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A new weak Galerkin finite element scheme for general

second-order elliptic problems

Guanrong Li† Yanping Chen∗ Yunqing Huang‡

Abstract: A new weak Galerkin(WG) finite element scheme is presented for general second-
order elliptic problems in this paper. In this new scheme, a skew symmetric form has been used
for handling the convection term. The advantage of the new scheme is that the system of linear
equations from the scheme is positive definite and one might easily get the well-postedness of
the system. In this scheme, the WG elements are designed to have the form of (Pk(T ), Pk−1(e)).
That is, we choose the polynomials of degree k ≥ 1 on each element and the polynomials
of degree k − 1 on the edge/face of each element. As a result, fewer degrees of freedom are
generated in the new WG finite element scheme. It is also worth pointing out that the WG
finite element scheme is established on finite element partitions consisting of arbitrary shape
of polygons/polyhedra which are shape regular. Optimal-order error estimates are presented
for the corresponding numerical approximation in various norms. Some numerical results are
reported to confirm the theory.

Key words: weak Galerkin, finite element methods, discrete gradient, general second-order
elliptic problems

AMS Subject Classification: Primary, 65N15, 65N30; Secondary, 35J50.

1 Introduction

The weak Galerkin (WG) finite element method is a newly developed and efficient numerical
technique for solving partial differential equations. The central idea of the WG finite element
method is to interpret partial differential operators as generalized distributions, called weak dif-
ferential operators, over the space of discontinuous functions including boundary information.
Since its contribution, the WG finite element method has been applied successfully to the dis-
cretization of several classes of partial differential equations, e.g., (general)second-order elliptic
problems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], the Biharmonic equations [11, 12, 13, 14], the Stokes
equations [15, 16, 17], the Helmholtz equations [18, 19] and the Oseen equations [20].

In this paper, we are concerned with the WG finite element method for general second-order
elliptic problems which seeks an unknown function u = u(xxx) satisfying

−∇ · (A∇u) +∇ · (bbbu) + cu = f in Ω, (1.1)

u = g on ∂Ω, (1.2)
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where Ω is a polygonal/plolyhedral domain in Rd(d = 2, 3), A = (aij(xxx)) ∈ [L∞(Ω)]d
2

is a
symmetric matrix-valued function, bbb = (bi(xxx))d×1 ∈ [L∞(Ω)]d is a vector-valued function, and
c = c(xxx) ∈ L∞(Ω) is a scalar function on Ω. Assume that the matrix A satisfies the following
property: there exists a constant λ > 0 such that

ξtAξ ≥ λξtξ, ∀ξ ∈ Rd,

where ξ is understood as a column vector and ξt is the transpose of ξ.

A natural variational formulation for the problem (1.1)-(1.2) is to seek u ∈ H1(Ω) such that
u = g on ∂Ω and

(A∇u,∇v)− (bbbu,∇v) + (cu, v) = (f, v), ∀v ∈ H1
0 (Ω). (1.3)

Based on the formulation (1.3), one may design various conforming and non-conforming finite
element schemes for the problem (1.1)-(1.2). In [1], a WG finite element scheme was designed
for the problem (1.1)-(1.2) by replacing the gradient operator with weak gradient operator
in formulation (1.3). For (general) second-order elliptic problems, the weak function has the
form of v = {v0, vb} with v = v0 inside of each element and v = vb on the boundary of the
element. In the WG finite element method, both v0 and vb can be correspondingly approximated
by polynomials in Pl(T ) and Ps(e), and the weak gradient operators can be approximated in
the polynomial space [Pm(T )]d, where l, s,m are non-negative integers with possibly different
values, T stands for an element and e stands for the edge/face of T . Various combinations
of (Pl(T ), Ps(e), [Pm(T )]d) lead to different class of WG methods tailored for specific partial
differential equations. In [1], the WG finite element space was established arising from BDM
element or RT element. More specifically, one takes the combination (Pk−1(T ), Pk(e), [Pk(T )]d)
for BDM element and (Pk−1(T ), Pk−1(e), [Pk−1(T )]d + P̂k−1(T )xxx) for RT element, where xxx is a
column vector and P̂k−1(T ) is the set of homogeneous polynomials of order k− 1 in the variable
xxx. Due to the use of the BDM element and RT element, the WG finite element formulation in
[1] was limited to classical finite element partitions of triangles (d = 2) or tetrahedra (d = 3).

In [3], a WG scheme was established by using the configuration of (Pk(T ), Pk−1(e), [Pk−1(T )]d).
With a suitable stabilization operator, the WG scheme can be applied on general polytopal
meshes. In order to get the well-postedness, the method in [3] needed the WG formulation to be
positive definite. Since the system of linear equations from variational formulation (1.3) is non-
positive definite, we introduce a new variational form for (1.1)-(1.2) as follows: seek u ∈ H1(Ω)
such that u = g on ∂Ω and

(A∇u,∇v) +
1

2
(bbb · ∇u, v)− 1

2
(bbb · ∇v, u) + (c0u, v) = (f, v), ∀v ∈ H1

0 (Ω). (1.4)

