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1. Introduction

Let us consider the system of partial differential equations
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System (1)—(3) can be used to model drug delivery from a homogeneous polymeric membrane with length 2£. In this case
and assuming that inside of the membrane we have only one drug specie, u, v represent the concentration of the drug in
two different states. For example the drug can be freely dispersed in the polymeric membrane but also chemically bound
to the polymeric matrix (see [1] when the viscoelastic effect is not considered). Another example occurs when the drug is
free but also entrapped in nanoparticles dispersed in the polymeric membrane (see [2] when the viscoelastic effect is not
considered). In this case u, v denote the concentrations of the free and entrapped drug, respectively. The reaction terms f
and g represent the physical and chemical processes involved in the delivery process. In the previous examples they can
represent binding or the transference from the particles to the matrix. The viscoelastic behavior of the polymeric matrix is
described by (3) where o represents the stress [3-6]. We note that different viscoelastic models, such as the Maxwell or
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Maxwell-Voigt models [7,8], can be obtained as a particular case of (3). In (1)-(3), D stands for the diffusion coefficient of
the drug in the polymer, «, 8 and y are positive parameters that characterize the mechanical behavior of the material and
E “weights” the influence of the non-Fickian flux. We postpone for Section 2 some comments on the sign of E. We note that
in [8,4,5], the relaxation time % is a function of the concentration. However when working in a regime where the polymer is
either in the rubbery or the glassy state § is nearly invariant within the states. Moreover this condition is essential to allow
analytical manipulation within the framework of Laplace transforms and to simplify the analysis in Section 2.1.

The characterization of the drug delivery device, that is the selection of the parameters that define the polymeric matrix,
depend on the requirements previously imposed by medical specifications namely a therapeutical drug flux or a total mass
released at specific times. The dependence on the parameters of such flux (or released mass) and the time to attain it, have
an important role in the design of the device. For the general nonlinear models (1)-(3) this dependence can only be studied
numerically. This fact motivates the study of the qualitative properties of system (1)-(3) as well as the establishment of a
class of numerical methods that mimic this differential model.

For linear reactions f and g, a priori estimations for the flux or total mass released, at a certain time t, can be obtained.
Particular attention will be given to functions of type f(u,v) = —Kyu + K,v,g(u, v) = —f(u, v). In this case, (1)-(3)
can be used to model the drug delivery with binding of drug to immobilizing sites and release from these sites as well
drug delivery when loaded particles are used to entrap the drug. The theory of Laplace transforms is used to obtain such
estimations which are given by closed formulas exhibiting an explicit dependence on the parameters that characterize the
drug and the delivery device. The theoretical concept that underlies the approach is the effective time [9], a time constant
that gives a priori information about the time when the delivery process can be regarded as completed to some specific
extent.

This paper is organized as follows. Section 2 is devoted to the study of system (1)-(3) when natural boundary conditions
are imposed. Energy estimates for this problem will be established and a numerical method that mimics the properties
of the initial problem is introduced. Using this method we illustrate the behavior of the concentrations u and v, the flux
at a specified boundary and the released mass as well. An estimation of the time needed to attain specified levels is also
computed. The linearized version of (1)—(3) is studied in Section 3 for Dirichlet boundary conditions and natural boundary
conditions. Explicit formulas for the fluxes (or masses) and response times are established in terms of the parameters that
characterize the drug and the platform.

2. A nonlinear integro-differential model

We start by rewriting the differential system (1)-(3) as an equivalent integro-differential system. From (3) we have

t
ox, t) =e Plo(x,0)+ (a — By) / e PE9y(x, s)ds 4+ yu(x, t) — yu(x, 0)e Pt (4)
0
Assuming that the initial stress o (x, 0) and the initial concentration u(x, 0) are constant, we deduce from (1)
L *’E*,/ﬁ #0928 s 4 @) in©, 0 x (0, 1] (5)
— =D"— e —(s)ds u,v) in(0,¢) x (0, T],
at 8X2 0 BXZ

which replaces in our mathematical models Egs. (1) and (3). In Eq. (5) D* = D + Ey and E* = E(¢ — By ). We remark that
Eq. (5) admits the representation

