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a b s t r a c t

We present an explicit formula and a multinomial approach for pricing contingent claims
under a regime-switching jump–diffusion model. The explicit formula, obtained as an
expectation of Merton-type formulae for jump–diffusion processes, allows to compute the
price of European options in the case of a two-regime economy with lognormal jumps,
while the multinomial approach allows to accommodate an arbitrary number of regimes
and a generic jump size distribution, and is suitable for pricing American-style options.
The latter algorithm discretizes log-returns in each regime independently, starting from
the highest volatility regime where a recombining multinomial lattice is established. In
the remaining regimes, lattice nodes are the same but branching probabilities are adjusted.
Derivative prices are computed by a backward induction scheme.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Several empirical studies show that financial returns exhibit volatility with a stochastic pattern and fatter tails than the
standard normal model, which has been shown not to be suitable for capturing the asset price dynamics. Consequently,
many alternative approaches have been proposed in order to capture the dynamics of financial returns. Examples are the
jump–diffusion process introduced by Merton [1], and the regime-switching model introduced by Hamilton [2,3] that has
become more and more attractive for researchers who, starting from the first contribution presented by Naik [4] in 1993,
have developed a wide range of option pricing models in this framework.

In this paper, we propose an explicit formula and a multinomial approach for evaluating contingent claims when the
underlying asset dynamics evolves according to a regime-switching model with jumps. The choice of this framework is
motivated by two main aspects:

• regime-switching models represent a simple way to capture stochastic volatility and, hence, fat tails, thus overcoming
the drawback of the classical lognormality assumption characterized by constant volatility;

• the addition of a jump component to the regime-switching context contributes to explain accurately some of the
empirical biases evidenced by the classical lognormal model.

In financial literature, regime-switchingmodels have been prevalently applied in order to allow Lévy processes to switch
in a finite state space. Among the contributions in the field of option pricing, it is worth mentioning Konikov andMadan [5],
who introduce an extension of the variance-gammamodel inwhich the parameters switch, according to a two-stateMarkov
chain, between two fixed sets of values at infinitesimal time intervals. Furthermore, they evidence that more than two
states should be considered for the Lévy process, but themathematical approach they use cannot easily accommodatemore
than two states for option valuations. To overcome this limit, Elliot and Osakwe [6] extend their work to more than two
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states introducing a multi-state Markov switching model where the underlying process is a jump process with parameters
that may switch among drift/compensator pairs. Albanese et al. [7] develop a model similar to the one of Konikov and
Madan [5] except that switches occur only at finite time intervals, deriving as well closed form formulae for European
options. Jackson et al. [8] propose a Fourier space time-stepping algorithm to derive option prices in a regime-switching
Lévy process. Jiang and Pistorius [9] evaluate perpetual American put options in an exponential regime-switching Lévy
model deriving analytically tractable results. A different approach, which uses a Markov chain with a progressively denser
state space to approximate a continuous time stochastic volatility model with jumps, has been proposed by Chourdakis [10]
who in this way obtains option prices in semi-closed form.

Among the contributions in option pricing that consider a regime-switching model with jumps, it is worth mentioning
Yuen and Yang [11] who, after generalizing the Naik [4] model to more than two regimes, provide a trinomial lattice to
price options under a jump–diffusion Markov regime-switching model. Indeed, as in Naik [4], the underlying asset process
presents jumps only during the switches among states with the jump size depending upon the state before and after the
switching and the current asset price. A more general framework is proposed in Ramponi [12], who presents a Fourier
transform method to compute the price of European contingent claims when the underlying asset behavior is described
by a jump–diffusion dynamics with parameters driven by a continuous time and stationary Markov chain on a finite state
space. His method is suitable for pricing European-style contingent claims but may not be applicable to evaluate American
options.

In this paper, we work in the framework proposed by Ramponi [12] where a regime-switching model for the underlying
asset embedding a jump component thatmay switch amongdifferent regimes is considered. After a preliminary econometric
analysis that supports the choice of a regime-switching jump–diffusion dynamics to model the equity price, we present an
explicit formula to compute the price of European options in the case of a two-regime economy with jumps in the asset
price process following a lognormal distribution. The formula is obtained as an expectation of Merton-type formulae for
jump–diffusion processes by conditioning the asset distribution on the occupation time in one of the two regimes and
on the number of jumps occurring in each regime. It does not require possibly cumbersome inversions and represents
an alternative approach for option pricing with respect to the Ramponi’s [12] formula, which is obtained applying Fourier
methods. To complete the treatment of the pricing problem,we also propose a discretemultinomial approach that is flexible
enough to accommodate an arbitrary distribution for the jump component and an arbitrary number of regimes both for the
diffusion and the jump component, and presents the advantage of being easily applied to price American-style options. We
develop a multinomial lattice which is needed to capture both the diffusion and the jump component in the underlying
asset process associated to the highest volatility regime. Indeed, we approximate the diffusion part by a trinomial tree and
add more branches to capture jumps. For the other regimes, instead of generating new lattices, we simply adjust branching
probabilities as suggested by Yuen and Yang [13]. Then, option prices are computed via backward induction. Numerical
results within a two-state regime-switching version of the Merton [1] jump–diffusion model are also provided to support
the model.

The rest of the paper is organized as follows. After a preliminary section presenting the framework and the econometric
analysis aimed at validating regime-switching models with jumps (Section 2), we develop the explicit formula to evaluate
European options in the presence of a two-regime economywhen jumps follow a lognormal distribution (Section 3), and the
multinomial lattice for more general cases (Section 4). Section 5 presents numerical results confirming the accuracy of the
proposed model for European, American, and barrier options, and provides a numerical discussion concerning the behavior
of the option prices computed by the multinomial approach. Finally, Section 6 concludes.

2. Framework and econometric analysis

We divide this section into two parts. In the first one, we analyze the framework in which we will develop our model;
then, in the second part, we provide an econometric analysis supporting the choice of the underlying framework. For the
sake of simplicity, we limit the analysis to a Markov chain with only two states but its extension to a greater number of
states is straightforward.

2.1. The framework

On a probability space (Ω, F , P ), where P is the real-world probability measure, we consider a risky asset in a security
market where trading takes place in the interval [0, T ]. The parameters of the asset dynamics may switch according to a
continuous time, homogeneous and stationaryMarkov process, ϵ(t), on the state spaceL = {0, 1}with generator A ∈ R2×2,

A =


−a0,1 a0,1
a1,0 −a1,0


, (1)

governing the transition probabilities of the process from the current state to the other. The transition probability matrix in
the interval [t, t + ∆t] is given by

P = eA∆t
=

∞
n=0

(A∆t)n

n!
= I + A∆t + o(∆t),
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where I is the identity matrix. Hence, ignoring terms of order superior to ∆t , if at time t we are in regime 0, then with
probability a0,1∆t there will be a switch to regime 1 at time t + ∆t; the probability of remaining in regime 0 is 1 − a0,1∆t .
Transition probabilities from regime 1 are constructed similarly.