Here c0 = 1
2(∇ · b) + c and we always suppose c0 ≥ 0 for all x ∈ Ω. It is easy to check

that the system of linear equations from (1.4) is positive definite. Based on the variational
formulation (1.4), we can describe a new WG finite element scheme for the problem (1.1)-(1.2).
The advantage of the new scheme is that the system of linear equations from the scheme is
positive definite and one might easily get the well-postedness of the system. The new WG
method can be applied on general polytopal meshes. The goal of the paper is to specify all the
details for the new WG finite element scheme, and further justify the rigorousness of the method
by establishing a mathematical convergence theory.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries
and notations for Sobolev spaces. In Section 3, we define some weak differential operators and
the corresponding discrete weak differential operators. In Section 4, we establish a new WG finite
element scheme for the problem (1.1)-(1.2). In Section 5, we present some technical estimates
which are useful for the error analysis. In Section 6, we derive optimal-order error estimates for
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WG approximation in both H1 and L2 norms. In Section 7, we present some numerical results
which confirm the theory developed in earlier sections. In Section 8, we show our discussion on
convection-dominated problems. Finally, conclusions are drawn in Section 9.

2 Preliminaries and notations

Let K be any domain in Rd, d = 2, 3. We use the standard definition for the Sobolev space
Hs(K) and their associated inner products (·, ·)s,K , norms ‖ · ‖s,K , and seminorms | · |s,K for any
s ≥ 0. For instance, for any integer s ≥ 0, the seminorm | · |s,K is defined by

|v|s,K =

( ∑

|α|=s

∫

K
|∂αv|2dK

)1/2

with the usual notation

α = (α1, · · ·, αd), |α| = α1 + · · ·+ αd, ∂
α = Πd

j=1∂
αj
xj .

The Sobolev norm ‖ · ‖m,K is given by

‖v‖m,K =

( m∑

j=0

|v|2j,K
)1/2

.

The space H0(K) coincides with L2(K), for which norm and inner product are denoted by
‖ · ‖K and (·, ·)K , respectively. If K = Ω, we shall drop the subscript K in the L2 norm and the
L2 inner product notations.

The space H(div;K) is given by the set of vector-valued functions on K which, together with
their divergence, are square integrable, i.e.,

H(div;K) = {vvv : vvv ∈ [L2(K)]d,∇ · vvv ∈ L2(K)}.

The norm in H(div;K) is defined as

‖vvv‖H(div;K) =
(
‖vvv‖2K + ‖∇ · vvv‖2K

)1/2
.

3 Weak differential operators

The goal of this section is to introduce the weak gradient operator and the weak convective oper-
ator defined on a space of weak functions. These weak differential operators will be employed to
discretize general second-order elliptic problems. To this end, let K be any polygonal/polyhedral
domain with boundary ∂K. A weak function on the region K refers to a function v = {v0, vb}
such that v0 ∈ L2(K) and vb ∈ H

1
2 (∂K). The first component v0 can be understood as the

value of v inside K, and the second component vb represents v on the boundary of K. Note that
vb may not necessarily be related to the trace of v0 on ∂K. Denote by W (K) the space of weak
functions on K, i.e.,

W (K) = {v = {v0, vb} : v0 ∈ L2(K), vb ∈ H
1
2 (∂K)}.

Define (v, w)K =
∫
K vwdx and 〈v, w〉γ =

∫
γ vwds. The weak gradient operator, as was intro-

duced in [1], is defined as follows.

3



Definition 3.1 ([1]) The dual of L2(K) can be identified with itself by using the standard L2

inner product as the action of linear functionals. With a similar interpretation, for any v ∈
W (K), the weak gradient of v = {v0, vb} is defined as a linear functional ∇wv in the dual space
of H(div,K) whose action on each qqq ∈ H(div,K) is given by

(∇wv,qqq)K = −(v0,∇ · qqq)K + 〈vb, qqq ·nnn〉∂K , (3.1)

where nnn is the outward normal direction to ∂K, (v0,∇ · qqq)K =
∫
K v0(∇ · qqq)dK is the action of

v0 on ∇ · qqq, and 〈vb, qqq ·nnn〉∂K is the action of qqq ·nnn on vb ∈ H
1
2 (∂K).

Consider the inclusion map iw : H1(K)→W (K) defined as follows

iw(φ) = {φ|K , φ|∂K}, φ ∈ H1(K),

by which the Sobolev space H1(K) is embedded into the space W (K). With the help of the
inclusion map iw, the Sobolev space H1(K) can be viewed as a subspace of W (K) by identifying
each φ ∈ H1(K) with iw(φ). For smooth function v ∈ H1(K), it is not hard to see that the
weak gradient is identical with the strong gradient (i.e.,∇wv = ∇v).

Let bbb ∈ H(div,K). For any v ∈W (K), we define by bbb · ∇wv the weak convective operator of
v = {v0, vb}. By (3.1), we can derive

(bbb · ∇wv, φ)K = −(bbb · ∇φ, v0)K − ((∇ · bbb)φ, v0) + 〈bbb ·nnn, vbφ〉∂K , ∀φ ∈ H1(K). (3.2)

In fact,

(bbb · ∇wv, φ)K = (∇wv, bbbφ) = −(v0,∇ · (bbbφ))K + 〈vb, (bbbφ) ·nnn〉∂K
= −(bbb · ∇φ, v0)K − ((∇ · bbb)φ, v0) + 〈bbb ·nnn, vbφ〉∂K ,

which implies (3.2).