ou 9
o T =), (6)

where J is the non-Fickian flux defined by

3 t 9
Jx. 1) = —D*B—Z(x, £) — E* / e’ﬁ(t’s)a—Z(x, 5)ds. 7)
0

The first term on the right-hand side of (7) represents a Fickian flux with diffusion coefficient D*, with D* = D + Ey; the
second term stands for a viscoelastic contribution, with weight E*, where E* = E(« — y ). Following [10,11], the coefficient
E is negative, which reflects a certain opposition of the polymeric structure to the Fickian diffusion. In thiscase D+Ey < D,
and the positivity of D* must be ensured. The sign of E* depends on the value « — y 8. For Maxwell and Maxwell-Voigt
models, E* > 0 [12]. For the viscoelastic model in [10], E* < 0, which corresponds to a flux overshoot. However we note
that in [8] E is considered positive. The fact that different assumptions on the sign of E can be found in the literature is a
result of the huge variety of behaviors presented by polymeric matrices. In the approach followed in the present paper, E
can be considered positive or negative provided that D* > 0 and E* > 0.
The mathematical models (2) and (5) is coupled with the boundary conditions

J(—=€,t) = p1(Uexe — u(—¢, 1)), —J (&, t) = po(Uexe — u(€, t)), te€(0,T], (8)
and with the initial conditions
u(x, 0) = uo, v(x,0) = vy, Xx€ (=4 0). 9)

In(8) u; > 0,i =1, 2, and ey stands for the an external drug concentration.
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In Section 2.1 we present some qualitative properties of the mathematical models (2),(5),(8)and (9). Anumerical method
that mimics the continuous model is studied in Section 2.2. We point out that numerical methods for integro-differential
equations have been proposed in the literature. Without being exhaustive we mention [13-21].

2.1. Energy estimates

We denote by L?(0, T, V), where V. = H!(—¢, £) or V = [*(—¢, £), the space of functions p defined in (—¢, £) x [0, T]
and such that, p(t) € V and fOT p(t)||2 dt < oco. Let (u, v) € [2(0, T, H'(—¢, £)) x L*(0, T, [*(—¢, £)) be a solution of the
following system

9 3 t 3
(alt'(r), ul) = — (D*al;(t), u’l) - E*/O e A= (a—z(s), uﬁ) ds + (f(u(t), v(t)), ur)
+ 1 (texe — u(—€, )1 (—0) + pa(Uexe — u(€, D)ur(€), Yuy € H'(—¢, 0), (10)

0]
(aflt)(t), vl) = (gu(®), v()), v1), Vvy € (¢, 0), (11)

where (., .) denotes the usual inner product in L?>(—¢, £).
As this section is devoted to the stability analysis of the IBVP (9), (10), (11), with respect to perturbations of the initial
conditions we assume without loss of generality that u.; = 0. We establish in what follows an estimation for

! ou 2
f e P9 —(s)ds
0 ax

, tel0,T],
where M (t) = [|u(t)]|?> + ||v(t)||> and |.|| represents the norm induced by the inner product (., .).
It is physically reasonable to assume that the reaction rates of f and g with respect to the concentrations u and v as well as
the concentrations u and v are bounded. As f and g are defined in a certain domain [c, d] X [c, d], we assume mathematically
the following assumptions:

2
ds +E*

L ou
Egrad(t) = Mtot(t) + 2D*/ 7(5)
0 0x

u(x, £), v(x, t) € [c,dl, (x,t) € [, €] x [0,T], f(0,0) =g(0,0) =0, f,g € C'(lc, d] x [c, d]). (12)
We use the notations: fy max = MaXc djx[c.dj %7 [fo.max| = mMaXc djxc.ay |%|, |8u.max| = MaX[c djx[c.d] |%| and gy max =

p)
maXic dix[c,d] ﬁ-

Theorem 1. Let (u,v) € [?(0, T, H!(—¢, £)) x L?(0, T, L>(—¢, £)) be a solution of the variational problems (10), (11) with
initial condition (9). If (12) holds then

Egrad(t) =< emaX{O’w}tMtot(O)a (13)

where

1
@ = 2 max {fu.max + 62(|fv,max| + 18u,max|) s 8v,max + p([fv.maﬂ + |gu.max|)} (14)

and € # 0 is an arbitrary constant.