In order to capture the typical features ofmarket data, i.e., higher picks and heavier tails than the standard normalmodel,
the risky asset evolves according to the following stochastic differential equation

dS(t)
S(t−)

= µϵ(t)dt + σϵ(t)dW (t) +


E
γ (y, ϵ(t−))pϵ(dy, dt),

where, conditional on the Markov state ϵ(t) observed at time t, µ : L × R → R is the instantaneous rate of return,
σ : L × R → R is the asset volatility, W (t) is a Brownian motion, γ : E × L → R is a given function assuming values
greater than -1, (E, E) is a measurable mark space, and pϵ(dy, ds) is a marked point process1 with intensity λ(ϵ(t), dy) =

λϵ(t)ϑ(ϵ(t), dy). The variables λϵ(t), i.e., the intensity of the counting process, ϑ(ϵ(t), dy), i.e., a set of probability measures
on (E, E), and γ (y, ϵ(t)), i.e., the jump size relative to the mark y in regime ϵ(t), depend upon the regime observed at time
t and, consequently, they are defined for each state in the chain. It is worth evidencing that we assume ϵ(t) and W (t) being
independent and W (t) and pϵ(dy, dt) conditionally independent given ϵ(t). All the processes are adapted to the filtration
Gt = F ϵ

t ∨ F S
t where F ϵ

t = σ {ϵ(s), 0 ≤ s ≤ t}, and F S
t = σ {S(s), 0 ≤ s ≤ t}.

In view of our pricing application, we specify our model in a probability space where, denoting by rϵ(t) the instantaneous
risk-free rate of return conditional on the Markov chain being in regime ϵ(t) at time t , the discounted process S(t)e−

 t
0 rϵ(s)ds

is a martingale. Consequently, the risky asset dynamics is specified as

dS(t)
S(t−)

= (rϵ(t) − λϵ(t)mϵ(t))dt + σϵ(t)dW (t) +


E
γ (y, ϵ(t−))pϵ(dy, dt), (2)

where mϵ(t) =

E γ (y, ϵ(t−))ϑ(ϵ(t−), dy) is finite for each regime, and W (t) is a Brownian motion under the pricing

measure. Further, we assume that the regime risk is not priced in the market, hence the rate matrix A in (1) is the same
under both the physical measure and the pricing measure.

To fix the jump size distribution, throughout the paper we suppose γ (Y , ϵ(t)) = Yϵ(t) − 1, with Yϵ(t) random variable
associated to the measure ϑ(ϵ(t), dy). Consequently, the size of the asset price jump at time t in regime ϵ(t) is

S(t) − S(t−) =


0 in case of no jump,
S(t−)(Yϵ(t) − 1) if a jump occur.

Being Yϵ(t) a non-negative random variable, we ensure that S(t) can never become negative, and on a logarithmic scale we
have log S(t) = log S(t−)+ log Yϵ(t), which evidences that the jumps are additive in the logarithm of the price. The solution
of (2), on a logarithmic scale, is given by

X(T ) = log
S(T )

S(0)
= α0T0 + α1T1 + σ0Z(T0) + σ1Z(T1) +

N(T0)
k=1

log Y0(k) +

N(T1)
k=1

log Y1(k), (3)

where for l = 0, 1, Tl is the occupation time of the Markov chain in regime l, αl = rl − σ 2
l /2 − λlml,N(Tl) is distributed as

a Poisson variable, Poiss(λlTl), and Z(Tl) is distributed as a normal variable, N(0, Tl). For option pricing, we also assume that
the regime is observable and, consequently, we will derive the contingent claim price conditional on the observed regime
at the option inception.

2.2. An econometric analysis

In this section, we provide an econometric analysis that supports the choice of a regime-switching jump–diffusion
process (2) to describe the underlying asset dynamics.

Consider the following discretization of the regime-switching jump–diffusion model over the interval [t − 1, t]

y(t)|ϵ(t) = log(S(t)/S(t − 1))|ϵ(t) = µϵ(t) + σϵ(t)Z(t) +

Nϵ(t)
k=1

Υϵ(t)(k), (4)

where ϵ(t) is a state variable switching according to the transition matrix P, µϵ(t) and σϵ(t) are the drift and the volatility of
the diffusion part, Z(t) are independent standard normal variates, Υϵ(t)(k) ∼ N(ϖϵ(t), ν

2
ϵ(t)), and Nϵ(t) ∼ Poiss(λϵ(t)).

Here we follow the setup and notation of Hamilton [15] to estimate the discrete time model (4) by maximum likelihood.
Let θ be the vector of model parameters and Ωt = {y(t), . . . , y(0)} the observations up to time t . Inference of model (4)
requires defining the 2 × 1 vectors ξ̂t whose elements are P(ϵ(t) = l|Ωt , θ), l = 0, 1, and ηt whose elements are

f (y(t)|ϵ(t) = l, Ωt; θ) =

+∞
n=0

e−λlλn
l

n!
φ(µn,l, σn,l), l = 0, 1,

1 See Runggaldier [14] for further details.
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Table 1
Daily estimated parameters and standard errors for the CAC 40 index.

RS LNJ RSJ1 RSJ2
Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

µ −0.0003 0.0003
µ0 0.0009 0.0002 0.0012 0.0007 0.0019 0.0003
µ1 −0.0016 0.0009 −0.0017 0.0016 0.0008 1.0136E−05
σ 0.0096 0.0004
σ0 0.0086 0.0003 0.0058 0.0033 0.0118 0.0025
σ1 0.0223 0.0008 0.0235 0.0015 0.0053 0.0006
λ 0.1402 0.0357 1.0713 0.3515
λ0 1.0145 0.7329
λ1 1.5442 0.6593
ϖ −0.0016 0.0020 −0.0005 0.0015
ϖ0 −0.0031 0.0015
ϖ1 −2.8948E−05 0.0002
ν 0.0274 0.0032 0.0074 0.0042
ν0 0.0183 0.0046
ν1 0.0058 0.0007
p00 0.9896 0.0039 0.9949 0.0024 0.9843 0.0062
p11 0.9741 0.0088 0.9785 0.0100 0.9949 0.0025

LogL 6041.1822 5923.8901 6057.0785 6077.5327
AIC −12,070.3643 −11,837.7802 −12,096.1570 −12,131.0654
BIC −12,036.7589 −11,809.7757 −12,045.7489 −12,063.8545

where φ(µ, σ) denotes the density function of a normal random variable with mean µ, and standard deviation σ , and

µn,l = µl + nϖl,

σn,l =


σ 2
l + nν2

l .

The loglikelihood for a sample ofM observations is given by

ℓ(θ) =

M
t=1

log f (y(t)|Ωt; θ),

where the densities f (y(t)|Ωt; θ) are updated recursively as follows:

f (y(t)|Ωt; θ) = ι′(P ξ̂t−1 ⊙ ηt),

ξ̂t =
P ξ̂t−1 ⊙ ηt

f (y(t)|Ωt; θ)
,

where ι = (1, 1)′ and ⊙ is the Hadamard product. Typically, iterations are started setting the vector ξ̂ to the unconditional
probabilities, i.e., ξ̂0 satisfies

ξ̂ ′

0 = ξ̂ ′

0P.

