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Abstract

We 2rst study the convergence of two-stage iterative methods using the incomplete factorization for solving
a linear system whose coe4cient matrix is an H -matrix, and then we study the convergence of two-stage
iterative methods using the incomplete factorization for solving a linear system whose coe4cient matrix is a
symmetric positive de2nite matrix. Lastly, numerical experiments are provided to analyze theoretical results.
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1. Introduction

In this paper, we consider two-stage iterative methods for solving a linear system of the form

Ax = b; x; b∈Rn; (1)

where A∈Rn×n is a large sparse nonsingular matrix. A matrix A = (aij) is called an M -matrix if
aij6 0 for i �= j and A−1¿ 0. The comparison matrix 〈A〉 = (�ij) of a matrix A = (aij) is de2ned
by

�ij =

{ |aij| if i = j;

−|aij| if i �= j:
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A matrix A is called an H -matrix if 〈A〉 is an M -matrix. Let �(A) denote the spectral radius of
a square matrix A. A representation A = M − N is called a splitting of A when M is nonsingular.
A splitting A = M − N is called regular if M−1¿ 0 and N¿ 0, weak regular if M−1¿ 0 and
M−1N¿ 0, and convergent if �(M−1N )¡ 1. When A is symmetric, a splitting A=M −N is called
symmetric if M is symmetric. A splitting A=M−N is called an M -splitting if M is an M -matrix and
N¿ 0, an H -splitting if 〈M 〉−|N | is an M -matrix, and an H -compatible splitting if 〈A〉=〈M 〉−|N |.

Let A = M − N be a splitting of A and M = F − G be a splitting of M . Then, the stationary
two-stage iterative method for solving the linear system (1) is as follows.

Algorithm 1. Stationary two-stage iterative method

Given an initial vector x0

For k = 1; 2; : : : ; until convergence
y0 = xk−1

For j = 1 to p
Fyj = Gyj−1 + Nxk−1 + b

xk = yp

If the number of inner iterations, p, in Algorithm 1 varies for each k (i.e., the p in Algorithm 1
is replaced by pk), then we obtain the nonstationary two-stage iterative method (Algorithm 2). If
the last line in Algorithm 1 is replaced with the following:

xk = !yp + (1 − !)xk−1; !¿ 0;

then we obtain the relaxed stationary two-stage iterative method (Algorithm 3). Throughout the
paper, it is assumed that p¿ 1 and pk¿ 1 for all k. The convergence of two-stage iterative methods
for solving (1) was studied by many authors [4,5,7,11]. Nichols [11] showed that if �(M−1N )¡ 1
and �(F−1G)¡ 1, then Algorithm 1 converges to the exact solution of the linear system (1) for
large enough p. It was shown in [4,7] that Algorithms 1 and 2 converge to the exact solution of the
linear system (1) for A−1¿ 0 when the outer splitting A=M −N is regular and the inner splitting
M = F − G is weak regular. It was also shown in [4] that Algorithms 1 and 2 converge to the
exact solution of the linear system (1) for an H -matrix A when A = M − N is an H -splitting and
M = F − G is an H -compatible splitting.

For a large sparse matrix A, a convenient way of obtaining a splitting of A is to use the in-
complete factorization of A which was 2rst introduced in [12] and studied in [9]. There is also
a general algorithm for 2nding an incomplete factorization of a sparse matrix corresponding to a
given zero pattern set. So, it is worth studying the convergence of two-stage iterative methods using
the incomplete factorization as an inner splitting. This paper is organized as follows. In Section
2, we present some notation and preliminary results which we refer to later. In Section 3, we
present convergence results of two-stage iterative methods using incomplete factorization for solving
linear systems whose coe4cient matrices are H -matrices or symmetric positive de2nite matrices.
In Section 4, we present numerical results of the stationary two-stage iterative method using in-
complete factorization for solving a linear system whose coe4cient matrix is symmetric positive
de2nite.
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2. Preliminaries

For a vector x∈Rn; x¿ 0 (x¿ 0) denotes that all components of x are nonnegative (positive).
For two vectors x; y∈Rn; x¿y (x¿y) means that x−y¿ 0 (x−y¿ 0). For a vector x∈Rn; |x|
denotes the vector whose components are the absolute values of the corresponding components of x.
These de2nitions carry immediately over to matrices. It follows that |A|¿ 0 for any matrix A and
|AB|6 |A‖B| for any two matrices A and B of compatible size.

It was shown in [4] that if A = M − N is an H -splitting, then A and M are H -matrices
and �(M−1N )¡ 1. Varga [13] showed that for any square matrices A and B, |A|6B implies
�(A)6 �(B). Note that M -matrices and strictly or irreducibly diagonally dominant matrices are con-
tained in the class of all H -matrices. Actually, an n × n H -matrix A = (aij) can be equivalently
characterized by being generalized strictly diagonally dominant [3], i.e.,

|aii|ui ¿
∑
j �=i

|aij|uj; i = 1; 2; : : : ; n

for some vector u = (u1; u2; : : : ; un)T ¿ 0.