Proof. Taking in (10), (11), u; = u(t) and vy = v(t), respectively, we easily obtain

2 t
a a
—E*/ e Bt=9) l(s)’iu(t) ds
0 ax ax

— 11u(0, £)> — pou(e, ) + (f(u(t), v(t), u(t)), (15)

1d
sl = -

ou )
2dt 0x

and
1d )
Eallv(t)ll = (gu(®), v(®)), v(©)).
Let us consider now (f (u(t), v(t)), u(t)). We have
0 a
(f(®), v(©)), ut)) = (f(O, 0) + a{(&ﬂ(t), v(t)u(t) + af{)(O, Brv () v(t), u(t)>

< Sfumaxl[UO* + [fomax | (u(®), v(©))],
where 04, 6, € [0, 1]. Analogously, it can be shown that

(), v(t), v(0) < &o.max VO > + |8 max| WD), V()]
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Consequently

(F u(t), v(D)), u(t)) + (g, v(t)), v(t))
< fumax WO + o max VO + (fy,max| + |gu,max|)|(u<t) v(t))

< (fumax + Ez(lfv,max| + |gu,max|))||u(t)”2 + <gv max + ([fv max| + |8, max|)> ”U(t)”zv

t a 2
fe_”(t_s)—u(s)ds
0 0x
2
/ e Pl- 5?0 (s)ds )
0

+ D Mo (1), (16)

where € # 0 is an arbitrary constant. As

t a 0] 1d
/ e () 2y ) ds= - —
0 ax ax 2dt

we deduce

d t

— | Mo: (t) + 2D*
& (Mt + /0

/ e Al 5?0 (s)ds
0

where @ is defined by (14).
Finally, applying the Gronwall lemma to inequality (16) we obtain (13). O

2

’

t
e P9 %(s)ds
0x

u 2
—(s)| ds+E*
ox

< —2pBE"

Let us analyze the meaning of estimation (13).1f @ < 0 then Egraq(t) < Egraq(0) forallt € [0, 4-00). Otherwise Egroq(t) is
bounded in bounded time intervals. Estimation (13) does not allow us to conclude the convergence to zero of ||u(t) ||, [v(®) |
and % Nevertheless, if in (15) we do not consider the term —D* H g—z(t) ” we obtain

¢ 0 0
Hnumn < —E* f e P (8—2@, a—za)) ds — pqu(—£, £)% — pau(l, £)* + (F ), v(b)), u(t)), (17)
0

which is used to prove Theorem 2 where we establish an estimation for

/ e A= 5?0 (s)ds
0

Theorem 2. Let (u,v) € [>(0,T,H'(—£,£)) x [*(0, T, L*(—£, £)) be a solution of the variational problems (10), (11) with
initial condition (9). If (12) holds then

Ein¢(t) = Mo (t) + E*

Eine(t) < e™=26-200(0), (18)
where @ is defined by (14). O

If the reaction terms f and g are such that @ < 0, then from the last result we obtain

t
IO + o) + E* / e pio? <s)ds S0, t— +oo. (19)
0
We take € } Then for f and g such that
fumax < — (|fv max| + [8umax]) and gy max < (|fv max| + |8u,max|), (20)

the convergence (19) holds. This condition means that in (1) and (2), the reaction rates of f and g with respect to the
concentrations, respectively, u and v are negative and less than the average of the absolute values of the reaction rates
of f and g with respect to the concentrations, respectively, v and u.