We fit model (4) to equity indices returns. We consider daily data covering the period from 01/07/2003 to 02/05/2011
for the CAC 40, DAX 30, FTSE 100, Nikkei 225 and S&P 500 indices. We compare a regime-switching (RS) model (i.e., without
jumps) a lognormal with jumps (LNJ) model (i.e., without regime-switching), and two regime-switchingmodels with jumps
(RSJ1 and RSJ2). In RSJ1 model, we assume that in both regimes jump intensities as well as jump distribution parameters
are equal, i.e., λ0 = λ1 and ϖ0 = ϖ1 and ν0 = ν1. In the RSJ2 model, instead, jump intensities and magnitudes are allowed
to vary across regimes.

Estimation results, reported in Tables 1–5, show that for daily data using only a regime-switching or only a lognormal
with jumps model is not enough to capture the return dynamics. Indeed, according to the information criteria used, models
that incorporate both regime-switching features and jumps seem to have the best fit. In particular, if we consider the AIC
criterion the ‘‘extended’’ RSJ2 model is always the preferredmodel. On the other hand, if we base our conclusions on the BIC
criterion, the RSJ2 is the bestmodel for three indices out of five (CAC 40, FTSE 100 and S&P 500),while themore parsimonious
RSJ1 is the best model for the remaining two indices (DAX 30 and Nikkei 225). For both criteria, the LNJ model offers always
the worst fit.

As far as the estimated parameters are concerned, in the RS model we find that for all the considered indices the high-
volatility regime has associated a smaller, negativemean.We notice also that the jump component of the RSJ2model is such
that the high-volatility regime (σ0 > σ1) has associated larger jump intensities (λ0 > λ1), smaller jump magnitude mean
(ϖ0 < ϖ1) and larger jump magnitude variance (ν2

0 > ν2
1 ). This is true for all the series examined with the exception of

the FTSE 100 index.
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Table 2
Daily estimated parameters and standard errors for the DAX 30 index.

RS LNJ RSJ1 RSJ2
Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

µ 0.0010 0.0003
µ0 0.0010 0.0003 0.0013 0.0003 0.0004 0.0010
µ1 −0.0019 0.0013 −0.0005 0.0006 0.0011 0.0004
σ 0.0097 0.0004
σ0 0.0096 0.0003 0.0076 0.0004 0.0110 0.0013
σ1 0.0241 0.0013 0.0152 0.0009 0.0082 0.0001
λ 0.1366 0.0449 0.0263 0.0107
λ0 0.8329 0.3914
λ1 1.1717 0.2711
ϖ −0.0044 0.0022 −0.0036 0.0071
ϖ0 −0.0014 0.0012
ϖ1 9.3327E−05 5.0223E−05
ν 0.0258 0.0036 0.0428 0.0076
ν0 0.0166 0.0026
ν1 0.0012 0.0018
p00 0.9925 0.0032 0.9847 0.0056 0.9816 0.0069
p11 0.9699 0.0116 0.9826 0.0064 0.9870 0.0047

LogL 6031.8759 5945.9511 6049.7692 6059.9261
AIC −12,051.7518 −11,881.9021 −12,081.5384 −12,095.8523
BIC −12,018.1463 −11,853.8976 −12,031.1302 −12,028.6414

Table 3
Daily estimated parameters and standard errors for the FTSE 100 index.

RS LNJ RSJ1 RSJ2
Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

µ 0.0008 0.0002
µ0 0.0008 0.0002 0.0012 0.0003 0.0032 0.0008
µ1 −0.0012 0.0008 −0.0009 0.0012 0.0014 0.0003
σ 0.0071 0.0003
σ0 0.0071 0.0002 0.0055 0.0009 0.0103 0.0006
σ1 0.0200 0.0009 0.0215 0.0013 0.0057 0.0010
λ 0.2437 0.0445 0.6278 0.4917
λ0 0.8067 0.3593
λ1 0.3888 0.2975
ϖ −0.0023 0.0011 −0.0009 0.0009
ϖ0 −0.0042 0.0014
ϖ1 −0.0018 0.0021
ν 0.0198 0.0017 0.0071 0.0020
ν0 0.0171 0.0027
ν1 0.0063 0.0017
p00 0.9902 0.0034 0.9939 0.0025 0.9869 0.0055
p11 0.9762 0.0087 0.9761 0.0095 0.9944 0.0026

LogL 6382.0276 6240.9338 6395.9159 6417.8350
AIC −12,752.0552 −12,471.8677 −12,773.8318 −12,811.6699
BIC −12,718.4498 −12,443.8631 −12,723.4237 −12,744.4591

3. Explicit formula for European options

In this section, we present an explicit formula to compute the price of European options in the case of a two-regime
economywith jumps in the asset price process following a lognormal distribution. Following the lines of Naik [4], we exploit
the fact that in the above model the log-return distribution is conditionally normal given the occupation time of the first
of the two regimes and the number of jumps in both the regimes and, hence, the conditional European option price is of
the Black–Scholes type. We show that, in the particular case of a jump component which presents the same distribution in
both the regimes, the formula reduces to an expectation of the usual Merton formula with the expectation taken over the
average future variance of the underlying asset price. The formula represents an alternative approach to the one proposed
by Ramponi [12], in that we do not use Fourier based methods to obtain the evaluation formula. The main drawback of
the latter approach is that it requires the choice of damping coefficients and upper integration limits that are not always
straightforward to determine. On the contrary, as explained later, the proposed formula is not affected by such issues because
it involves an integration over a finite interval.

The following proposition documents the call price at time zero conditional on the Markov chain being in the first state
in a two-regime economy characterized by a constant risk-free rate (the proof is given in the Appendix).
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Table 4
Daily estimated parameters and standard errors for the Nikkei 225 index.

RS LNJ RSJ1 RSJ2
Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

µ 0.0007 0.0003
µ0 0.0005 0.0003 0.0012 0.0007 0.0025 0.0040
µ1 −0.0032 0.0022 −0.0020 0.0026 0.0020 0.0005
σ 0.0116 0.0004
σ0 0.0119 0.0003 0.0029 0.0010 0.0179 0.0134
σ1 0.0331 0.0023 0.0324 0.0024 0.0068 0.0010
λ 0.1229 0.0345 2.5462 0.4932
λ0 0.9254 0.2792
λ1 1.3627 0.3307
ϖ −0.0063 0.0027 −0.0003 0.0003
ϖ0 −0.0053 0.0096
ϖ1 −0.0012 0.0004
ν 0.0311 0.0039 0.0076 0.0007
ν0 0.0270 0.0197
ν1 0.0086 0.0005
p00 0.9932 0.0028 0.9974 0.0016 0.9830 0.0098
p11 0.9515 0.0199 0.9767 0.0148 0.9975 0.0015

LogL 5710.2058 5615.7119 5730.4242 5735.7494
AIC −11,408.4116 −11,221.4238 −11,442.8483 −11,447.4988
BIC −11,374.8061 −11,193.4193 −11,392.4402 −11,380.2880

Table 5
Daily estimated parameters and standard errors for the S&P 500 index.