Lemma 2.1 (Lanzkron et al. [7]). Given a nonsingular matrix A and a matrix H such that I −H
is nonsingular, there exists a unique pair of matrices B and C such that A=B−C and H =B−1C.
Moreover, B = A(I − H)−1.

A general algorithm for building an incomplete factorization can be derived by performing Gaus-
sian elimination and dropping some of elements in predetermined oL-diagonal positions. Let Sn
denote the set of all pairs of indices of oL-diagonal matrix entries, that is,

Sn = {(i; j) | i �= j; 16 i6 n; 16 j6 n}:

Theorem 2.2 (Messaoudi [10]). Let A∈Rn×n be an H-matrix. Then, for every zero pattern set
Q ⊂ Sn, there exist a unit lower triangular matrix L= (lij), an upper triangular matrix U = (uij),
and a matrix N = (nij), with lij =uij = 0 if (i; j) ∈Q and nij = 0 if (i; j) �∈ Q, such that A=LU −N .
Moreover, the factors L and U are also H-matrices.

In Theorem 2.2, A = LU − N is called an incomplete LU (ILU) factorization of A corresponding
to a zero pattern set Q ⊂ Sn. When A is an M -matrix, it was shown in [9] that the ILU factorization
A = LU − N in Theorem 2.2 is a regular splitting of A and the L and U are also M -matrices. The
following theorem shows the relations between the ILU factorizations of an H -matrix A and 〈A〉.

Theorem 2.3 (Kim and Yun [6] and Messaoudi [10]). Let A∈Rn×n be an H-matrix. Let A=LU−
N and 〈A〉 = L̃Ũ −N be the ILU factorizations of A and 〈A〉 corresponding to a zero pattern set
Q ⊂ Sn, respectively. Then each of the following holds:

(a) |L−1|6 L̃−1; (b) |U−1|6 Ũ−1;

(c) |N |6 Ñ ; (d) |(LU )−1N |6 (L̃Ũ )−1Ñ :
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In Theorem 2.3, notice that LU is not an H -matrix and L̃Ũ is not an M -matrix even if L and U
are H -matrices and L̃ and Ũ are M -matrices. For symmetric H -matrices, results similar to Theorems
2.2 and 2.3 are given in Theorems 2.4 and 2.5, respectively.

Theorem 2.4. Let A∈Rn×n be a symmetric H-matrix. Then, for every symmetric zero pattern
set Q ⊂ Sn (i:e:; (i; j) ∈Q implies (j; i) ∈Q), there exist an upper triangular matrix U = (uij), a
diagonal matrix D whose kth diagonal element is u−1

kk , and a symmetric matrix N = (nij), with
uij = 0 if (i; j) ∈Q and nij = 0 if (i; j) �∈ Q, such that A=UTDU −N . Moreover, U is an H-matrix.

In Theorem 2.4, A = UTDU − N is called an incomplete factorization of A corresponding to a
symmetric zero pattern set Q. When A is a symmetric H -matrix with positive diagonal elements, the
diagonal matrix D in the incomplete factorization A = UTDU − N given in Theorem 2.4 has also
positive diagonal elements and thus UTDU is a symmetric positive de2nite matrix (see [8]). Note
that the incomplete factorization A=UTDU −N in Theorem 2.4 is a regular splitting of A when A
is a symmetric M -matrix.

Theorem 2.5. Let A∈Rn×n be a symmetric H-matrix. Let A=UTDU−N and 〈A〉=UTD̃Ũ−Ñ be
the incomplete factorizations of A and 〈A〉 corresponding to a symmetric zero pattern set Q ⊂ Sn,
respectively. Then each of the following holds:

(a) |(UTD)−1|6 (ŨTD̃)−1; (b) |U−1|6 Ũ−1;

(c) |N |6 Ñ ; (d) |(UTDU )−1N |6 (ŨTD̃Ũ )−1Ñ :

3. Convergence of two-stage iterative methods

In this section, we study the convergence of two-stage iterative methods (i.e., Algorithms 1, 2
and 3) described in Section 1. Algorithm 1 can be written as

xk = Tpxk−1 + Kpb; k = 1; 2; : : : ; (2)

where

Tp = (F−1G)p +
p−1∑
j=0

(F−1G)jF−1N

= (F−1G)p + (I − (F−1G)p)M−1N

= I − (I − (F−1G)p)(I −M−1N )

and

Kp =
p−1∑
j=0

(F−1G)jF−1 = (I − (F−1G)p)M−1:
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The Tp is called an iteration matrix for Algorithm 1. Then, it is easy to show that KpA = I − Tp.
Hence, the exact solution ' of the linear system (1) satis2es

' = Tp' + Kpb: (3)

From (2) and (3), the error vector ek = xk − ' satis2es

ek = Tpek−1 = (Tp)ke0; k = 1; 2; : : : : (4)