We particularize Theorem 2 for the linear case considered in [1] when the viscoelastic effect is not considered. In this
case u and v represent, respectively, the free and bound concentration specie, f(u, v) = —(K, + ry)u + K,v, g(u, v) =
kyu — (K, + r,)v, where K, and K,, represent, respectively, the reaction rates of bound and unbound concentrations and r,
and r, represent, respectively, first-order elimination rates for free and bound concentrations. Condition (20) is equivalent
to

1 1
r, > E(Kv —Ky), ry, > E(Ku —Ky), (21)

which establish a lower bound for the degradation rates of both concentrations. Assuming that the degradation rates r, and
r, satisfy (21) we conclude the convergence (19).
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2.2. Adiscrete model

In this section we present a numerical method to compute an approximation to the solution of (2), (5), (8), (9). The
method mimics the continuous model in the sense that it presents the qualitative properties of the continuous model and
discrete versions of the results in Theorems 1 and 2 can be established.

n[—¢, £] and [0, T] we introduce, respectively, the following grids

In=1{x,i=0,...,N,xo=—€,xy =€, —x;_1=h,i=1,...,N},
{fn,fozo,tM:T,fn—fn_]:Af,nzl,...,M}.

We denote by Wy (I,) the space of grid functions defined in I. We use, for 1y, pr, € Wy (I,) the following notations:

N—-1 N
(hs Py, = D @OPR (), (i P+ = D hm@opa@), Tl = (s 1)+
i=1 i=1

where I} = Iy—{—¢, £}. We also consider the backward finite difference operators D_, and the second-order finite difference
operator, respectively,

1
D_xpn(x;) = E(ph(xi) —pnxi-1)), i=1,...,N,

1 .
Dopn(x:) = ﬁ(pn(xm) = 2pp(X;) +pn(xi-1)), i=1,...,N—1
We remark that the following identity holds
(Dapn, )y = —(D—xPh, D—xTn)+ — D—xpr(X1)Th (X0) + D—xPr(Xn)Th(XN)- (22)

Let up € Wy (Iy) and v; € Wy (1) be defined by the following variational problem

1 1
W™ uny = (uh wp)y — AD* (Do, Doyt )+

n+1
—ACE Y e PO D, Do) A ot unny
j=1
+ Aty (texe — U (X)) Urn(X0) + Aty (Uexe — U w)urn(kn),  Yurs € Wi(ly), (23)
ot vy, Wy = (vp, vy, Wi + Aty opth, vip), Yo, € Wy, (24)

complemented with the initial conditions
u) =ug inly, v) = voinlj. (25)

The discrete variational identities (23) and (24) can be seen as discrete versions of the correspondent variational identities
(10) and (11). We show in what follows that they are equivalent to a standard finite difference discretization of the partial
differential equations (5), (2), respectively. Using identity (22), it can be shown that (23) is equivalent to

n+1
(UZ_H, Un)y = (up, Uiy + AfD*(DzllZH, un)y + AL’E* Z eiﬂ“"“i[j)(DzUL, Uiy
=1
n+1
+ At | D*D_uf ™ (%1) + ALE* Ze—ﬂ(tn+1 DD_a, (x1) | t.p(x0)
j_
n+1
— At | D*D_ul ™ (xn) + ALE* Ze_ﬂ(t"“ DD_ad, (xn) | urn(xy)
j—l
+ At (Uexe — Ut (x0))U1,p(X0) + Atpto (Uexe — U (X, €)1 p(xn)
+ AL @t v, ua )y Vi n € Walln).

Considering, for each grid point x;, a grid function u; , such that u; (x;) = 1and u; ,(x;) = 0, j # i, we conclude that

up ! —up 1 = 1 1 1
T — D*D uz+ +E*At2e_ﬂ(‘"+1 t])D u} +f(u"+ n+ 2+ )’ (26)

Jj=0
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and
n+1
—D*D_up ' (1) — E*AL Y e P =DD Lt (x1) = ph1 (Uewt — U (X)),
wit (27)
DDy () + E*At Y e PO 70D i (x) = o (ttexs — U (Xn).
j=1

From (26) and from the boundary conditions (27) we conclude that (23) holds. Analogously, it can be shown that (24) is
equivalent to
UITH - ”h nl

AL guy v, ). (28)
Consequently, to compute the solution of the discrete variational problems (23), (24), with the initial condition (25) is
equivalent to solving the finite difference equations (26), (28) coupled with conditions (25), (27).

