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a b s t r a c t

In this paper a new variant of the Choquet–Deny theorem is obtained and used to prove
a characterization of the uniform distribution based on spacings of generalized order
statistics. This result extends two recent characterizations of the uniform distribution.
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1. Introduction

The characterization of the uniform distribution has been considered by many authors and is also an important problem
in applications. For some recent examples, one may refer to the papers of Hamedani and Volkmer [1], Arslan et al. [2] and
Ahsanullah [3], amongmany others. In this paper a characterization of the uniformdistribution is obtained using generalized
order statistics.

Let {Xi, i ≥ 1} be a set of independent and identically distributed (i.i.d.) random variables and denote the corresponding
order statistics by X1:n, X2:n, . . . , Xn:n. The upper record values will be denoted by XU(1), XU(2), . . .. For recent developments
in the theory of order statistics, one may refer to [4]. For details on the theory of order statistics, see also [5–8].

Although several characterization results involving spacings of order statistics can be found in the literature we note
that, as pointed out in [9], there are only a few results involving identical distributions of linear forms. Puri and Rubin [10],
for example, investigated the relation X1:1

d
= X2:2 − X1:2 and showed all possible distributions satisfying this relation. Later

Gather [11] considered a more general relation; Xj−i:n−i
d
= Xj:n − Xi:n. There are even fewer results based on spacings of

record values. Arslan et al. [2] have, for example, considered a characterization of the uniform distribution based on the
relation XU(r) − XU(r−1)

d
= XL(r), where XU(r) and XL(r) are the rth upper and lower records, respectively. Note that the result

obtained in [2] is an example of a mixed type (lower and upper records) of characterization. A related result is also given
in [12, p. 175].

The main objective of this paper is to obtain a new variant of the Choquet–Deny theorem and to use it to prove some
characterization results for the uniform distribution, based on spacings. This result may be considered as a further example
of variants presented in [13]. Using this theorem two characterizations of the uniform distribution, one obtained using order
statistics [1] and other obtained using record statistics [2], are combined in one theorembyusing generalized order statistics.

After presenting some basic notations and a variant of the Choquet–Deny theorem in the next section, an application to
a characterization of the uniform distribution is given in the third section.
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2. Some notations and a variant of the Choquet–Deny theorem

Generalized order statistics were introduced in [14]. Let F be an absolutely continuous distributionwith density function
f . The random variables X(1, n, m̃, k), X(2, n, m̃, k), . . . , X(n, n, m̃, k) are called generalized order statistics based on F if
their joint density function is given by

f X(1,n,m̃,k),...,X(n,n,m̃,k)(x1, . . . , xn) = k


n−1∏
j=1

γj


n−1∏
i=1

(1 − F(xi))mi f (xi)


(1 − F(xn))k−1 f (xn),

where F−1(0) < x1 ≤ · · · ≤ xn < F−1(1), n ∈ N, n ≥ 2, k > 0, m̃ = (m1, . . . ,mn−1) ∈ Rn−1, andMr =
∑n−1

j=r mj, such that
γr = k+n−r+Mr > 0 for all r ∈ {1, . . . , n − 1}. Choosing the parameters appropriately, differentmodels, such as ordinary
statistics, record values, progressive-type II censored order statistics may be obtained. In this paper we only consider the
special casewherem = mi, for all i ∈ {1, . . . , n − 1}. Note that ifm = 0 and k = 1, then X(r, n,m, k) reduces to the ordinary
rth order statistics. On the other hand ifm = −1 and k = 1, then X(r, n,m, k) reduces to the rth upper record value.

In a similar way, the lower (dual) generalized order statistics can be defined. The random variables Xl(1, n,m, k), Xl(2, n,
m, k), . . . , Xl(n, n,m, k) are called lower (dual) generalized order statistics based on F if their joint density function is given
by

f Xl(1,n,m,k),...,Xl(n,n,m,k)
l (x1, . . . , xn) = k


n−1∏
j=1

γj


n−1∏
i=1

(F(xi))m f (xi)


(F(xn))k−1 f (xn),

where F−1(1) > x1 ≥ · · · ≥ xn > F−1(0), n ∈ N, n ≥ 2, k > 0, m ≥ −1, and such that γr = k + (n − r)(m + 1) > 0 for all
r ∈ {1, . . . , n − 1}. For details on generalized order statistics, one may refer to [14], and for details and some applications
of lower generalized order statistics one may refer to [15,3].