Denote by Pr(K) the set of polynomials on K with degree no more than r. We can define a
discrete weak gradient operator by approximating ∇w in a polynomial subspace of the dual of
H(div,K).

Definition 3.2 ([1]) The discrete weak gradient operator, denoted by ∇w,r,K , is defined as the
unique polynomial ∇w,r,Kv ∈ [Pr(K)]d satisfying the following equation

(∇w,r,Kv,qqq)K = −(v0,∇ · qqq)K + 〈vb, qqq ·nnn〉∂K , ∀qqq ∈ [Pr(K)]d. (3.3)

By applying the usual integration by part to the first term on the right hand side of (3.3), we
can rewrite the equation (3.3) as

(∇w,r,Kv,qqq)K = (∇v0, qqq)K + 〈vb − v0, qqq ·nnn〉∂K , ∀qqq ∈ [Pr(K)]d. (3.4)

Similarly, we can define a discrete weak convective operator as follows by approximating bbb·∇w
in a polynomial subspace of the dual of H1(K).

Definition 3.3 The discrete weak convective operator, denoted by bbb · ∇w,r,K , is defined as the
unique polynomial bbb · ∇w,r,Kv ∈ Pr(K) satisfying the following equation

(bbb · ∇w,r,Kv, φ)K = −(bbb · ∇φ, v0)K − ((∇ · bbb)φ, v0) + 〈bbb ·nnn, vbφ〉∂K , ∀φ ∈ Pr(K). (3.5)
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4 Weak Galerkin finite element schemes

The aim of this section is to establish a new WG finite element scheme for the problem (1.1)-
(1.2) and further derive some characterizations of the WG finite element scheme. To this end,
we give the corresponding variational form of the problem (1.1)-(1.2) by seeking u ∈ H1(Ω)
satisfying u|∂Ω = g and

(A∇u,∇v) + (∇ · (bbbu), v) + (cu, v) = (f, v), ∀v ∈ H1
0 (Ω), (4.1)

where H1
0 (Ω) is the subspace of H1(Ω) consisting of functions with vanishing value on ∂Ω. In

fact, for v ∈ H1
0 (Ω), we can get

(∇ · (bbbu), v) = ((∇ · bbb)u, v) + (bbb · ∇u, v)

=
1

2
((∇ · bbb)u, v) + (bbb · ∇u, v) +

1

2
((∇ · bbb)u, v)

= −1

2
(bbb,∇(uv)) + (bbb · ∇u, v) +

1

2
((∇ · bbb)u, v)

=
1

2
(bbb · ∇u, v)− 1

2
(bbb · ∇v, u) +

1

2
((∇ · bbb)u, v). (4.2)

Therefore, by (4.1) and (4.2), we obtain a new variational form of the problem (1.1)-(1.2) as
follows

(A∇u,∇v) +
1

2
(bbb · ∇u, v)− 1

2
(bbb · ∇v, u) + (c0u, v) = (f, v), v ∈ H1

0 (Ω), (4.3)

where c0 = 1
2(∇ · bbb) + c. Note that (4.3) will be used to establish the WG finite element

formulation. In the rest of the paper, we always suppose that c0 ≥ 0 for all x ∈ Ω.

Let Th be a partition of the domain Ω into polygons in 2D or polyhedra in 3D. Assume that
Th is shape regular in the sense as defined in [2]. Denote by Eh the set of all edges or flat faces
in Th, and let E0

h = Eh\∂Ω be the set of all interior edges or flat faces. For every element T ∈ Th,
we denote by hT its diameter and mesh size h = maxT∈Eh

hT for Th.

For a given integer k ≥ 1, let Vh be the weak Galerkin finite element space associated with
Th defined by

Vh = {v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk−1(e), e ∈ ∂T, T ∈ Th}.

We would like to emphasize that any function v ∈ Vh has a single value vb on each edge e ∈ Eh.
Denote by V 0

h the subspace of Vh with vanishing boundary values on ∂Ω, i.e.,

V 0
h = {v = {v0, vb} ∈ Vh, vb|∂T∩∂Ω = 0, ∀T ∈ Th}.

For each element T ∈ Th, denote by Q0 the L2 projection from L2(T ) onto Pk(T ) and by Qb
the L2 projection operator from L2(e) onto Pk−1(e). Denote by Qh the L2 projection onto the
local discrete gradient space [Pk−1(T )]d. For any v ∈ H1(Ω), we define the projection operator
Qh : H1(Ω)→ Vh such that for each element T ∈ Th, we have

Qhv = {Q0v0, Qbvb}, {v0, vb} = iw(v) ∈W (T ).

Denote by ∇w,k−1 the discrete weak gradient operator on the finite element space Vh computed
by using(3.3) on each element T , i.e.,

(∇w,k−1v)|T = ∇w,k−1,T (v|T ), ∀v ∈ Vh.
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With an abuse of notation, from now on we shall drop the subscript k−1 in the notation ∇w,k−1

for the discrete weak gradient.