RS LNJ RSJ1 RSJ2
Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

µ 0.0009 0.0002
µ0 0.0008 0.0002 0.0016 0.0003 0.0018 0.0007
µ1 −0.0016 0.0011 −0.0006 0.0017 0.0014 0.0003
σ 0.0067 0.0003
σ0 0.0074 0.0002 0.0029 0.0005 0.0113 0.0037
σ1 0.0236 0.0010 0.0271 0.0020 0.0024 0.0006
λ 0.2688 0.0413 1.3861 0.2444
λ0 0.8272 0.4086
λ1 1.6695 0.8272
ϖ −0.0025 0.0011 −0.0008 0.0003
ϖ0 −0.0033 0.0017
ϖ1 −0.0005 0.0003
ν 0.0211 0.0016 0.0067 0.0006
ν0 0.0218 0.0051
ν1 0.0056 0.0007
p00 0.9920 0.0029 0.9967 0.0019 0.9885 0.0054
p11 0.9736 0.0101 0.9787 0.0102 0.9969 0.0017

LogL 6352.2513 6208.5450 6405.3982 6419.4778
AIC −12,692.5026 −12,407.0899 −12,792.7964 −12,814.9557
BIC −12,658.8972 −12,379.0854 −12,742.3882 −12,747.7448

Proposition 1. In the regime-switching jump–diffusionmodel (3)with risk-free rate r in both regimes, and log Yl(k) ∼ N(ηl, δl),
l = 0, 1, the time zero call price conditional on the Markov chain being in the first state2 is

c(0|ϵ(0) = 0) =

 T

0

∞
n=0

∞
m=0

C(S(0), K , T , r, An,m(t), Bn,m(t))
e−λ0t−λ1(T−t)(λ0t)n(λ1(T − t))m

n!m!
fT0(t|ϵ(0) = 0)dt, (5)

where fT0(t|ϵ(0) = 0) is the conditional density of the occupation time of the first regime (cfr., Proposition 1 in [4]),

C(S(0), K , T , r, A, B) = S(0)e−rT eA+B2/2Φ(d1(A, B)) − Ke−rTΦ(d2(A, B)),

d1(A, B) =
log(S(0)/K) + A + B2

B
,

2 The time zero call price conditional on the Markov chain being in the second regime is the same as above except that the conditional density
fT0 (t|ϵ(0) = 1) needs to be used in Eq. (5).
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d2(A, B) =
log(S(0)/K) + A

B
= d1(A, B) − B,

An,m(t) = rT + (−σ 2
0 /2 − λ0m0)t + (−σ 2

1 /2 − λ1m1)(T − t) + nη0 + mη1,

Bn,m(t) =


σ 2
0 t + σ 2

1 (T − t) + nδ2
0 + mδ2

1 .

We remark that the series inside the integral in (5) converges very quickly especially for small values of T , and this aspect
reduces substantially the computational time for option pricing.

In the next proposition, we simplify matters and derive a result valid for the case in which only the diffusion part differs
across the two regimes (the proof is given in the Appendix).

Proposition 2. In the regime-switching jump–diffusion model (3) with risk-free rate r in both regimes, λ0 = λ1 = λ,
η0 = η1 = η, δ0 = δ1 = δ, and, consequently, log Yl(k) ∼ N(η, δ), l = 0, 1, and m0 = m1 = m = exp(η + δ2/2) − 1, the
time zero call price conditional on the Markov chain being in the first state is

c(0|ϵ(0) = 0) =

 T

0
CMerton(S(0), K , T , r, σ (t), λ, η, δ) × fT0(t|ϵ(0) = 0)dt, (6)

where again fT0(t|ϵ(0) = 0) is the conditional density of the occupation time of the first regime, σ(t) =


σ 2
0 t + σ 2

1 (T − t), and

CMerton(S(0), K , T , r, σ , λ, η, δ) =

∞
n=0

e−λλn

n!
CBS(Sn, K , T , r, σn)

with

Sn = S(0) exp[(η + δ2/2)n − λmT ]

σn =


σ 2 + nδ2/T .

CBS(S, K , T , r, σ ) is the usual Black–Scholes formula with risk-free r, for a call with time tomaturity T , strike K , written on a stock
with price S and volatility σ .

The time zero call price conditional on the Markov chain being in the second regime is the same as above except that the
conditional density fT0(t|ϵ(0) = 1) needs to be used in Eq. (6). It is worth noting that in the latter proposition, in the case
of no jumps that is λ = 0 and/or jumps that are zero with probability 1, i.e., η = δ = 0, the Merton [1] formula inside the
integral in (6) reduces to a Black–Scholes–Merton formula and, consequently, formula (6) coincides with the Naik’s formula.
Additionally, our formula is applicable also to the case of deterministic jumps, i.e., zero variance in the jump size distribution,
for which Naik [4] provides only a numerical procedure and no explicit formula.

4. The multinomial approach

Here we present the discrete version of the continuous time framework of Section 2.1, which is based on a multinomial
representation of the risky asset dynamics. We detail the case of two regimes but the algorithm is easily applicable to the
case ofmore than two regimes. The proposedmethod establishes a recombiningmultinomial lattice for the highest volatility
regime and, then, adjusts the probability measure to describe the underlying asset dynamics in the other regime. Then, it
computes the option values through the expected value of their payoffs along the lattice branches. The model is flexible
enough to allow the valuation of both European and American-style options thus making, in the latter case, a significant
practical contribution given the wide trade volume registered in several important markets.

Wework on the logarithmic version of the regime-switching jump–diffusion process reported in Eq. (3), where regime 0
is the highest volatility regime and regime 1 is the lowest volatility one, and the logarithm of the jump-magnitude, log Yl(k),
has known distribution function Fl(·), l = 0, 1, not necessarily of the normal type.

We establish amultinomial recombining grid based on n time steps of length∆t = T/n, with T being the optionmaturity,
where the number of nodes at each time step is bounded by fixing a tolerance level ε. Let dl and ul, with l = 0, 1, be the
smallest integer numbers satisfying

Fl (αl∆t + (−dl + 0.5)∆y) < ε, and (7)
1 − Fl (αl∆t + (ul − 0.5)∆y) < ε, respectively, (8)

where ∆y = σ0
√
3/2∆t . Clearly, by choosing d = max{dl : l = 0, 1} and u = max{ul : l = 0, 1}, we have that in both

regimes the probability in the right and in the left tail of the jump size distribution is smaller than ε. Starting from inception
(node (0, 0)) where the discrete process has value X(0, 0) = 0, the value assumed by the logarithm of the asset price return
at each node (i, j) of the grid at the i-th time step is given by X(i, j) = iα0∆t + j∆y, i = 0, . . . , n; j = −id, . . . , iu, where
α0 = r0 − σ 2

0 /2 − λ0m0.
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Fig. 1. The approximation of the process (3) at the first time step in regime 0.

Assuming that at inceptionwe observe regime 0, to guarantee that the discrete approximating process has the same local
mean and the same local variance of the diffusion component in the continuous process, we assign transition probability
equal to 1/3 to the values X(1, 1) = α0∆t+∆y, X(1, 0) = α0∆t , and X(1, −1) = α0∆t−∆y. To take properly into account
the effect of the jump component, we approximate the jump distribution on the entire real line by breaking it down over
nonoverlapping intervals of equal width ∆y. The probability mass over each one of these intervals is assigned to the proper
node in the interval. Note that, in regime 0, the probability that the process shows a single jump in a small interval ∆t is
given by λ0∆t + o(∆t) while the probability of multiple jumps is o(∆t). We assume that the probability of a jump in the
discrete approximating model at each time step i∆t, i = 1, . . . , n, is λ0∆t and that multiple jumps cannot occur during
each time interval, hence the probability that the process does not jump is 1−λ0∆t . Consequently, the probability assigned
to each node X(1, j) = α0∆t + j∆y, j = −d, . . . , u, is given by

q0(j) =

1
3
(1 − λ0∆t) + p0(j)λ0∆t if j = −1, 0, 1;

p0(j)λ0∆t otherwise;

where

p0(j) =

F0 (α0∆t + (−d + 0.5)∆y) if j = −d;
F0 (α0∆t + (j + 0.5)∆y) − F0 (α0∆t + (j − 0.5)∆y) if j = −d + 1, . . . , u − 1;
1 − F0 (α0∆t + (u − 0.5)∆y) if j = u.