From (4), the sequence of vectors generated by iteration (2) converges to ' for any initial vector x0

if and only if �(Tp)¡ 1. If �(F−1G)¡ 1, then I − (F−1G)p is nonsingular for any integer p¿ 1.
Thus, from Lemma 2.1, there exists a unique pair of matrices Bp =M (I − (F−1G)p)−1 and Cp such
that M = Bp − Cp and (F−1G)p = B−1

p Cp. It follows that

Tp = (F−1G)p + (I − (F−1G)p)M−1N

=B−1
p Cp + B−1

p N

=B−1
p (Cp + N ):

Algorithm 2 can be written as

xk = Tpk xk−1 + Kpkb; k = 1; 2; : : : ; (5)

where Tpk and Kpk are de2ned as in Algorithm 1 and the only diLerence is to use pk instead of using
p. The Tpk ’s are called iteration matrices for Algorithm 2. Then, it is easy to show that KpkA=I−Tpk

for each k. Hence, the exact solution ' of the linear system (1) satis2es

' = Tpk' + Kpkb; k = 1; 2; : : : : (6)

From (5) and (6), the error vector ek = xk − ' satis2es

ek = Tpk ek−1 = TpkTpk−1 · · ·Tp1e0; k = 1; 2; : : : : (7)

From (7), the sequence of vectors generated by the iteration (5) converges to ' for any initial vector
x0 if and only if

lim
k→∞

TpkTpk−1 · · ·Tp1 = 0: (8)

Algorithm 3 can be written as

xk = Tp;!xk−1 + Kp;!b; k = 1; 2; : : : ; (9)

where

Tp;! = !Tp + (1 − !)I and Kp;! = !Kp:

The Tp;! is called an iteration matrix for Algorithm 3. Then, Kp;!A = I − Tp;!. Hence, the exact
solution ' of the linear system (1) satis2es

' = Tp;!' + Kp;!b: (10)
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From (9) and (10), the error vector ek = xk − ' satis2es

ek = Tp;!ek−1 = (Tp;!)ke0; k = 1; 2; : : : : (11)

From (11), the sequence of vectors generated by iteration (9) converges to ' for any initial vector
x0 if and only if �(Tp;!)¡ 1.

Theorem 3.1 (Lanzkron et al. [7]). Let A−1¿ 0 and let A = M − N = M̂ − N̂ be weak regular
splittings such that M̂−1¿M−1. Let x and y be the nonnegative Frobenius eigenvectors of M−1N
and M̂−1N̂ , respectively. If N̂y¿ 0 or if Nx¿ 0 with x¿ 0, then

�(M̂−1N̂ )6 �(M−1N ):

Theorem 3.2. Assume that A−1¿ 0. Let A=M−N be a regular splitting and let M=F−G=F̂−Ĝ
be a weak regular splittings. If F̂−1Ĝ6F−1G and ĜF̂−1¿ 0, then �(T̂p)6 �(Tp), where Tp and
T̂p are iteration matrices for Algorithm 1, that is,

Tp = (F−1G)p + (I − (F−1G)p)M−1N = B−1
p (Cp + N );

T̂p = (F̂−1Ĝ)p + (I − (F̂−1Ĝ)p)M−1N = B̂
−1
p (Ĉp + N );

Bp = M (I − (F−1G)p)−1; B̂p = M (I − (F̂−1Ĝ)p)−1;

Cp = Bp −M; Ĉp = B̂p −M:

Proof. By simple calculation, it can be shown that

B−1
p = (I − (F−1G)p)M−1 =

p−1∑
i=0

(F−1G)iF−1¿ 0;

B̂
−1
p = (I − (F̂−1Ĝ)p)M−1 =

p−1∑
i=0

(F̂−1Ĝ)iF̂−1¿ 0:

Since B−1
p Cp=(F−1G)p¿ 0; B̂

−1
p Ĉp=(F̂−1Ĝ)p¿ 0 and N¿ 0; (F−1G)p6Tp and (F̂−1Ĝ)p6 T̂p.

It follows that �((F−1G)p)6 �(Tp) and �((F̂−1Ĝ)p)6 �(T̂p). By assumption, �(F̂−1Ĝ)6 �(F−1G)
and thus �((F̂−1Ĝ)p)6 �((F−1G)p). Consider 2rst the case �((F̂−1Ĝ)p) = �(T̂p). Then, �(T̂p) =
�((F̂−1Ĝ)p)6 �((F−1G)p)6 �(Tp). Thus, �(T̂p)6 �(Tp) is proved. Next, we consider the case
�((F̂−1Ĝ)p)¡�(T̂p). Since T̂p¿ 0, there exists an eigenvector x¿ 0 such that T̂px=�(T̂p)x. Hence,
one obtains

�(T̂p)B̂px = (Ĉp + N )x;

�(T̂p)M (I − (F̂−1Ĝ)p)−1x = M (I − (F̂−1Ĝ)p)−1(F̂−1Ĝ)px + Nx;

�(T̂p)(I − (F̂−1Ĝ)p)−1x = (I − (F̂−1Ĝ)p)−1(F̂−1Ĝ)px + M−1Nx;
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�(T̂p)(I − (F̂−1Ĝ)p)−1x = (F̂−1Ĝ)p(I − (F̂−1Ĝ)p)−1x + M−1Nx;