Now we introduce two forms on Vh as follows

a(v, w) = (A∇wv,∇ww) +
1

2
(bbb · ∇wv, w0)− 1

2
(bbb · ∇ww, v0) + (c0v0, w0),

s(v, w) = ρ
∑

T∈Th
h−1
T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

where c0 = 1
2(∇ · bbb) + c ≥ 0 for all x ∈ Ω, ρ can be any positive number and the usual L2 inner

product can be written locally on each element by

(A∇wv,∇ww) =
∑

T∈Th
(A∇wv,∇ww)T , (bbb · ∇wv, w0) =

∑

T∈Th
(bbb · ∇wv, w0)T ,

(bbb · ∇ww, v0) =
∑

T∈Th
(bbb · ∇ww, v0)T , (c0u0, v0) =

∑

T∈Th
(c0u0, v0)T .

In practical computation, one might set ρ = 1. Denote by as(·, ·) a stabilization of a(·, ·) given
by

as(v, w) = a(v, w) + s(v, w). (4.4)

A weak Galerkin algorithm based on the variational form (4.3) is given as follows

Algorithm 4.1 A numerical approximation for the problem (1.1)-(1.2) can be obtained by seek-
ing uh = {u0, ub} ∈ Vh satisfying both ub = Qbg on ∂Ω and the following equation

as(uh, v) = (f, v0), ∀v = {v0, vb} ∈ V 0
h . (4.5)

Note that the system (4.5) is positive definite for any parameter value of ρ > 0. Next, we
justify the well-postedness of the scheme (4.5). For any v ∈ Vh, let

|||v||| :=
√
as(v, v). (4.6)

It is not hard to see that ||| · ||| defines a seminorm in the finite element space Vh. We claim
that this seminorm becomes a full norm in the finite element space V 0

h . It suffices to check the
positivity property for ||| · |||. To this end, we need check that for v ∈ V 0

h , v = 0 if |||v||| = 0. In
fact, |||v||| = 0 implies that ∇wv = 0 on each element T and Qbv0 = vb on ∂T . It follows from
∇wv = 0 and the equation (3.4) that for any qqq ∈ [Pk−1(T )]d,

0 = (∇wv,qqq)T
= (∇v0, qqq)T − 〈v0 − vb, qqq ·nnn〉∂T
= (∇v0, qqq)T − 〈Qbv0 − vb, qqq ·nnn〉∂T
= (∇v0, qqq)T .

Letting q = ∇v0 in the equation above yields ∇v0 = 0 on T ∈ Th. Thus, v0 = const on every
T ∈ Th. This, together with the fact that Qbv0 = vb on ∂T and vb = 0 on ∂Ω, implies that
v0 = vb = 0.

Lemma 4.2 The weak Galerkin finite element scheme (4.5) has a unique solution.
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Proof. Let u
(1)
h and u

(2)
h be two solutions of (4.5). It is clear that the difference wh = u

(1)
h −u

(2)
h

is a finite element function in V 0
h satisfying

as(wh, v) = 0, ∀v ∈ V 0
h . (4.7)

By setting v = wh in (4.7) we obtain

|||wh||| = as(wh, wh) = 0.

It follows that wh ≡ 0, or equivalently u
(1)
h = u

(2)
h , which completes the proof.

5 Some technical estimates

In this section, we shall present some technical results useful for the forthcoming error analysis.
To this end, we firstly introduce the trace inequality and inverse inequality on shape regular
partitions. For more details we refer the reader to [2]. For simplicity of notation, we shall use .
denote less than or equal to up to a constant independent of the mesh size, variables, or other
parameters appearing in the inequality.

Lemma 5.1 ([2]) Let Th be a finite element partition of Ω that is shape regular. Then, there
exists a constant C such that for any T ∈ Th and edge/face e ∈ ∂T , we have

‖ϕ‖2e ≤ C(h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T ), (5.1)

where ϕ ∈ H1(T ) is any function.

Lemma 5.2 ([2]) Let Th be a finite element partition of Ω that is shape regular. Then, there
exists a constant C(n) such that

‖∇ϕ‖T ≤ C(n)h−1
T ‖ϕ‖T , ∀T ∈ Th, (5.2)

for any piecewise polynomial ϕ of degree n on Th.

We shall present a useful property which indicates the discrete weak gradient operator is good
approximation to the gradient operator in the classical sense.

Lemma 5.3 ([1]) Let Qh and Qh be the L2 projection operators defined in previous sections.
Then, on each element T ∈ Th, one has the following commutative property

∇w(Qhφ) = Qh(∇φ), ∀φ ∈ H1(T ). (5.3)

The following lemma provides some estimates for the projection operators Q0 and Qh.

Lemma 5.4 ([2, 3]) Let Th be a finite element partition of Ω that is shape regular. Then, for
any φ ∈ Hk+1(Ω), one has

∑

T∈Th
‖φ−Q0φ‖2T . h2(k+1)‖φ‖2k+1, (5.4)

∑

T∈Th
‖∇(φ−Q0φ)‖2T . h2k‖φ‖2k+1, (5.5)

∑

T∈Th
‖A(∇φ−Qh(∇φ))‖2T . h2k‖φ‖2k+1, (5.6)

∑

T∈Th

(
‖φ−Q0φ‖2T + h2

T ‖∇(φ−Q0φ)‖2T
)

. h2(k+1)‖φ‖2k+1. (5.7)
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By using the trace inequality (5.1) and Lemma 5.4, one can obtain the following lemma.