In Fig. 1, we illustrate the discretization defined above for the first time step.
At a generic node (i, j) of the grid, if regime 0 is observed at time i∆t , the successor points of X(i, j) at the (i+ 1)-th time

step are X(i + 1, j + x) = (i + 1)α0∆t + (j + x)∆ywith x = −d, . . . , u, and probabilities

q0(x) =

1
3
(1 − λ0∆t) + p0(x)λ0∆t if x = j − 1, j, j + 1;

p0(x)λ0∆t otherwise;

where

p0(x) =

F0 (α0∆t + (−d + 0.5)∆y) if x = −d;
F0 (α0∆t + (x + 0.5)∆y) − F0 (α0∆t + (x − 0.5)∆y) if x = −d + 1, . . . , u − 1;
1 − F0 (α0∆t + (u − 0.5)∆y) if x = u.
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Contrary, if regime 1 is observed, branching probabilities are defined as follows. Let πu
1 be the probability assigned to

X(i+1, j+1) = (i+1)α0∆t + (j+1)∆y, πm
1 the transition probability assigned to X(i+1, j) = (i+1)α0∆t + j∆y, and πd

1
the transition probability assigned to X(i + 1, j − 1) = (i + 1)α0∆t + (j − 1)∆y. The probabilities πu

1 , πm
1 , πd

1 are obtained
by solving the following systemπu

1 + πm
1 + πd

1 = 1,
πu
1 (α0∆t + ∆y) + πm

1 α0∆t + πd
1 (α0∆t − ∆y) = α1∆t,

πu
1 (α0∆t + ∆y)2 + πm

1 α2
0∆t2 + πd

1 (α0∆t − ∆y)2 = σ 2
1 ∆t + α2

1∆t2,

in order to assure that the local drift and the local second moment of the discrete process approach the continuous time
ones, and they are given by

πu
1 =

σ 2
1 ∆t + (α1 − α0)

2∆t2 + (α1 − α0)∆t∆y
2∆y2

;

πm
1 = 1 −

σ 2
1 ∆t + (α1 − α0)

2∆t2

∆y2
;

πd
1 =

σ 2
1 ∆t + (α1 − α0)

2∆t2 − (α1 − α0)∆t∆y
2∆y2

.

To take also into account the jump component, we assign to the possible successor points of X(i, j) at the (i + 1)-th time
step, X(i + 1, j + x) with x = −d, . . . , u, probabilities

q1(x) =


πu
1 (1 − λ1∆t) + p1(x)λ1∆t if x = j + 1;

πm
1 (1 − λ1∆t) + p1(x)λ1∆t if x = j;

πd
1 (1 − λ1∆t) + p1(x)λ1∆t if x = j − 1;

p1(x)λ1∆t otherwise;

where

p1(x) =

F1 (α0∆t + (−d + 0.5)∆y) if x = −d;
F1 (α0∆t + (x + 0.5)∆y) − F1 (α0∆t + (x − 0.5)∆y) if x = −d + 1, . . . , u − 1;
1 − F1 (α0∆t + (u − 0.5)∆y) if x = u.

We are in the position now to establish the backward procedure that allows us to evaluate contingent claims by forming
expectations of their payoffs over the grid branches.Wemodel the regime persistence or transition through the probabilities
arising frommatrix A reported in (1). Here, we illustrate the computation of the price of a European call option having payoff
at maturity (the n-th time step), in regime l = 0, 1,

cl(n, j) = max(S(0)eX(n,j)
− K , 0), with j = −nd, . . . , nu.

At node (i, j), if regime 0 is observed at time i∆t , the option price is computed by backward recursion, that is

c0(i, j) = e−r0∆t
u

x=−d

q0(x)

1 − a0,1∆t


c0(i + 1, j + x) + a0,1∆tc1(i + 1, j + x)


. (9)

Similarly it happens if regime 1 is observed at time i∆t .
The price of the corresponding American-style counterpart contracts may be easily computed by the lattice algorithm

described above by simply considering in Eq. (9) themaximum between the option continuation value and its early exercise
value.

5. Numerical results

We test the pricing model presented in Section 4 by computing the prices of European options and by proposing a
comparison with the Fourier transform method of Ramponi [12] and the explicit formulae derived in Section 3, chosen as
the benchmark. To generate numerical results, we assume Yl(k), l = 0, 1 lognormally distributed, i.e., log Yl(k) ∼ N(ηl, δl),
and set the tolerance level in Eqs. (7) and (8) to ε = 10−10.

At first, to assess the goodness of the proposed model, in Table 6 we report the prices of European call options with
maturity T = 1 year in a two-regime economy for different numbers of time steps n. The risk-free rate is r = 0.1 in both
regimes, while the high-volatility regime is characterized by σ0 = 0.6 and the low-volatility one by σ1 = 0.2. We consider
different initial values for the underlying asset, S(0), the strike price is fixed at level K = 10, and the parameters governing
the regime transition or persistence are a0,1 = a1,0 = 1 (1/year). The lognormal distribution of the jump size has mean
η0 = −0.02 and standard deviation δ0 = 0.2 in regime 0, and η1 = −0.01125 and δ1 = 0.15 in regime 1, while the jump
intensity is the same in both regimes, λ0 = λ1 = 7. In the last two columns, we report the option prices computed in both
regimes by the Ramponi’s [12] (R) method and by the explicit formula (Explicit) detailed in Section 3. The proposed formula
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Table 6
European call option prices in a two-regime economy with a0,1 = a1,0 =

1 (1/year). The table presents a comparison among the European call option
prices provided by the lattice model proposed in Section 4, for different
numbers of time steps n, and the ones generated by the Fourier transform
method proposed by Ramponi [12] (R), and by the explicit formula (Explicit)
detailed in Section 3, chosen as the benchmark. A two-regime economy is
considered and, in the first row and in the first column, we report the input
parameters.

r = 0.1, T = 1 year, K = 10, a0,1 = a1,0 = 1, λ0 = λ1 = 7

S(0) n = 1000 n = 2000 R Explicit

High-volatility regime
σ0 = 0.6, η0 = −0.02, δ0 = 0.2

6 0.8772 0.8797 0.8826 0.8742
8 1.8523 1.8569 1.8613 1.8542

10 3.1157 3.1216 3.1277 3.1199
12 4.5876 4.5951 4.6028 4.5925
14 6.2055 6.2148 6.2239 6.2108

Low-volatility regime
σ1 = 0.2, η1 = −0.01125, δ1 = 0.15

6 0.5414 0.5429 0.5447 0.5446
8 1.3670 1.3705 1.3738 1.3737

10 2.5686 2.5733 2.5784 2.5783
12 4.0464 4.0529 4.0597 4.0596
14 5.7066 5.7151 5.7234 5.7234

is implemented in such a way that all the summations involving the probability function of a Poisson random variable, say
N , are truncated so that the upper limit of the summation is n∗

= inf{n ∈ N|FN(n) ≥ 1 − ϵ}, with ϵ = 10−10. It is worth
noting that in all the examined cases, the prices computed by the discrete timemodel are close to the benchmark, while the
option values obtained by the Ramponi method seem to be less accurate especially in the high-volatility regime and when
the option is deep-out-of-the-money.