(I − (F̂−1Ĝ)p)−1x = (�(T̂p)I − (F̂−1Ĝ)p)−1M−1Nx: (12)

Using the last equality of Eq. (12) in the third equation of (13) and M (F̂−1Ĝ)p = (ĜF̂−1)pM , one
obtains

(Ĉp + N )x =M (I − (F̂−1Ĝ)p)−1(F̂−1Ĝ)px + Nx

=M (F̂−1Ĝ)p(I − (F̂−1Ĝ)p)−1x + Nx

=M (F̂−1Ĝ)p(�(T̂p)I − (F̂−1Ĝ)p)−1M−1Nx + Nx

= (ĜF̂−1)pM (�(T̂p)I − (F̂−1Ĝ)p)−1M−1Nx + Nx

= (ĜF̂−1)p(�(T̂p)I −M (F̂−1Ĝ)pM−1)−1Nx + Nx

= (ĜF̂−1)p(�(T̂p)I − (ĜF̂−1)p)−1Nx + Nx (13)

Since �(ĜF̂−1) = �(F̂−1Ĝ) and �((F̂−1Ĝ)p)¡�(T̂p); �((ĜF̂−1)p)¡�(T̂p) and hence

�

(
(ĜF̂−1)p

�(T̂p)

)
¡ 1: (14)

Using (14) and the hypothesis ĜF̂−1¿ 0, we obtains

(�(T̂p)I − (ĜF̂−1)p)−1 =
1

�(T̂p)

(
I − (ĜF̂−1)p

�(T̂p)

)−1

=
1

�(T̂p)

∞∑
j=0

(
(ĜF̂−1)p

�(T̂p)

)j
¿ 0: (15)

From (13) and (15),

(Ĉp + N )x¿ 0: (16)

Since 06 (F̂−1Ĝ)p6 (F−1G)p,

B−1
p = (I − (F−1G)p)M−16 (I − (F̂−1Ĝ)p)M−1 = B̂

−1
p : (17)

Notice that A = Bp − (Cp + N ) = B̂p − (Ĉp + N ) are weak regular splittings. Therefore, (16), (17)
and Theorem 3.1 imply that �(T̂p)6 �(Tp).

Theorem 3.2 presents a comparison result for iteration matrices of Algorithm 1. Now we give
convergence results of two-stage iterative methods using the incomplete factorization for solving a
linear system whose coe4cient matrix is an H -matrix.

Theorem 3.3. Let A∈Rn×n be an H -matrix and let A = M − N be an H -splitting of A. Let
M = LU − G be the ILU factorization of M corresponding to a zero pattern set Q ⊂ Sn. Then,
Algorithm 1 converges to the exact solution of Ax = b for any initial vector x0.
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Proof. Since A = M − N is an H -splitting of A, 〈M 〉 − |N | is an M -matrix and M is an H -matrix.
Let 〈M 〉 = L̃Ũ − G̃ be the ILU factorization of the M -matrix 〈M 〉 corresponding to the zero pattern
set Q. Then, 〈M 〉 = L̃Ũ − G̃ is a regular splitting of 〈M 〉. Using Theorem 2.3,

|Tp| =

∣∣∣∣∣∣((LU )−1G)p +
p−1∑
j=0

((LU )−1G)j(LU )−1N

∣∣∣∣∣∣
6 |(LU )−1G|p +

p−1∑
j=0

|(LU )−1G|j|(LU )−1| |N |

6 ((L̃Ũ )−1G̃)p +
p−1∑
j=0

((L̃Ũ )−1G̃)j(L̃Ũ )−1|N |: (18)

Let T̃p denote the matrix in the last line of Eq. (18). Then, T̃p is the iteration matrix of a stationary
two-stage iterative method for the M -matrix 〈M 〉−|N | with the regular splittings 〈M 〉−|N | and 〈M 〉=
L̃Ũ − G̃. Thus, �(T̃p)¡ 1. From (18), |Tp|6 T̃p and hence �(Tp)6 �(T̃p). Therefore, �(Tp)¡ 1 is
achieved.

Theorem 3.4. Let A∈Rn×n be an H-matrix and let A = M − N be an H-splitting of A. Let
M = LU − G be the ILU factorization of M corresponding to a zero pattern set Q ⊂ Sn. Then,
Algorithm 2 converges to the exact solution of Ax = b for any initial vector x0.

Proof. Let 〈M 〉 = L̃Ũ − G̃ be the ILU factorization of 〈M 〉 corresponding to the zero pattern set Q.
Using (18), it is easy to show that |Tpk |¡T̃pk for each k, where T̃ pk is de2ned as in the proof of
Theorem 3.3. Hence, one obtains

|TpkTpk−1 · · ·Tp1 |6 T̃ pk T̃ pk−1 · · · T̃ p1 : (19)

Notice that T̃ pk T̃ pk−1 · · · T̃ p1 is the matrix corresponding to k steps of a nonstationary two-stage
iterative method for the M -matrix 〈M 〉−|N | with the regular splittings 〈M 〉−|N | and 〈M 〉= L̃Ũ−G̃.
It follows that limk→∞ T̃ pk T̃ pk−1 · · · T̃ p1 = 0. Therefore, (19) implies that limk→∞ TpkTpk−1 · · ·Tp1 = 0.