It has been already shown in some papers that many characterization results proved by several approaches can also be
proved by using some version of the Choquet–Deny theorem. Some examples may be found in [13]. For information about
some versions of the Choquet–Deny theorem one may refer to [16,17], among others.

The main result may be considered as a variant of the following theorem [13].

Theorem 1. Let p be a positive integer and A be a non-empty subset of [0, ∞)p \ {0} with the property that x ∈ A implies
[0, x] \ {0} ⊂ A, where 0 = (0, . . . , 0). Also, let for each x ∈ A, Bx = [0, x] \


{x}


{0}

and {µx : x ∈ A} be a family of

probability measures (on Rp) such that for each x, µx is concentrated on Bx. Then a continuous real-valued function H on A, such
that H(x) has a limit as ‖x‖ tends to 0+, satisfies

H(x) =

∫
Bx

H(x − y)µx(dy), x ∈ A

if and only if it is identically equal to a constant.

Arslan [2] have used the following corolloray of Theorem 1 to prove some characterization results.

Corollary 1. Let A = (0, β) and for each x ∈ A, Bx = (0, β − x). Also, let {µx : x ∈ A} be a family of probability measures such
that for each x ∈ A, µx is concentrated on Bx. Then a continuous bounded nonnegative real-valued function h on A such that h(x)
has a limit as ‖x‖ tends to β−, satisfies

h(x) =

∫
Bx

h(x + y)µx(dy), x ∈ A

if and only if it is identically equal to a constant.

The next theorem represents another variant of the Choquet–Deny theorem that is used to prove some recent
characterization results, which will be given in the next section.

Theorem 2. Let A = (0, β) and for each x ∈ A, Bx = (0, β − x). Also, let {µx : x ∈ A} be a family of (nondegenerate) probability
measures such that for each x ∈ A, µx is concentrated on Bx. Then a continuous bounded nonnegative real-valued function H on
A satisfies

H(β − x) =

∫
Bx

H(x + y)µx(dy), x ∈ A, (2.1)

if and only if either H ≡ 0, or H(x) is constant on A.

Proof. The ‘‘if’’ part of the theorem is trivial. To show the ‘‘only if’’ part suppose that H satisfies the integral equation (2.1)
and assume that H(x) > 0 for some x ∈ (0, β), and H(x) is not identically equal to a constant on A. It will be shown that this
leads to a contradiction.
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Integral equation (2.1) can be rewritten as

H(x) =

∫ β

β−x
H(t)νx(dt), (2.2)

where for any µβ−x-measurable set B, νx(B) = µβ−x(B).
Since (2.2) holds for every x ∈ A, ∃x0 ∈ A and a Borel set B0 ⊆ (β − x0, β) such that νx0(B0) > 0 and

H(x0) < H(y), ∀y ∈ B0. (2.3)

Hence

H(x0)νx0(B0) <

∫
B0

H(t)νx0(dt). (2.4)

Using the Kolmogorov consistency theorem, it follows that there exists an infinite sequence {Xn : n = 1, 2, . . .} of 0-1
valued exchangeable random variables such that for each n ≥ 1

P {X1 = 1, . . . , Xn = 1} = [H(x0)]−1
∫
B0

· · ·

∫
B0

H (y1 + y2 + · · · + yn) νx0(dyn) · · · νx0(dy1). (2.5)

Now, it can be shown that (see the proof of the theorem in [17])

P {X1 = 1, X2 = 1, . . . , X2n = 1} ≥ (P{X1 = 1})2
n
, n ≥ 1. (2.6)

Consequently,

P {X1 = 1, X2 = 1, . . . , X2n = 1}
νx0(B0)

2n ≥


P {X1 = 1}

νx0(B0)

2n

, n ≥ 1, (2.7)

leading to a contradiction since the left-hand side of (2.7) is bounded relative to n while the right-hand side tends to ∞ as
n → ∞. Using (2.2), (2.5) and the fact that H is bounded there exists a positive constant C such that

P {X1 = 1, X2 = 1, . . . , X2n} ≤
C

H(x0)


νx0(B0)

2n
,

from which the boundedness of the left-hand side follows. The unboundedness of the right-hand side of (2.7) follows from
(2.4) and (2.5). This contradiction proves the theorem. �

3. A characterization of the uniform distribution

In this section we consider a relation characterizing the uniform distribution based on spacings of generalized order
statistics. This generalizes some previous characterization results and uses upper as well as lower generalized order
statistics.

The uniform distribution with cumulative distribution function (CDF) F defined on (a, b), where a < b will be denoted
by F ∼ U(a, b).