To complete the numerical treatment of the pricing problem, in Table 7weprovide also the prices of American put options
and, for comparison, we report the prices of the European counterpart of the contract with the corresponding benchmark. In
detail, in Table 7, we present the results for European and American put options with maturity T = 1 year in a two-regime
economy for different numbers of time stepsn. The risk-free rate is r = 0.08 in both regimes,while the high-volatility regime
is characterized by σ0 = 0.3 and the low-volatility one by σ1 = 0.1. We consider different initial values for the strike price,
K , the underlying asset has initial value S(0) = 40, and the parameters governing the regime transition or persistence are
a0,1 = a1,0 = 0.5 (1/year). The lognormal distribution of the jump size has the same mean η0 = η1 = −0.025, the
same standard deviation δ0 = δ1 =

√
0.05, and the same jump intensity λ0 = λ1 = 5 in both regimes. Again, in the last

two columns, we report the option prices computed in both regimes by the Ramponi’s [12] (R) method and by the explicit
formula (Explicit) for the European case detailed in Section 3. In all the examined cases, as expected, the American put prices
are greater than the corresponding European ones, which once again are accurate with respect to the prices computed using
the explicit formula.

In order to show the numerical behavior of the option prices provided by the proposed multinomial approach, we study
the values of European andAmerican options in a regime switchingmodelwith andwithout jumps. For each case,weprovide
a numerical analysis showing the pattern followed by option prices when increasing the number of time steps in the lattice.
In Table 8,we show thepattern followedby the at-the-moneyEuropean call optionprices reported in Table 6,while in Table 9
we consider the at-the-money American put option reported in Table 7. ‘‘Difference’’ stays for the difference between two
consecutive option prices, while ‘‘Ratio’’ stays for the ratio between two consecutive differences. It is worth evidencing that,
in both the cases, the ratios are closed to 0.5 even if they are different on the two regimes due to the approximation errors,
which differ in each regime. Furthermore, the absolute value of the differences decreases and the changes in option prices
is close to zero as the number of time steps is doubled.

To assess further the goodness of the proposed multinomial approach, in Tables 10 and 11, we provide a comparison
among our model (Jump), our model without jumps (No Jump), and the Yuen–Yang [13] (YY) model that evaluates options
under regime-switching. In Table 10,we show the price of an at-the-money European call option and, in Table 11, the price of
an at-the-money American put option both with maturity T = 1 year in a two-regime economywhen doubling the number
of time steps n. The risk-free rate is r0 = 0.06 in regime 0 and r1 = 0.04 in regime 1, while the high-volatility regime is
characterized by σ0 = 0.35 and the low-volatility one by σ1 = 0.25. The underlying asset is fixed at S(0) = 100, the strike
price is fixed at level K = 100, and the parameters governing the regime transition or persistence are a0,1 = a1,0 = 0.5
(1/year). The lognormal distribution of the jump size has mean η0 = η1 = −0.025, standard deviation δ0 = δ1 =

√
0.05,

and the jump intensity is λ0 = λ1 = 7 in both regimes. From both the tables, it is evident that our model without jumps
provides option prices very close to the YY ones in both regimes.
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Table 7
European and American put option prices in a two-regime economy with a0,1 =

a1,0 = 0.5 (1/year). The table presents a comparison among the European
and American put option prices provided by the lattice model proposed in
Section 4, for different numbers of time steps n, and the ones generated by
the Fourier transform method proposed by Ramponi [12] (R), and by the
explicit formula (Explicit) detailed in Section 3, chosen as the benchmark.
A two-regime economy is considered and, in the first row and in the first
column, we report the input parameters.

r = 0.08, T = 1 year, S(0) = 40, a0,1 = a1,0 = 0.5,
η0 = η1 = −0.025, δ0 = δ1 =

√
0.05, λ0 = λ1 = 5

K Type n = 1000 n = 2000 R Explicit

High-volatility regime: σ0 = 0.3

30 European 2.8518 2.8522 2.8529 2.8526
American 2.9571 2.9577

35 European 4.7070 4.7072 4.7077 4.7074
American 4.9081 4.9086

40 European 7.0365 7.0369 7.0372 7.0369
American 7.3803 7.3810

45 European 9.7876 9.7874 9.7877 9.7873
American 10.3287 10.3290

50 European 12.8957 12.8952 12.8952 12.8948
American 13.6944 13.6946

Low-volatility regime: σ1 = 0.1

30 European 2.3830 2.3825 2.3821 2.3819
American 2.4707 2.4703

35 European 4.0937 4.0926 4.0918 4.0915
American 4.2690 4.2682

40 European 6.3189 6.3177 6.3165 6.3162
American 6.6312 6.6304

45 European 9.0173 9.0155 9.0141 9.0137
American 9.5273 9.5259

50 European 12.1198 12.1175 12.1158 12.1154
American 12.8968 12.8953

Table 8
Convergence analysis for the at-the-money European
call option in Table 6. The table presents the pattern
followed by the at-the-money European call option in
Table 6 when doubling the number of time steps n.

S(0) = 10, r = 0.1, T = 1 year, K = 10,
a0,1 = a1,0 = 1, λ0 = λ1 = 7

n Price Difference Ratio

High-volatility regime
σ0 = 0.6, η0 = −0.02, δ0 = 0.2

40 2.9324 0.0919 0.5783
80 3.0244 0.0532 0.4520

160 3.0775 0.0240 0.5539
320 3.1016 0.0133 0.4712
640 3.1149 0.0063 0.5310

1280 3.1212 0.0033
2560 3.1245

Low-volatility regime
σ1 = 0.2, η1 = −0.01125, δ1 = 0.15

40 2.4370 0.0635 0.6453
80 2.5006 0.0410 0.4158

160 2.5416 0.0170 0.5999
320 2.5586 0.0102 0.4496
640 2.5688 0.0046 0.5560

1280 2.5734 0.0026
2560 2.5760

Finally, in Table 12, we apply our model to a down-and-out European call option with barrier level at H = 90. The
parameters are set as follows: S(0) = 100, K = 100, T = 1 year, the risk-free rate is r0 = 0.06 in regime 0 and r1 = 0.04 in
regime 1, the high-volatility regime is characterized by σ0 = 0.35 and the low-volatility one by σ1 = 0.25, the parameters



M. Costabile et al. / Journal of Computational and Applied Mathematics 256 (2014) 152–167 163

Table 9
Convergence analysis for the at-the-money American
put option in Table 7. The table presents the pattern
followed by the at-the-money American option in
Table 7 when doubling the number of time steps n.