In the next result an estimation for

2

n
ALY e POD g

j=1

Eint,h(tn) = Mtot.h(tn) + E*

+

is established. In the definition of Ejn. 5 (f;) we used the notation Mg 1 (t;) = |luj; || + [lvy || . We remark that as Ejn n(ts)
h

is a discrete version of Ej,(t,), Theorem 3 can be seen as a discrete version of Theorem 2 and we need to assume a discrete

version of the assumptions (12)

ul(x), vi(x) €lc,dl, i=1,...,N—1,n=1,...,M, f(0,0) =g(0,0) =0, f,g € C'([c,d] x [c,d]). (29)

Theorem 3. Let uy € Wy,(Ih), vi € Wy(Ip),n = 1, ..., M, be defined by (26), (28), coupled with conditions (25), (27), with
Uext = 0 and E* > 0. If (29) holds then

1
E; th) < M to), 30
mt,h( n) = mm{] — ZAf(p, 1}n tot,h( 0) ( )

for At such that
1-2At® >0, (31)
where @ is defined by (14).
n+1

Proof. Considering in (23) and (24) u1, = uﬁ“, vin = v, , respectively, and using the Cauchy-Schwarz inequality we
obtain

n+1

1 _ _t j
|| wp G < Sl — ADID_an R — ACE* Y e T (D, Do
j=1
F AL o, uy Dy — At (%) — Atpoupt! (xw) (32)
and
|| g < f||vh||,, + At v, vty (33)
As
n+1 . n+1 2
j=1 + +
1 u i ’ 1
— e A e PID g | 4 D
Jj=1 +

it can be shown, from (32), (33) and following the proof of Theorem 1, that
2

n+1 n
(1= 2At0)Miotn(tny1) +E* | ALY e P0e9D_ad | < Migen(tn) + E*[JAL Y e P@=9D a2,
j=] + j=]

that is, min{1 — 2At®, 1}Eine p (trr1) < Eine.n (o)
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Fig. 1. Numerical released masses computed with the numerical scheme (26), (28), (27): Mg obtained with binding; M obtained without binding.

Table 1

Numerical simulations of the total mass released
obtained withD = 0.6,y = 1, « = 0.2 for M; (with
E=-02,8=1), M (withE = —0.59, 8 = 1), and
Ms (withE = —0.59, 8 = 0.25).

Time M, M, Ms

t; = 5.55 0.6758 0.6728 0.5825
t, =11.11 0.8869 0.8858 0.8552
t; = 16.66 0.9603 0.9599 0.9484
ty = 22.21 0.9861 0.9859 0.9816

ts = 27.76 0.9951 0.9950 0.9934

This inequality implies that

1

E; t < E; t1),
mt.h( n+1) = min{l _2ALD, 1}n 1nt,h( 1)

provided that At satisfies (31). As
1

E; t1) < M, to),
1nt,h( 1) = min{1 — 2Al’<15, 1} tot,h( O)

we conclude inequality (30) provided that condition (31) holds. O

As a corollary of Theorem 3 we have the stability result:

Corollary 1. The finite difference method (26), (28) coupled with the boundary conditions (27) is unconditionally stable provided
that @ < 0 and it is conditionally stable for @ > 0.

2.3. Numerical results

In this section we illustrate the use of the numerical scheme (26), (28) in the computation of the released mass. We
observe that an estimation of the time when the steady state is attained can be obtained from the numerical values of the
mass. WetakeD =0.6,y =1, 0 =02,E=-02,8=1,u1 =pu; =02and ¢ = 0.5.

In Fig. 1 we plot the numerical mass My obtained when binding occurs and is represented by the nonlinear functions
fw,v) = —uw+2) +v(w+2),g,v) = —f(u, v). The form of f reflects the fact that in mass balance (1) there is a
positive contribution of bound drug which becomes free and a negative contribution of free drug which becomes immobile.
In this simulation we used ug = 0.75, vy = 0.25. The released mass M when no binding occurs is also represented. To
compare both profiles we considered that 1o = 1, in the absence of binding. In the picture ¢} and t? represent the instants
when the steady state is attained without and with binding, respectively. We note that, as expected, binding induces a delay
in the drug delivery.