Corollary 3.5. Let A∈Rn×n be an H-matrix and let A = M − N be an H -compatible splitting of
A. Let M = LU − G be the ILU factorization of M corresponding to a zero pattern set Q ⊂ Sn.
Then, Algorithms 1 and 2 converge to the exact solution of Ax = b for any initial vector x0.

Proof. Since A is an H -matrix and A = M − N is an H -compatible splitting of A, A = M − N is
an H -splitting of A. Hence, Theorems 3.3 and 3.4 imply that Algorithms 1 and 2 converge to the
exact solution of Ax = b for any initial vector x0.

Corollary 3.6. Let A∈Rn×n be a symmetric H-matrix and let A=M−N be a symmetric H-splitting
of A. Let M = UTDU − G be the incomplete factorization of M corresponding to a symmetric
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zero pattern set Q ⊂ Sn. Then, Algorithms 1 and 2 converge to the exact solution of Ax = b for
any initial vector x0.

Proof. This corollary can be proved in a similar way as was done for Theorems 3.3 and 3.4 by
using Theorem 2.5.

Theorem 3.7. Let A∈Rn×n be a matrix such that A−1¿ 0 and let A = M − N be an M-splitting
of A. Let M =LU −G be the ILU factorization of M corresponding to a zero pattern set Q ⊂ Sn.
Then, Algorithms 1 and 2 converge to the exact solution of Ax = b for any initial vector x0.

Proof. It is clear that A=M −N is a regular splitting of A. Since M is an M -matrix, M = LU −G
is also a regular splitting of M . Hence, the proof is complete.

Theorem 3.8. Let A∈Rn×n be an H-matrix and let A = M − N be an H -splitting of A. Let
M = LU − G be the ILU factorization of M corresponding to a zero pattern set Q ⊂ Sn. If
0¡!¡ 2=(1 + �(Tp)), then Algorithm 3 converges to the exact solution of Ax = b for any initial
vector x0.

Proof. We must claim that �(Tp;!)¡ 1, where Tp;! = !Tp + (1 − !)I . Let ) be an eigenvalue of
Tp. Then, an eigenvalue of Tp;! is )! + (1 − !). Note that

|)! + (1 − !)|6!�(Tp) + |1 − !|: (20)

From Theorem 3.3, �(Tp)¡ 1. Thus, for all 0¡!¡ 2=(1 + �(Tp)),

!�(Tp) + |1 − !|¡ 1: (21)

Since ) is an arbitrary eigenvalue of Tp; �(Tp;!)¡ 1 is obtained from (20) and (21).

It was shown in [4] that Algorithms 1 and 2 converge to the exact solution of Ax = b for any
initial vector x0 under the assumption that A = M − N is an H -splitting and M = F − G is an
H -compatible splitting. The following example shows that the ILU factorization M = LU −G used
in Theorems 3.3 and 3.4 is not an H -compatible splitting. This means that Theorems 3.3 and 3.4
provide new convergence results for Algorithms 1 and 2 which are diLerent from the convergence
results given in [4].

Example 3.9. Consider a 3 × 3 matrix M of the form

M =




2 1 −1

1 1 0

−1 0 2


 :
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Take a zero pattern set Q = {(2; 3); (3; 2)} ⊂ S3. Then, M is an H -matrix since 〈M 〉−1 ¿ 0. The
ILU factorization of M corresponding to Q is M = LU − G, where

L =




1 0 0
1
2 1 0

− 1
2 0 1


 ; U =




2 1 −1

0 1
2 0

0 0 3
2


 ; G =




0 0 0

0 0 − 1
2

0 − 1
2 0


 :

By simple calculation, one obtains

〈LU 〉 − |G| =




2 −1 −1

−1 1 −1

−1 −1 2


 :

Thus, 〈M 〉 �= 〈LU 〉 − |G|, which shows that the ILU factorization of M is not an H -compatible
splitting.

Next, we give convergence results of two-stage iterative methods using the incomplete factorization
for solving a linear system whose coe4cient matrix is symmetric positive de2nite. Let A be a
symmetric positive de2nite matrix. Then, we can choose a nonnegative diagonal matrix * such that
Â = A + * is a generalized strictly diagonally dominant matrix (i.e., an H -matrix). For example,
the easiest way of 2nding such a matrix Â is to choose a nonnegative diagonal matrix * such
that Â = A + * is a strictly diagonally dominant matrix. From now on, the transformed matrix
Â=A+* is called a diagonally dominated matrix of A. Notice that Â is a symmetric positive de2nite
H -matrix.

Lemma 3.10. Let A be a symmetric positive de?nite matrix and Â = A + * be a diagonally
dominated matrix of A. Let Â = M − N̂ be a splitting with M being symmetric positive de?nite
and let N = M − A. If the splitting Â = M − N̂ is convergent, then the splitting A = M − N is
convergent.

