paper, allows
to avoid the load balancing problems.

6. Conclusions

The new AMF called AMF+ has been proposed and shown, both analytically and numerically,
to give a signi8cant pro8t in accuracy as compared against standard AMF. AMF+ does not require
any additional computational work. The fact that we deal with matrices which in practical situations
do not commute hinder the stability analysis. The analysis is done only for simpli8ed test problems;
it shows that AMF+ provides good stability in practical situations.

In another, cheaper AMF called AMFe (economical) the block LU factorization of I − �V is
avoided. This approach gives a scheme which is explicit with respect to the vertical mixing, stable
but rather inaccurate. In our tests AMFe performed satisfactory only for a smaller step size, thus
loosing in CPU time to AMF+ and AMF. However, for a larger number of vertical layers nz AMFe
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can become attractive since the avoided costs are O(n3
z). Moreover, inaccuracy of AMFe can be

cured by applying the modi8cation as shown in Fig. 3.
We have also reported on our experience with schemes based on preconditioned GMRES. These

schemes turn out to be robust but more expensive for air pollution modeling than AMF-based
schemes.
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