In Table 1 we present numerical simulations of the total mass released. The results have been obtained with D = 0.6,
y = 1, = 0.2 for three different set of parameters: M; (E = —0.2,8 = 1),M; (E = —0.59,8 = 1), and M;
(E = —0.59, B = 0.25). The decreasing of E leads to a delay in the delivery because such a decrease means an increase
in the viscoelastic effect. The decreasing of 8 also leads to a delay in the delivery. In fact when 8 decreases the relaxation
parameter increases which explains the observed delay.
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3. Analysis of a linearized drug delivery model

In this section we consider a linear version of the mathematical models (1)-(3). We suppose that f(u, v) = —Kyu +
K,v and g(u, v) = —f(u, v), where K, and K, represent rate constants associated respectively with binding of drug to
immobilizing sites and release of drug from these sites. We recall that, in the previous context, Eq. (2) can describe binding
or transference from loaded microparticles dispersed in the membrane. In fact, if K, # K, system (1)-(3) describes the
behavior of drug diffusion through a viscoelastic membrane where binding and unbinding occur but at different rates. If
Ky = K,,, the system represents either diffusion through a viscoelastic membrane with equal rates of binding and unbinding
or alternatively the coupling of a drug diffusion with transference from loaded microparticles. We note that in this last case
v represents the drug concentration within the microparticles [2].

Proceeding as in Section 2 we easily obtain for u the following integro-differential equation

u_ D*@ +E* /r e’ﬁ(t")@(s)ds + K, Ky /t e K t=y(s)ds + K,,e Xutu(x, 0) (34)
at 9x? 0 ax? L S K T

where D* and E* are defined in Section 2. As we are dealing in this section with a linear equation with constant coefficients,

Laplace transforms are well fitted to the analysis. In order to simplify the presentation, we start with Dirichlet boundary

conditions and then we consider natural boundary conditions.

3.1. Equilibrium variables and effective time constant

Two important characteristics of drug delivery devices are the steady state flux (or total released mass) and the time
required to attain such a state. To compute these characteristics for nonlinear drug delivery models, the problem must be
solved numerically. However, if a linear drug delivery model of the type introduced in this section is considered closed
formulas for the steady state flux and for the effective time constant can be established without solving analytically the
linear problem. From these formulas, estimations for the flux at any time are obtained.

To compute the steady state flux leaving the membrane, the Final Value Theorem of Laplace Transforms can be used. Let
w(x, ) represent a state variable. Then this theorem states that lim;_, o, w(x, t) = lim,_,o pw(x, p), where w represents
the Laplace transform of w, w(x, p) = fooo e Plw(x, t)dt.

From (7), the Laplace transform J (x, p) of the flux J(x, t) at x = £, assumes the form

- ou
JW,p) = —F*af(ﬁ,p), (35)
X
where
= w, (36)
p+8

and consequently the steady flux J;(¢) is given by
. L0u
Js(€) = — lim pF* — (¢, p). (37)
p—0 ox

As the mass released at time ¢, at x = £, M,(t), is defined by M,(t) = fotj(ﬁ, s)ds, to compute the equilibrium mass
released from the boundary x = ¢, M(£) = lim;_, ;~ M,(t), we have

o
M;(€) = ;IE%F 5(6’ p). (38)

The equilibrium flux (or the equilibrium mass) is given by (37) (or (38)) without solving the integro-differential equation
(34) and just by computing the Laplace transform of u. Closed formulas for J;(£) or M;(€), exhibiting explicit dependence on
the parameters of the model, will be obtained in Section 3.2 for two different sets of boundary conditions.