Proof. It is easy to see that Â−1A has positive eigenvalues and Â−1* has nonnegative eigenvalues.
Since Â−1* = I − Â−1A, for every eigenvalue ) of Â−1A

0¡)6 1: (22)

Since A; Â and M are symmetric positive de2nite, from (22) and Lemma 2.1 in [1] one obtains

0¡)j(M−1A)6 )j(M−1Â))max(Â−1A)6 )j(M−1Â); (23)

where )j(C) denotes the jth eigenvalue of C whose eigenvalues are assumed to be numbered in a
nondecreasing order and )max(C) denotes the maximum eigenvalue of C. Since M−1N = I −M−1A
and M−1N̂ = I −M−1Â, from (23)

)j(M−1N̂ )6 )j(M−1N )¡ 1: (24)
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By assumption, |)j(M−1N̂ )|¡ 1 for each j. Hence, from (24) |)j(M−1N )|¡ 1 for each j. Therefore,
�(M−1N )¡ 1 is obtained.

Lemma 3.10 implies that the problem of constructing a convergent splitting for a symmetric
positive de2nite matrix can always be reduced to that of constructing a convergent splitting for a
diagonally dominated matrix which is a symmetric positive de2nite H -matrix.

Lemma 3.11. Let A be a symmetric positive de?nite matrix and Â be a diagonally dominated
matrix of A. Let Â=M − N̂ be a symmetric H-splitting with M having positive diagonal elements.
If we let N = M − A, then the splitting A = M − N is convergent.

Proof. Since Â=M − N̂ is a symmetric H -splitting, M is a symmetric H -matrix and �(M−1N̂ )¡ 1.
Since M is a symmetric H -matrix with positive diagonal elements, M is symmetric positive de2nite.
Hence, by Lemma 3.10 �(M−1N )¡ 1.

Lemma 3.12. Let A∈Rn×n be a symmetric H -matrix and A = UTDU − N be the incomplete
factorization of A corresponding to a symmetric zero pattern set Q ⊂ Sn. Then, the splitting
A = UTDU − N is convergent.

Proof. Let 〈A〉 = ŨTD̃Ũ − Ñ be the incomplete factorization of 〈A〉 corresponding to the symmetric
zero pattern set Q. For simplicity, let M = UTDU and M̃ = ŨTD̃Ũ . Since 〈A〉 is an M -matrix,
〈A〉 = M̃ − Ñ is a regular splitting of 〈A〉 and thus �(M̃−1Ñ )¡ 1. From Theorem 2.5, |M−1N |6
M̃−1Ñ and thus �(M−1N )¡ 1.

Theorem 3.13. Let A∈Rn×n be a symmetric positive de?nite matrix and Â be a diagonally domi-
nated matrix of A. Let Â = UTDU − N̂ be the incomplete factorization of Â corresponding to a
symmetric zero pattern set Q ⊂ Sn. If we let N = UTDU − A, then the splitting A = UTDU − N
is convergent.

Proof. Since Â is a symmetric positive de2nite H -matrix, UTDU is symmetric positive de2nite.
From Lemma 3.12, the splitting Â=UTDU − N̂ is convergent. Hence, by Lemma 3.10 �((UTDU )−1

N )¡ 1.

Theorem 3.14. Let A∈Rn×n be a symmetric positive de?nite matrix and Â be a diagonally dom-
inated matrix of A. Let Â = M − N̂ be a symmetric H-splitting with M having positive diagonal
elements, and let N =M−A. Let M =UTDU −G be the incomplete factorization of M correspond-
ing to a symmetric zero pattern set Q ⊂ Sn. Then, Algorithm 1 converges to the exact solution of
Ax = b for any initial vector x0.

Proof. By assumption, it is clear that M is a symmetric positive de2nite H -matrix. Thus, UTDU
is symmetric positive de2nite. For simplicity, let F = UTDU . Let T̂p denote the iteration matrix
of a stationary two-stage iterative method for the matrix Â with the splittings Â = M − N̂ and
M = F − G. Then, by Corollary 3.6 �(T̂p)¡ 1. Since �(F−1G)¡ 1 from Lemma 3.12, there exist
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Bp = M (I − (F−1G)p)−1 and Cp such that

A = Bp − (Cp + N ); Tp = B−1
p (Cp + N );

Â = Bp − (Cp + N̂ ); T̂p = B−1
p (Cp + N̂ ):

If we show that Bp is symmetric positive de2nite, then Lemma 3.10 implies �(Tp)¡ 1 since
�(T̂p)¡ 1. Since �(F−1G)¡ 1; Bp and B−1

p can be written as

Bp = M
∞∑
j=0

(F−1G)pj = M +
∞∑
j=1

M (F−1G)pj; (25)

B−1
p = (I − (F−1G)p)

∞∑
j=0

(F−1G)jF−1 =
p−1∑
j=0

(F−1G)jF−1: (26)