Lemma 5.5 Let Th be a finite element partition of Ω that is shape regular. Then, for any
φ ∈ Hk+1(Ω), one obtains

∑

T∈Th
‖φ−Q0φ‖2∂T . h2k+1‖φ‖2k+1. (5.8)

Proof. According to the trace inequality (5.1) and Lemma 5.4, we have
∑

T∈Th
‖φ−Q0φ‖2∂T .

∑

T∈Th

(
h−1
T ‖φ−Q0φ‖2T + hT ‖∇(φ−Q0φ)‖2T

)

= h−1
T

∑

T∈Th

(
‖φ−Q0φ‖2T + h2

T ‖∇(φ−Q0φ)‖2T
)

. h2k+1‖φ‖2k+1,

which finishes the proof.

In the finite element space Vh, we define a discrete H1 seminorm by

‖v‖1,h =

( ∑

T∈Th
(‖∇v0‖2T + h−1

T ‖Qbv0 − vb‖2∂T
)1/2

. (5.9)

Lemma 5.6 For any v = {v0, vb} ∈ Vh, we have

‖v‖1,h . |||v|||. (5.10)

Proof. For any v = {v0, vb} ∈ Vh, it follows from (3.4) and the definition of Qb that

(∇wv,qqq)T = (∇v0, qqq)T + 〈vb −Qbv0, qqq · n〉∂T , ∀qqq ∈ [Pk−1(T )]d. (5.11)

By setting qqq = ∇v0 in (5.11), we obtain

(∇wv,∇v0)T = (∇v0,∇v0)T + 〈vb −Qbv0,∇v0 ·nnn〉∂T .

By the trace inequality (5.1) and inverse inequality (5.2), we have

‖∇v0‖2T . ‖∇wv‖T ‖∇v0‖T + h
−1/2
T ‖vb −Qbv0‖∂T ‖∇v0‖T .

Thus,

‖∇v0‖T . ‖∇wv‖T + h
−1/2
T ‖vb −Qbv0‖∂T .

This leads to
‖∇v0‖T .

(
‖∇wv‖2T + h−1

T ‖vb −Qbv0‖2∂T
)1/2 . |||v|||,

which completes the proof.

In the rest of the paper, we always suppose bbb ∈ H(div,Ω). The following lemma may be used
for the forthcoming error analysis.

Lemma 5.7 Let Th be a finite element partition of Ω that is shape regular. Then, for any
w ∈ Hk+1(Ω) and v = {v0, vb} ∈ Vh, one has

|s(Qhw, v)| . hk|||v|||‖w‖k+1, (5.12)

|lw(v)| . hk|||v|||‖w‖k+1, (5.13)

|tw,bbb(v)| . hk+1|||v|||‖w‖k+1, (5.14)

|λw,bbb(v)| . hk+1|||v|||‖w‖k+1. (5.15)
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where

lw(v) =
∑

T∈Th
〈v0 − vb, (A∇w −AQh(∇w)) ·nnn〉∂T ,

tw,bbb(v) =
1

2

∑

T∈Th
〈bbb ·nnn, (w −Qbw)(v0 − vb)〉∂T ,

λw,bbb(v) =
1

2

∑

T∈Th
〈bbb ·nnn, (w −Q0w)(v0 − vb)〉∂T .

Proof. For the detailed verification of (5.12) and (5.13), we refer the reader to [3]. We are
left with the task of proving (5.14) and (5.15). With the Cauchy-Schwarz inequality and the
definition of Qb, one can derive

tw,bbb(v) =
1

2

∑

T∈Th
〈bbb ·nnn, (w −Qbw)(v0 − vb)〉∂T

≤ 1

2

∣∣∣∣
∑

T∈Th
〈bbb ·nnn, (w −Qbw)(v0 −Qbv0)〉∂T

∣∣∣∣+
1

2

∣∣∣∣
∑

T∈Th
〈bbb ·nnn, (w −Qbw)(Qbv0 − vb)〉∂T

∣∣∣∣

≤ 1

2

( ∑

T∈Th
‖bbb‖L∞(∂T )

)( ∑

T∈Th
h−1
T ‖v0 −Qbv0‖2∂T

)1/2( ∑

T∈Th
hT ‖w −Qbw‖2∂T

)1/2

+
1

2

( ∑

T∈Th
‖bbb‖L∞(∂T )

)( ∑

T∈Th
h−1
T ‖Qbv0 − vb‖2∂T

)1/2( ∑

T∈Th
hT ‖w −Qbw‖2∂T

)1/2

.
( ∑

T∈Th
h−1
T ‖v0 −Qbv0‖2∂T

)1/2( ∑

T∈Th
hT ‖w −Q0w‖2∂T

)1/2

+

( ∑

T∈Th
h−1
T |Qbv0 − vb‖2∂T

)1/2( ∑

T∈Th
hT ‖w −Q0w‖2∂T

)1/2

. (5.16)

We claim that the following estimate

∑

T∈Th
h−1
T ‖v0 −Qbv0‖2∂T . |||v|||. (5.17)

Indeed, by using the trace inequality (5.1) and the approximation property of L2 projection
operator we can derive

h−1
T ‖v0 −Qbv0‖2∂T . ‖∇v0‖2T .

Thus, by (5.9) and Lemma 5.6, we have

∑

T∈Th
h−1
T ‖v0 −Q0v0‖2∂T .