We recall now the concept of effective time [9] which is defined as the first moment associated with the density
probability function

ws(x) — w(x, t)
[ (ws(x) — wix, £))de’

d(x, t) = (39)

that is
[ t(ws(x) — wx, £))dt
[ ws(x) — wix, H)de

where w represents a state variable and wg(x) = lim;_, o w(x, t).

tefr(x) =
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As proved in [9], tegr can be computed by
ws(®) | 0w
==+ 5, x,p)
berr(x) = lim —2 "
p=0 B0 —5(x, p)

that is from the Laplace transform of w and without knowing w explicitly. From this last equation it can be established that,
if for p small enough, w admits the representation

ws(X)

W(x, p) = — + B+ Cp+ 0(p?), (41)

where B and C are p independent, then

C
tefr(X) = ~3 (42)

whenever B # 0.

Let us suppose that the drug is released at x = ¢. A density distribution d(¢, t) can be computed from J (¢, t) or M,(t)
that is considering in (39) w(£, t) = J(£, t) orw(£, t) = M(L, t).

Making the natural ansatz that the density is exponentially shaped, d(t) = a(t)e="®, then as f0°° d(s)ds = 1, we have

a(t) = b(t) and, from (39),a(t) = te_ff1 . With this ansatz, t.¢ can be viewed as the first moment of the exponential distribution
t

d(t) = %ﬂefﬁ. Consequently, interpreting t as a statistical variable, we have

P(t <Kte) =1—e%, VK eR{, (43)

and an estimation w (¥, t) for w(¢, t), where w(¢, t) represents J (£, t) or My (t) can be obtained from

(L, Ktegr) = (1 — e “ws(0), VK e RY. (44)

From (44) we note that to compute an estimation for w (€, t) at t = Ktes, only the steady state value w;(£) and the effective
time tofr must be known. This approach provides closed analytical formulas for the estimations that can be used not only to
give an in-depth understanding of delivery process but also useful quantitative approximations.

3.2. Closed forms for the steady state variables and effective time constant

We compute in what follows the steady state flux (or the total delivered mass) and the effective time for problem (34)
with two different sets of boundary conditions.

3.2.1. Dirichlet boundary conditions
Let the membrane occupy [0, £] and the boundary conditions be represented by

u(0, t) = uq, u,t) =0, t=>0. (45)

The initial conditions are defined by u(x,0) = v(x,0) = o(x,0) = 0. The concentration uy is related to a donor cell
concentration at x = 0 and at x = ¢ a sink condition is applied.
Taking the Laplace transform of (34) and (45) we obtain

_ _Ug sinh(A(¢ — x))
u(x,p) = W, (46)
where

A p(+Kp + K+ B)
0+ K)D*(p+B)+E*)
BD*+E*

Replacing (46) in (35) and using the Final Value Theorem we obtain J;(¢) = “7‘1 5 We note that the steady flux does not

depend on the rates of binding and unbinding and just depends on the viscoelastic properties of the membrane. When
no viscoelastic effects are considered, E* = 0, and Js({) = ”TdD which corresponds to the steady flux of pure Fickian
diffusion [22]. We compute the Laplace transform of the flux,

_ ug A D+ B +E
JEP = Gnh@D  pt p

where A is defined in (47). Expanding the hyperbolic function in powers of p we give (48) the form (41), and following (42)
we establish closed formulas for teg.

(47)

; (48)
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Fig. 2. Behavior of te, when t. is a function of the parameters 81, fB,,: (a) without binding given by (50); (b) with binding given by (51).

If no viscoelastic effects are considered — Problem I - we obtain, from (42),

S R P (49)
T KK, +K) 60D K.)

We note that ‘1;2;‘ > 0, g;g“ < 0 which represents an expected physical behavior. In fact as the binding rate K}, increases the
"
mean time to attain equilibrium increases and as the unbinding rate K, increases, time decreases.
If K, = 0, that is no binding occurs, then the effective time of a pure diffusion problem is obtained. In the case where

only viscoelastic effects are considered - Problem II - we obtain

1 (E* LB DUEL— SR - 51!,3355)

D*,B—FE* E 3! E*E+%,32£3

left = (50)