S(0) = 40, r = 0.08, T = 1 year,
K = 40, a0,1 = a1,0 = 0.5, λ0 = λ1 = 5,
η0 = η1 = −0.025, δ0 = δ1 =

√
0.05

n Price Difference Ratio

High-volatility regime
σ0 = 0.3

40 7.3780 −0.0138 0.3550
80 7.3642 −0.0049 0.5181

160 7.3593 −0.0025 0.5809
320 7.3567 −0.0015 0.5544
640 7.3553 −0.0008 0.5695

1280 7.3544 −0.0005
2560 7.3540

Low-volatility regime
σ1 = 0.1

40 6.7303 −0.0559 0.4530
80 6.6744 −0.0253 0.4994

160 6.6490 −0.0127 0.5164
320 6.6364 −0.0065 0.5128
640 6.6298 −0.0034 0.5191

1280 6.6265 −0.0017
2560 6.6248

Table 10
Comparison for an at-the-money European call option of the multinomial
approach with no jump models. The table presents the pattern followed
by an at-the-money European call option when doubling the number of
time steps n and provides a comparison among the multinomial approach
with (Jump) and without jumps (No Jump), and the Yuen–Yang’s [13] (YY)
model.

S(0) = 100, T = 1 year, K = 100, a0,1 = a1,0 = 0.5,
λ0 = λ1 = 5, η0 = η1 = −0.025, δ0 = δ1 =

√
0.05

n Jump No Jump YY

High-volatility regime
r0 = 0.06, σ0 = 0.35

40 24.7370 15.7541 15.7603
80 25.1236 15.7611 15.7627

160 25.3196 15.7643 15.7640
320 25.4183 15.7658 15.7646
640 25.4677 15.7664 15.7650

1280 25.4924 15.7666 15.7651
2560 25.5047 15.7666 15.7652

Low-volatility regime
r0 = 0.04, σ0 = 0.25

40 23.2022 12.7075 12.6936
80 23.4744 12.7363 12.7260

160 23.6136 12.7502 12.7422
320 23.6840 12.7569 12.7503
640 23.7193 12.7601 12.7543

1280 23.7369 12.7616 12.7563
2560 23.7457 12.7622 12.7573

governing the regime transition or persistence are a0,1 = a1,0 = 0.5 (1/year), the lognormal distribution of the jump size has
mean η0 = −0.02 and standard deviation δ0 = 0.2 in regime 0, andmean η1 = −0.01125 and standard deviation δ1 = 0.15
in regime 1, while the jump intensity is λ0 = λ1 = 5 in both regimes. To obtain unbiased option values in the presence
of the barrier, we need a layer of lattice nodes such that the barrier is hit exactly. This aspect may not be achieved using
the discretization proposed in Section 4 due to the presence of the drift in the discrete values considered for the underlying
asset. Nevertheless, the discretization may be easily adjusted to satisfy the requirement. Indeed, referring to the considered



164 M. Costabile et al. / Journal of Computational and Applied Mathematics 256 (2014) 152–167

Table 11
Comparison for an at-the-money American put option of the multinomial
approach with no jump models. The table presents the pattern followed
by an at-the-money American put option when doubling the number of
time steps n, and provides a comparison among the multinomial approach
with (Jump) and without jumps (No Jump), and the Yuen–Yang’s [13] (YY)
model.

S(0) = 100, T = 1 year, K = 100, a0,1 = a1,0 = 0.5,
λ0 = λ1 = 5, η0 = η1 = −0.025, δ0 = δ1 =

√
0.05

n Jump No Jump YY

High-volatility regime
r0 = 0.06, σ0 = 0.35

40 20.3627 10.8905 10.8949
80 20.4394 10.8954 10.8967

160 20.4756 10.8969 10.8969
320 20.4932 10.8975 10.8970
640 20.5018 10.8976 10.8970

1280 20.5061 10.8976 10.8970
2560 20.5081 10.8976 10.8970

Low-volatility regime
r0 = 0.04, σ0 = 0.25

40 19.7969 8.8634 8.8555
80 19.8262 8.8880 8.8823

160 19.8394 8.8997 8.8953
320 19.8455 8.9052 8.9016
640 19.8484 8.9076 8.9047

1280 19.8498 8.9090 8.9063
2560 19.8504 8.9095 8.9070

Table 12
Convergence analysis for an at-the-money down-and-out barrier European call option in
presence of jumps, and comparison between the proposed approach without jumps and the YY
model. The table presents the pattern followed by an at-the-money down-and-out barrier
European call option in the presence of jumps when doubling the number of time steps
n, and provides a comparison between the proposed approach without jumps and the
Yuen–Yang’s [13] (YY) model.

S(0) = 100, T = 1 year, K = 100,H = 90, a0,1 = a1,0 = 0.5, λ0 = λ1 = 5

n Jump Difference Ratio No Jump YY

High-volatility regime
r0 = 0.06, σ0 = 0.35, η0 = −0.02, δ0 = 0.2

40 12.4078 0.3535 0.2586 9.6719 9.7118
80 12.7613 0.0914 0.5120 9.6993 9.7104

160 12.8527 0.0468 0.3611 9.6998 9.7036
320 12.8995 0.0169 0.5207 9.7001 9.7010
640 12.9164 0.0088 0.5227 9.6994 9.7002

1280 12.9252 0.0046 9.6991 9.6991
2560 12.9298 9.6990 9.6990

Low-volatility regime
r1 = 0.04, σ1 = 0.25, η1 = −0.01125, δ1 = 0.15

40 11.1326 0.4002 0.2541 8.8956 8.9662
80 11.5328 0.1017 0.5152 8.9588 8.9748

160 11.6345 0.0524 0.3454 8.9656 8.9706
320 11.6869 0.0181 0.5193 8.9691 8.9701
640 11.7050 0.0094 0.5213 8.9693 8.9703

1280 11.7144 0.0049 8.9695 8.9693
2560 11.7193 8.9696 8.9696

case of a down-and-out European call optionwith knock-out barrierH , the value assumed by the logarithm of the asset price
return at each node (i, j) of the grid at the i-th time step is now computed as X(i, j) = ijω∆y, i = 0, . . . , n; j = −d, . . . , u,
where ∆y = σ0

√
∆t and ω is a convenient parameter chosen as in Ritchken [16]. Let h be the number of consecutive down

moves leading to the lowest layer of nodes above the barrier H , that is the largest integer smaller than η =
log(S/H)

∆y . If η is
an integer, ω assumes value one. On the contrary, if η is not an integer, ω is chosen so that η = hω. With this construction,
a layer of nodes of the multinomial tree coincides with the barrier H . It is worth noting that starting from a generic node
(i, j) where regime 0 is observed, to guarantee that the discrete approximating process has the same local mean and the
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same local variance of the diffusion component in the continuous process, πu
0 =

1
2ω2 +

α0
√
t

2ωσ0
is the transition probability

assigned to X(i + 1, j + 1) = (j + 1)ω∆y, πm
0 = 1 −

1
ω2 is the transition probability assigned to X(i + 1, j) = jω∆y, and

πd
0 =

1
2ω2 −

α0
√
t

2ωσ0
is the transition probability assigned to X(i + 1, j − 1) = (j − 1)ω∆y. The probabilities when regime 1 is

observed are computed following the lines in Section 4 taking into account the different discretization described above.
In order to show the behavior of the prices provided by the multinomial approach in the case of barrier option, in

Table 12, we report the pattern followed by option prices when increasing the number of time steps in the lattice. It is
worth evidencing that the ratios are close to 0.5, and that the absolute value of the differences decreases and the changes
in option prices is close to zero as the number of time steps is doubled. We provide also a comparison among our model
without jumps and the Yuen–Yang’s [13] model, which evidences that the two models provide very closed values in both
regimes even in the presence of the barrier.