Hamedani and Volkmer [1] have investigated the following relation

Xs:n − Xr:n
d
= Xs−r:n,

where 1 ≤ r < s ≤ n. They obtained several characterizations of the uniform distribution by considering special families
of distributions such as subadditive and symmetric families. On the other hand, Arslan et al. [2] have shown that

XU(r) − XU(r−1)
d
= XL(r),

where 1 < r , is also a characteristic property of the uniform distribution, if the family of distributions is assumed to be
symmetric.

In the next theorem it will be shown that, under suitable conditions, the relation

X(r, n,m, k) − X(r − 1, n,m, k) d
= Xl(r, n,m, k), r > 1 (3.1)

implies that the random variables Xi are from a Uniform distribution.

Theorem 3. Let X1, X2, . . . , Xn be a sequence of i.i.d. nonnegative random variables with an absolutely continuous distribution
function F and symmetric about β/2. Given the following statements:

(1) X(r, n,m, k) − X(r − 1, n,m, k) d
= Xl(r, n,m, k) is true for some γr = k + (n − r)(m + 1) ≥ 1 with r > 1.

(2) γr = 1 and F ∼ U(0, β),
it follows that (1) ⇒ (2).
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Proof. The pdf of X(r, n,m, k) − X(r − 1, n,m, k) is given by

fr−1,r(x) =
cr−1

(r − 2)!

∫ β−x

0
[1 − F(y)]m g r−2

m (F(y)) × [1 − F (y + x)]γr−1 f (y)f (y + x) dy,

where γr = k + (n − r)(m + 1). After some simplifications, this may be written as

fr−1,r(x) =
cr−1

0(r)

∫ β−x

0


F̄ (y + x)

γr−1
f (y + x) dg r−1

m (F(y)),

where cr−1 =
∏r

j=1 γj, and

gm(x) =


1

m + 1


1 − (1 − x)m+1 , m ≠ −1

− ln(1 − x), m = −1.

The pdf of Xl(r, n,m, k), on the other hand is given by

f ∗

r (x) =
cr−1

(r − 1)!
F γr−1(x)


g∗

m(F(x))
r−1 f (x), (3.2)

where

g∗

m(x) =


1

m + 1


1 − xm+1 , m ≠ −1

− ln(x), m = −1.

Thus, relation (3.1) implies that

F γr−1(x)

g∗

m(F(x))
r−1 f (x) =

∫ β−x

0


F̄ (y + x)

γr−1
f (y + x) dg r−1

m (F(y))

and, since gm(F(y)) = g∗
m(F̄(y)),

F γr−1(x)

g∗

m(F(x))
r−1 f (x) =

∫ β−x

0


F̄ (y + x)

γr−1
f (y + x) d


g∗

m(F̄(y))
r−1

,

or

F γr−1(x)f (x) =

∫ β−x

0


F̄ (y + x)

γr−1
f (y + x)

d

g∗
m(F̄(y))

r−1
g∗
m(F(x))

r−1 , x ∈ (0, β).

Since f is symmetric about β/2, this can be written as

F̄ γr−1(β − x)f (β − x) =

∫ β−x

0


F̄ (y + x)

γr−1
f (y + x)

d

g∗
m(F̄(y))

r−1
g∗
m(F(x))

r−1 , x ∈ (0, β). (3.3)

This functional integral equation can be solved by using Theorem 2. Let H(x) = F̄ γr−1(x)f (x), and define

µx(B) =

∫
B∩Bx

d

g∗
m(F̄(y))

r−1
g∗
m(F(x))

r−1 ,

where Bx = (0, β − x). Then Eq. (3.3) can be written as

H(β − x) =

∫
Bx

H(x + y)µx(dy), x ∈ A,

where A = (0, β).
From Theorem 2 it follows that

H(x) = F̄ γr−1(x)f (x)

is constant on A. The symmetry of F implies that γr = 1 and F ∼ U(0, β). �

Note that γr = 1 leads to two characterizations, which correspond to characterizations with order statistics (k = 1,
m = 0, and n = r) and record values (k = 1 andm = −1). The relations resulting from this special case are given below:

Xn:n − Xn−1:n
d
= X1:n, (3.4)
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and

XU(r) − XU(r−1)
d
= XL(r). (3.5)

Relation (3.4) corresponds to the special case for r = n − 1 in Theorem 5.2 given in [1], and (3.5) corresponds to the
result given in [2], respectively.
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