∑

T∈Th
‖∇v0‖2 . ‖v‖1,h . |||v|||,

which implies (5.17). Applying (5.8), (5.16), (5.17) and the definition of ||| · |||, we obtain

tw,bbb(v) . hk+1|||v|||‖w‖k+1,

which verifies the desired estimate (5.14). Similarly, we can obtain (5.15).

9



6 Error analysis

The goal of this section is to establish some error estimates for the WG finite element solution
uh arising from (4.5). The error will be measured in the triple-bar norm as defined in (4.6), the
discrete H1 seminorm defined in (5.9) and the standard L2 norm.

6.1 Error equation

Let uh = {u0, ub} ∈ Vh be the WG finite element solution arising from the numerical scheme
(4.5). Assume that the exact solution of the problem (1.1)-(1.2) is given by u. The L2 projection
of u in the finite element space Vh is given by

Qhu = {Q0u,Qbu}.

Let
eh = {e0, eb} = uh −Qhu = {u0 −Q0u, ub −Qbu}

be the error between the WG finite element solution and the L2 projection of the exact solution.

Lemma 6.1 Let eh be the error of the weak Galerkin finite element solution arising from (4.5).
Then, for any v ∈ V 0

h , one has

as(eh, v) =
1

2
(∇ · bbb, (Q0u− u)v0) + (bbb · ∇v0, Q0u− u) + (c0(u−Q0u), v0)

+tu,bbb(v) + λu,bbb(v)− lu(v)− S(Qhu, v), (6.1)

where

lu(v) =
∑

T∈Th
〈v0 − vb, (A∇u−AQh(∇u)) ·nnn〉∂T ,

tu,bbb(v) =
1

2

∑

T∈Th
〈bbb ·nnn, (u−Qbu)(v0 − vb)〉∂T ,

λu,bbb(v) =
1

2

∑

T∈Th
〈bbb ·nnn, (u−Q0u)(v0 − vb)〉∂T .

Proof. Testing (1.1) by using v0 of v = {v0, vb} ∈ V 0
h , we arrive at

(f, v0) = (A∇u,∇v0) +
1

2
((∇ · bbb)u, v0) + (bbb · ∇u, v0)

+ (c0u, v0)−
∑

T∈Th
〈(A∇u) ·nnn, v0 − vb〉∂T , (6.2)

where we have used the fact that
∑

T∈Th〈(A∇u) · nnn, vb〉∂T = 0 and c0 = 1
2(∇ · bbb) + c. We first

deal with the form (A∇u,∇v0) in (6.2). In fact, for any v ∈ V 0
h , it follows from Lemma 5.3 and

(3.4) that

(A∇w(Qhu),∇wv)T = (AQh(∇u),∇wv)T

= (∇v0,AQh(∇u))T − 〈v0 − vb, (AQh(∇u)) ·nnn)〉∂T
= (A∇u,∇v0)T − 〈(AQh(∇u)) ·nnn, v0 − vb〉∂T .

Thus,

(A∇u,∇v0) = (A∇w(Qhu),∇wv) +
∑

T∈Th
〈(AQh(∇u)) ·nnn, v0 − vb〉∂T . (6.3)
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Then, we handle the term 1
2((∇·bbb)u, v0)+(bbb ·∇u, v0) in (6.2). For w = {w0, wb} ∈ Vh, according

to the definition of discrete weak convective operator (3.5) and the fact
∑

T∈Th〈bbb·nnn,wbvb〉∂T = 0,
we have

(bbb · ∇ww, v0) = −(bbb · ∇v0, w0)− (∇ · bbb, w0v0) +
∑

T∈Th
〈bbb ·nnn,wb(v0 − vb)〉∂T (6.4)

and

(bbb · ∇wv, w0) = −(bbb · ∇w0, v0)− (∇ · bbb, w0v0) +
∑

T∈Th
〈bbb ·nnn, vbw0〉∂T

= (bbb · ∇v0, w0)−
∑

T∈Th
〈bbb ·nnn, (v0 − vb)w0〉∂T . (6.5)

By letting w = Qhu in (6.4) and w0 = Q0u in (6.5), we obtain the following equations

(bbb · ∇w(Qhu), v0) = −(bbb · ∇v0, Q0u)− (∇ · bbb, (Q0u)v0) +
∑

T∈Th
〈bbb ·nnn,Qbu(v0 − vb)〉∂T , (6.6)

(bbb · ∇wv,Q0u) = (bbb · ∇v0, Q0u)−
∑

T∈Th
〈bbb ·nnn,Q0u(v0 − vb)〉∂T . (6.7)

Thus, by using the integration by parts and (6.6)-(6.7) , we obtain

(bbb · ∇u, v0) +
1

2
((∇ · bbb)u, v0)

= −(bbb · ∇v0, u)− 1

2
(∇ · bbb, uv0) +

∑

T∈Th
〈bbb ·nnn, u(v0 − vb)〉∂T

= −(bbb · ∇v0, Q0u)− 1

2
(∇ · bbb, (Q0u)v0) + (bbb · ∇v0, Q0u− u)

+
1

2
(∇ · bbb, (Q0u− u)v0) +

∑

T∈Th
〈bbb ·nnn, u(v0 − vb)〉∂T

= −1

2
(bbb · ∇v0, Q0u)− 1

2
(∇ · bbb, (Q0u)v0)− 1

2
(bbb · ∇v0, Q0u) + (bbb · ∇v0, Q0u− u)

+
1

2
(∇ · bbb, (Q0u− u)v0) +

∑

T∈Th
〈bbb ·nnn, u(v0 − vb)〉∂T

=
1

2
(bbb · ∇w(Qhu), v0)− 1

2
(bbb · ∇wv,Q0u) +

1

2
(∇ · bbb, (Q0u− u)v0)

+(bbb · ∇v0, Q0u− u) +
1

2

∑

T∈Th
〈bbb ·nnn, (u−Qbu)(v0 − vb)〉∂T

+
1

2

∑

T∈Th
〈bbb ·nnn, (u−Q0u)(v0 − vb)〉∂T .