The behavior of effective time (50) has been studied in [12] for different viscoelastic models obtained from (3) with
B = ﬁlzﬂ, o = @ and y = B,, where 8; + B, represents the Young modulus. We mention that t.g increases with
the Young modulus as reported by experimentalists in the literature [23,24]. If problems (1)—(3) with f (u, v) = —Kpu+K,v
and g(u, v) = —f(u, v) are considered, that is, if diffusion, viscoelasticity and binding occur - Problem III - then following
the same procedure we obtain

B K\ 7¢2 1 1 D*K, + BD + E«
tefr = 1+ —

2 = + . (51)
BD + Ea K.) 60 B K.+K»  Ku.(BD+Ea)

We note that (51) holds for 8, K1, Kj, # 0. The particular cases § = 0 and K, = K, = 0 must be obtained respectively from
(49) and (50). The behavior of (51) is illustrated in Fig. 2(b) and it is qualitatively analogous to the behavior of t.¢ given by
(50) (Fig. 2(a)). However the range of variation of teg is larger in Fig. 2(b) due to the delay effect induced by binding.

3.2.2. Natural boundary conditions

We consider now the natural boundary conditions (8). In this case the equilibrium flux is zero and the variable of interest
is the released mass M (t) = M_;(t) + M, (t) with M,(t) = fot](a, s)ds,a = —¢, £, where J(x, t) is given by (7) and u is the
solution of (34), (8) with u(x, 0) = ug, v(x, 0) = vy.

The same approach of Section 3.2.1 is followed but instead of J (¢, t) the total mass is used. As we have M(p) = M_;(p) +
M¢(p) and My(p) = — %](a, D), a = ¢, we begin by computing u, solution of the following differential problem

0%u K, +K K
_p Pt Kt K K (52)
ax? p+K, p+K,
coupled with the boundary conditions
L ou Uext Lou Uext
—F—({p) = —ul.p)), F—(=tp=p|——-u-=Lp). (53)
ax p X p

The differential problems (52), (53) is obtained by applying Laplace transforms to (8), (34). For w1 = u, = u, the following

. . . — h(Ax g (p+Ky)+Ky v . . .
solution is obtained u(x, p) = (% — ) /Wiu)mhw) + S, where S = W, F* is defined in (36) and A is
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Fig. 3. Behavior of tef, when tef is a function of the parameters D, E, K, and u.
Table 2

Predicted and numerical masses for uy = 0.75,vp = 0.25,D = 0.6,y = 1,
a=02,u1 =4, =02E=-02,=1.

Effective time  Predicted mass (%M;) Numerical mass  Relative error

teff = 5.55 63.21 0.67487895 6.3388 x 1072
2 =11.11  86.47 0.88593096 2.3965 x 1072
3ty = 16.66  95.02 0.95982782 1.0031 x 1072
At =22.21  98.17 0.98590559 42657 x 1073
Sty = 27.76  99.33 0.99504565 1.7543 x 1073

defined in (47). Consequently the Laplace transform of M(t) is given by M (p) = 2P

(M - S) _A@h@Y _ 54 from
P

p AF* tanh(Al)+un
the Final Value Theorem we obtain a closed formula for the steady mass,

K
MSZ—ZE Uext 1+7b — Uy — Vg |- (54)
K,

Following (41), we give M (p) the form (42). After some tedious but straightforward computations a final expression of te
is obtained. We do not exhibit this closed form, but just present its plots as a function of D, E, K, and p (Fig. 3). The physical
decreasing behavior of effective time with such parameters is observed.

Using (43) and (44) for the mass we have

M(Kter) =~ (1 —e )M, VK e RT, (55)

with M; defined in (54). This expression leads to a prediction of the released mass for different values of K.

In what follows we illustrate the use of (55) to estimate the released masses for f(u,v) = —2u + 2v,g(u,v) =
—f(u,v),up = 0.75, vyp = 0.25and D = 0.6,y = 1,0« = 0.2, u; = up = 0.2,E = —0.2, 8 = 1. We also compare
these results with the numerical masses obtained using the numerical method introduced in Section 2.2. The results are
presented in Table 2. In Fig. 4 we plot the predicted and numerical masses.

From Table 2 and Fig. 4 we conclude that when K increases the agreement between the prediction and the numerical
masses improves.
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