It is clear that B1 is symmetric positive de2nite since B1 = F . Let p be an even number. Then, for
each j = 1; 2; : : : ;

M (F−1G)pj = (GF−1)pj=2M (F−1G)pj=2: (27)

From (27), M (F−1G)pj is symmetric positive semide2nite for each j = 1; 2; : : : : Thus, (25) implies
that Bp is symmetric positive de2nite. On the other hand, from (26) one obtains

B−1
p+1 =

p∑
j=0

(F−1G)jF−1

=B−1
p + (F−1G)pF−1

=B−1
p + (F−1G)p=2F−1(GF−1)p=2: (28)

Since B−1
p and F−1 are symmetric positive de2nite, from (28) B−1

p+1 is also symmetric positive
de2nite. Therefore, Bp is symmetric positive de2nite for any positive integer p.

Theorem 3.15. Let A∈Rn×n be a symmetric positive de?nite matrix and Â be a diagonally dom-
inated matrix of A. Let Â = M − N̂ be a symmetric H-splitting with M having positive diagonal
elements, and let N = M − A. Let M = UTDU − G be the incomplete factorization of M corre-
sponding to a symmetric zero pattern set Q ⊂ Sn. If 0¡!¡ 2=(1 + �(T�)), then Algorithm 3
converges to the exact solution of Ax = b for any initial vector x0.

Proof. From Theorem 3.14, �(Tp)¡ 1. Hence, �(Tp;!)¡ 1 can be shown as in the proof of
Theorem 3.8.

Theorem 3.16 (Cao [2]). Let A be a symmetric positive de?nite matrix. Let A = M − N and
M = F −G be symmetric splittings with �(M−1N )¡ 1 and �(F−1G)¡ 1. Assume that Algorithm
1 converges to the exact solution of Ax = b for any initial vector x0. Then, Algorithm 2 converges
too.
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Theorem 3.17. Let A∈Rn×n be a symmetric positive de?nite matrix and Â be a diagonally dom-
inated matrix of A. Let Â = M − N̂ be a symmetric H-splitting with M having positive diagonal
elements, and let N =M−A. Let M =UTDU −G be the incomplete factorization of M correspond-
ing to a symmetric zero pattern set Q ⊂ Sn. Then, Algorithm 2 converges to the exact solution of
Ax = b for any initial vector x0.

Proof. Notice that �(Tp)¡ 1 from Theorem 3.14 and �(M−1N )¡ 1 from Lemma 3.11. Since M is
a symmetric H -matrix, �(F−1G)¡ 1 from Lemma 3.12, where F = UTDU . Hence, the conclusion
follows from Theorem 3.16.

Theorem 3.18. Let A∈Rn×n be a symmetric positive de?nite matrix and Â be a diagonally dom-
inated matrix of A. Let Â = M − N̂ be a symmetric H-splitting with M having positive diagonal
elements, and let N =M −A. Let M =F −G be a symmetric H-compatible splitting with F having
positive diagonal elements. Then, Algorithms 1 and 2 converge to the exact solution of Ax= b for
any initial vector x0. For 0¡!¡ 2=(1 + �(T�)), Algorithm 3 also converges to the exact solution
of Ax = b for any initial vector x0.

Proof. By assumptions, M and F are symmetric positive de2nite H -matrices, �(F−1G)¡ 1 and
�(T̂p)¡ 1. As in the proof of Theorem 3.14, it can be shown that Bp is symmetric positive de2nite.
Hence, �(Tp)¡ 1, that is, Algorithm 1 converges for any initial vector x0. Since �(M−1N )¡ 1
from Lemma 3.11, Theorem 3.16 implies that Algorithm 2 converges for any initial vector x0.
Since �(Tp)¡ 1, convergence of Algorithm 3 for 0¡!¡ 2=(1 + �(Tp)) follows by using the same
arguments as was done for Theorem 3.8.

Cao [2] also presented convergence results of two-stage iterative methods for solving a linear
system whose coe4cient matrix is symmetric positive de2nite. The main idea used in [2] is based
on transforming a symmetric positive de2nite matrix A into a symmetric positive de2nite M -matrix
Â, while the main idea used in this paper is based on transforming a symmetric positive de2nite
matrix A into a symmetric positive de2nite H -matrix Â. Cao [2] showed the convergence results
under the assumptions that Â = M − N̂ is a symmetric regular splitting with M being symmetric
positive de2nite and M = F − G is a symmetric weak regular splitting with F being symmetric
positive de2nite. Note that M -matrices are contained in the class of all H -matrices. In this respect,
the convergence results presented in this paper can be viewed as an extension of those presented
in [2]. The incomplete factorization of a large sparse matrix drops many 2ll-in elements according
to a given zero pattern set, so one advantage of two-stage iterative methods using the incomplete
factorization as an inner splitting is that the linear system required for each inner iteration can be
solved cheaply compared to the standard two-stage iterative methods using a weak regular splitting
as an inner splitting.