(6.8)

By the definition of a(u, v), we can get

a(Qhu, v) = (A∇w(Qhu),∇wv) +
1

2
(bbb · ∇w(Qhu), v0)− 1

2
(bbb · ∇wv,Q0u)

+(c0Q0u, v0). (6.9)
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According to (4.5) and the definition of eh, we can get

as(eh, v) = as(uh, v)− as(Qhu, v) = (f, v0)− a(Qhu, v)− s(Qhu, v). (6.10)

Combining (6.2), (6.3) and (6.8)-(6.10), we obtain

as(eh, v) =
1

2
(∇ · bbb, (Q0u− u)v0) + (bbb · ∇v0, Q0u− u) + (c0(u−Q0u), v0)

+tu,bbb(v) + λu,bbb(v)− lu(v)− S(Qhu, v),

which completes the proof.

6.2 Error estimates

The error equation (6.1) can be used to derive the following error estimates for the WG finite
element solution.

Theorem 6.2 Let uh ∈ Vh be the weak Galerkin finite element solution of the problem (1.1)-
(1.2) arising from (4.5). Assume the exact solution u ∈ Hk+1(Ω). Then

|||uh −Qhu||| . hk‖u‖k+1. (6.11)

Proof. By letting v = eh in (6.1), we have

|||eh|||2 =
1

2
(∇ · bbb, (Q0u− u)e0) + (bbb · ∇e0, Q0u− u) + (c0(u−Q0u), e0)

+tu,bbb(eh) + λu,bbb(eh)− lu(eh)− S(Qhu, eh). (6.12)

Applying the Lemma 5.6, the definition of ||| · ||| and the approximation property of the L2−
projection, we derive

∣∣1
2

(∇ · bbb, (Q0u− u)e0) + (bbb · ∇e0, Q0u− u) + (c0(u−Q0u), e0)
∣∣

≤
∑

T∈Th

(
‖∇ · bbb‖L∞(T )‖Q0u− u‖T ‖e0‖T + ‖bbb‖L∞(T )‖Q0u− u‖T ‖∇e0‖T

+‖c0‖L∞(T )‖Q0u− u‖T ‖e0‖T
)

.
( ∑

T∈Th
‖Q0u− u‖2T

)1/2

|||eh|||+
( ∑

T∈Th
‖Q0u− u‖2T

)1/2

‖eh‖1,h

. hk+1|||eh|||‖u‖k+1. (6.13)

By Lemma 5.7 and (6.13), we have

|||eh|||2 . hk‖u‖k+1|||eh|||+ hk+1‖u‖k+1|||eh||| . hk‖u‖k+1|||eh|||,

which completes the proof.

Next, we will measure the difference between u and uh in the discrete H1 seminorm ‖ · ‖1,h
as defined in (5.9).

Corollary 6.3 Let uh ∈ Vh be the weak Galerkin finite element solution of the problem (1.1)-
(1.2) arising from (4.5). Assume the exact solution u ∈ Hk+1(Ω). Then

‖u− uh‖1,h . hk‖u‖k+1. (6.14)
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Proof. Applying Lemma 5.6 and Theorem 6.2, we obtain

‖uh −Qhu‖1,h . |||uh −Qhu||| . hk‖u‖k+1. (6.15)

With the definition of discrete H1 seminorm and the estimates (5.5) and (5.8), we derive

‖u−Qhu‖21,h

=
∑

T∈Th

(
‖∇(u−Q0u)‖2T + h−1‖Qb(u−Q0u)− (u−Qbu)‖2∂T

)

≤
∑

T∈Th

(
‖∇(u−Q0u)‖2T + h−1‖u−Q0u‖2∂T

)

. h2k‖u‖2k+1.

Thus,
‖u−Qhu‖1,h . hk‖u‖k+1. (6.16)

It follows from the triangle inequality, and the estimates (6.15) and (6.16) that

‖u− uh‖1,h ≤ ‖u−Qhu‖1,h + ‖uh −Qhu‖1,h . hk‖u‖k+1.

This completes the proof.