6. Conclusions

We have proposed an explicit formula and a more general multinomial approach for pricing contingent claims when the
underlying asset process follows a regime-switching jump–diffusion model. The choice of this framework is supported by
an econometric analysis based on daily equity index data. The explicit formula allows to compute European option prices in
the case of a two-regime economywith lognormal jumps characterized by the same risk-free rate in both regimes, while the
discrete timemodel has thenice feature to accommodate an arbitrary number of regimes andgeneric jump size distributions.
In the latter approach, all regime share the same lattice nodes and only branching probabilities are separately adjusted in
order to match the first two order moments of the continuous time distribution in each regime. Using a backward induction
scheme, the model allows to compute the price of both European and American-style contingent claims.

To support the model, we have provided some numerical examples showing that the proposed algorithm computes
accurate values in comparison to the benchmark.

As future research, we plan to extend both the explicit formula by considering alternative underlying asset processes.
For instance, the proposed formula may be easily adapted to all those cases in which the derivatives prices conditional to
the occupation time in one of the two regimes is available in explicit form. Further researches will address the extension of
the multinomial approach for pricing path-dependent derivatives, like lookback or Asian options.

Appendix

Preliminary results
Here, we report some preliminary results useful to prove Propositions 1 and 2. Defining Π(y) = (y − K)+ with K > 0

and being X ∼ N(A, B), we recall that for any r, T , S(0) > 0,

E

e−rTΠ(eX+log S(0))


= e−rT S(0)eA+B2/2Φ(d1(A, B)) − Ke−rTΦ(d2(A, B)), (A.1)

with

d1(A, B) =
log(S(0)/K) + A + B2

B
, d2(A, B) =

log(S(0)/K) + A
B

= d1(A, B) − B.

Suppose, instead, that

X(T ) = log(S(T )/S(0)) = (r − σ 2/2 − λm)T + σ
√
TZ +

N
k=1

log Y (k),

with Z ∼ N(0, 1),N ∼ Poiss(λT ), log Y (k) ∼ N(η, δ), and m = exp(η + δ2/2) − 1. Then,

X(T )|N = n ∼ N(An, Bn),

with

An = (r − σ 2/2 − λm)T + nη,

Bn =


σ 2T + nδ2,

and

E[e−rTΠ(eX(T )+log S(0))|N = n] = C(S(0), K , T , r, An, Bn). (A.2)

Eq. (A.2) can be also expressed as

E[e−rTΠ(eX(T )+log S(0))|N = n] = CBS(Sn, K , T , r, σn),
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where

Sn = S(0) exp[(η + δ2/2)n − λmT ] = S(0) exp[An + B2
n/2 − rT ],

σn =


σ 2 + nδ2/T = Bn/

√
T ,

and CBS(S, K , T , r, σ ) is the usual Black–Scholes formula with risk-free r , for a call with time to maturity T , strike K , written
on a stock with price S and volatility σ . Hence,

E

e−rTΠ(eX(T )+log S(0))


=

∞
n=0

CBS(Sn, K , T , r, σn)pN(n). (A.3)

We remark that (A.3) is the usual Merton formula. �

Proof of Proposition 1. Considering a two-regime economy characterized by a constant risk-free rate, r , log-returns in (3)
may be represented (cfr., Proposition 2.1 in [12]) as

X(T ) = log
S(T )

S(0)
=


r −

1
2
σ 2
0 − λ0m0


T0 + σ0


T0Z0 +

N(T0)
k=1

log Y0(k)

+


r −

1
2
σ 2
1 − λ1m1


T1 + σ1


T1Z1 +

N(T1)
k=1

log Y1(k),

where T0 denotes the occupation time of the first of the two states of the Markov chain, T1 = T − T0, Z0 and Z1 are i.i.d
N(0, 1),N(Tl) ∼ Poiss(λlTl), and log Yl(k) ∼ N(ηl, δl) with l = 0, 1. Consequently,

X(T )|T0 = t, N(T0) = n, N(T1) = m ∼ N(An,m(t), Bn,m(t)).

The results follow from

c(0|ϵ(0) = 0) =

 T

0

∞
n=0

∞
m=0

E[e−rT (eX(T )+log S(0)
− K)+|T0 = t,N(T0) = n,N(T1) = m]

× pN(T0)(n|T0 = t, ϵ(0) = 0)pN(T1)(m|T0 = t, ϵ(0) = 0)fT0(t|ϵ(0) = 0)dt,

and (A.1). �

Proof of Proposition 2. In this case,

X(T ) = log(S(T )/S(0)) = (−σ 2
0 /2)T0 + σ0


T0Z0 + (−σ 2

1 /2)(T1) + σ1


T1Z1 + (r − λm)T +

N(T0)+N(T1)
k=1

log Y (k),

where log Yk ∼ N(η, δ). Hence,

X(T ) = log(S(T )/S(0)) = (−σ 2
0 /2)T0 + σ0


T0Z0 + (−σ 2

1 /2)(T1) + σ1


T1Z1 + (r − λm)T +

N
k=1

log Yk,

where N ∼ Poiss(λT ). Consequently,

X(T )|T0 = t,N = n ∼ N(An(t), Bn(t)),

with

An(t) = (r − λm)T + (−σ 2
0 /2)t + (−σ 2

1 /2)(T − t) + nη,

Bn(t) =


σ 2
0 t + σ 2

1 (T − t) + nδ2.

The desired results follow from (A.3) reported in the Appendix.
An alternative proof is based on the fact that Proposition 2 can be obtained as a particular case of Proposition 1. We note

that when λ0 = λ1 = λ, η0 = η1 = η, δ0 = δ1 = δ,

An,m(t) = An+m(t) and Bn,m(t) = Bn+m(t).

Denoting by p(m; λ) the probability function of a Poisson randomvariablewith intensityλ evaluated at pointm, the quantity
inside the integral of Proposition 1 can be written as

∞
h=0

h
m=0

C(S(0), K , T , r, Ah−m,m(t), Bh−m,m(t))p(h − m; λt)p(m; λ(T − t))



M. Costabile et al. / Journal of Computational and Applied Mathematics 256 (2014) 152–167 167

=

∞
h=0

h
m=0

C(S(0), K , T , r, Ah(t), Bh(t))p(h − m; λt)p(m; λ(T − t))

=

∞
h=0

C(S(0), K , T , r, Ah(t), Bh(t))
h

m=0

p(h − m; λt)p(m; λ(T − t))

=

∞
h=0

C(S(0), K , T , r, Ah(t), Bh(t))p(h; λT ),

where the last equality follows from the convolution formula and from the fact that the sum of two independently
distributed Poisson random variables is Poisson with intensity given by the sum of the intensities of the Poisson random
variables. �
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