4. Numerical results

In this section, we present numerical results of the stationary two-stage iterative method (Algorithm
1) using incomplete factorization for solving a linear system Ax= b, where A∈Rn×n is a symmetric
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positive de2nite matrix. For all test problems, the initial vector x0 is set to zero and the right-hand
side vector b is set to Ae, where e = (1; 1; : : : ; 1)T ∈Rn. The stopping criterion for Algorithm 1
is ‖b − Axk‖2=‖b‖2 ¡ 10−5, where ‖ · ‖2 refers to L2-norm. Let B∈Rn×n be a symmetric positive
de2nite matrix of the form

B =




16 −8 0

−8 14 −8 1

0 −8 16 −8 0

1 −8 14 −8 1

. . . . . . . . . . . .

0 −8 16 −8

1 −8 14




; (29)

where the order n of B is assumed to be even. Note that the matrix B is generated from the 2nite
element formulation using piecewise quadratic basis functions for the one-dimensional boundary
value problem{−u′′ = g(x); 0¡x¡ 1;

u(0) = u(1) = 0:

Example 4.1. Let m= n=8, where n is assumed to be a multiple of 8. Let A= B + uuT, where B is
de2ned by (29), u = (u1; u2; : : : ; un)T and

ui =

{
1 if (i − 1) or i are multiples of m;

0 otherwise:

It is easy to see that A is a symmetric positive de2nite matrix, but not an H -matrix. Clearly, A is
irreducible since B is irreducible. If we choose a nonnegative diagonal matrix * such that Â=A+*
is an irreducibly diagonally dominant matrix, then Â is a diagonally dominated matrix of A. Let

A =

(
M1 CT

1

C1 M2

)
and Â =

(
M̂ 1 CT

1

C1 M̂ 2

)
;

where all submatrices of A and Â are of order n=2. Let

RM =

(
M1 0

0 M2

)
; M =

(
M̂ 1 0

0 M̂ 2

)
; N̂ =

(
0 −CT

1

−C1 0

)
:

Then, Â=M−N̂ is a symmetric H -splitting with M having positive diagonal elements. Let N=M−A
and let M = UTDU − G be the incomplete factorization of M without 2ll-ins. Then, the iteration
matrix of Algorithm 1 using splittings A = M − N and M = UTDU − G is

Tp = Hp + (1 − Hp)M−1N;

where H = (UTDU )−1G. Numerical results for this problem are provided in Tables 1 and 2.
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Table 1
The number of outer iterations of Algorithm 1

Example 4.1 Example 4.2

p n = 64 n = 128 n = 256 n = 512 n = 64 n = 128 n = 256 n = 512

1 267 521 948 1135 346 679 567 413
2 266 525 970 1193 334 648 537 370
3 266 524 969 1194 334 649 539 373

Table 2
Spectral radius of the iteration matrix Tp of Algorithm 1

Example 4.1 Example 4.2

p n = 64 n = 128 n = 256 n = 512 n = 64 n = 128 n = 256 n = 512

1 0.9913 0.9966 0.9988 0.9996 0.9946 0.9986 0.9997 0.9999
2 0.9916 0.9967 0.9989 0.9996 0.9951 0.9987 0.9997 0.9999
3 0.9916 0.9967 0.9989 0.9996 0.9950 0.9987 0.9997 0.9999

Example 4.2. Let m= n=8, where n is assumed to be a multiple of 8. Let A=B+
∑m

i=1 SiS
T
i , where

B is de2ned by (29), Si = (s1i ; s2i ; : : : ; sni)T and

sji =

{
1 if |j − i| is a multiple of m;

0 otherwise:

Then, A is a symmetric positive de2nite matrix, but not an H -matrix. Numerical experiments for
this problem are carried out exactly in the same way as was done for Example 4.1, and numerical
results are provided in Tables 1 and 2.

In Examples 4.1 and 4.2, if we assume that RM = RUT RD RU − RG is the incomplete factorization
of RM without 2ll-ins, then the iteration matrix of Algorithm 1 using splittings A = RM − N̂ and
RM = RUT RD RU − RG is

RTp = RHp + (I − RHp) RM−1N̂ ;

where RH = ( RUT RD RU )−1 RG. The spectral radii of RTp are listed in Table 3 for several values of p
and n.

According to Theorem 3.14, �(Tp)¡ 1 for any value of p. Numerical experiments also show this
theoretical result (see Tables 1 and 2). However, it is not true that �( RTp)¡ 1 (see Table 3). In
other words, the stationary two-stage iterative method (Algorithm 1) derived from the matrix A is
not convergent, while Algorithm 1 derived from the diagonally dominated matrix Â of A is always
convergent for any p.
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Table 3
Spectral radius of the iteration matrix RTp of Algorithm 1

Example 4.1 Example 4.2

p n = 64 n = 128 n = 256 n = 512 n = 64 n = 128 n = 256 n = 512

1 2.9196 3.2219 3.4188 3.5348 2.9080 2.9257 2.9312 2.9336
2 2.3759 3.3518 4.0567 4.4965 0.9993 0.9998 0.9999 0.99998
3 4.9022 7.1316 8.9332 10.1311 2.8301 2.8263 2.8203 2.8176
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