In the rest of the section, we shall establish an optimal-order error for the weak Galerkin
finite element scheme (4.5) in the usual L2 norm by using a duality argument. To this end, we
consider a dual problem that seeks ψ ∈ H1

0 (Ω) ∩H2(Ω) satisfying

−∇ · (A∇ψ)− bbb · ∇ψ + cψ = e0 in Ω. (6.17)

Assume that the above dual problem has the usual H2-regularity. This means that

‖ψ‖2 . ‖e0‖. (6.18)

Theorem 6.4 Let uh ∈ Vh be weak Galerkin finite element solution of the problem (1.1)-(1.2)
arising from (4.5). Assume the exact solution u ∈ Hk+1(Ω). In addition, assume that the dual
problem (6.17) has the usual H2-regularity. Then

‖u− u0‖ . hk+1‖u‖k+1. (6.19)

Proof. By testing (6.17) with e0, we obtain

‖e0‖2 = −(∇ · (A∇ψ), e0)− (bbb · ∇ψ, e0) + (cψ, e0)

= (A∇ψ,∇e0)−
∑

T∈Th
〈(A∇ψ) ·nnn, e0 − eb〉∂T − (bbb · ∇ψ, e0)

−1

2
((∇ · bbb)ψ, e0) + (c0ψ, e0), (6.20)

where we have used the fact that eb = 0 on ∂Ω and c0 = 1
2(∇·bbb) + c. Setting u = ψ and v0 = e0
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in (6.3) and (6.8), we can obtain the following equations

(A∇ψ,∇e0) = (A∇w(Qhψ),∇weh) +
∑

T∈Th
〈(AQh(∇ψ)) ·nnn, e0 − vb〉∂T , (6.21)

(bbb · ∇ψ, e0) +
1

2
((∇ · bbb)ψ, e0)

=
1

2
(bbb · ∇w(Qhψ), e0)− 1

2
(bbb · ∇weh, Q0ψ)

+
1

2
(∇ · bbb, (Q0ψ − ψ)e0) + (bbb · ∇e0, Q0ψ − ψ)

+
1

2

∑

T∈Th
〈bbb ·nnn, (ψ −Qbψ)(e0 − eb)〉∂T

+
1

2

∑

T∈Th
〈bbb ·nnn, (ψ −Q0ψ)(e0 − eb)〉∂T . (6.22)

According the definition of as(v, w) in (4.4) and the symmetry of A, we can get

as(eh, Qhψ) = (A∇w(Qhψ),∇weh)− 1

2
(bbb · ∇w(Qhψ), e0) +

1

2
(bbb · ∇weh, Q0ψ)

+(c0e0, Q0ψ) + s(eh, Qhψ). (6.23)

By combining the (6.20)-(6.23), we can obtain

‖e0‖2 = as(eh, Qhψ)− 1

2
(∇ · bbb, (Q0ψ − ψ)e0)− (bbb · ∇e0, Q0ψ − ψ)

−lψ(eh)− tψ,bbb(eh)− λψ,bbb(eh)− s(eh, Qhψ) + (c0e0, ψ −Q0ψ). (6.24)

By using the (6.1), we can get

‖e0‖2 =
1

2
(∇ · bbb, (Q0u− u)Q0ψ) + (bbb · ∇(Q0ψ), Q0u− u) + (c0(u−Q0u), Q0ψ)

+tu,bbb(Qhψ) + λu,bbb(Qhψ)− lu(Qhψ)− S(Qhu,Qhψ)

−1

2
(∇ · bbb, (Q0ψ − ψ)e0)− (bbb · ∇e0, Q0ψ − ψ) + (c0e0, ψ −Q0ψ)

−lψ(eh)− tψ,bbb(eh)− λψ,bbb(eh)− s(eh, Qhψ). (6.25)

According to the L2 error estimates in [3], we have the following estimates

|lu(Qhψ)| . hk+1‖u‖k+1‖ψ‖2, (6.26)

|s(Qhu,Qhψ)| . hk+1‖u‖k+1‖ψ‖2, (6.27)

|s(eh, Qhψ) . hk+1‖u‖k+1‖ψ‖2, (6.28)

|lψ(eh)| . hk+1‖u‖k+1‖ψ‖2. (6.29)
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Applying the Cauchy-Schwarz inequality, the definition of Qb and (5.8), one can derive

tu,bbb(Qhψ)

=
1

2

∑

T∈Th
〈bbb ·nnn, (u−Qbu)(Q0ψ −Qbψ)〉∂T

≤ 1

2

∣∣∣∣
∑

T∈Th
〈bbb ·nnn, (u−Qbu)(Q0ψ − ψ)〉∂T

∣∣∣∣

+
1

2

∣∣∣∣
∑

T∈Th
〈bbb ·nnn, (u−Qbu)(Qbψ − ψ)〉∂T

∣∣∣∣

≤ 1

2

( ∑

T∈Th
‖bbb‖L∞(∂T )

)( ∑

T∈Th
‖u−Qbu‖2∂T

)1/2( ∑

T∈Th
‖Q0ψ − ψ‖2∂T

)1/2

+
1

2

( ∑

T∈Th
‖bbb‖L∞(∂T )

)( ∑

T∈Th
‖u−Qbu‖2∂T

)1/2( ∑

T∈Th
‖Qbψ − ψ‖2∂T

)1/2

.
( ∑

T∈Th
‖u−Q0u‖2∂T

)1/2( ∑

T∈Th
‖Q0ψ − ψ‖2∂T

)1/2

. hk+2‖u‖k+1‖ψ‖2. (6.30)

Analogously, we can get

λu,bbb(Qhψ) . hk+2‖u‖k+1‖ψ‖2. (6.31)

With the Cauchy-Schwarz inequality and Lemma 5.4, we can derive the following estimate

∣∣∣∣
1

2
(∇ · bbb, (Q0u− u)Q0ψ) + (bbb · ∇(Q0ψ), Q0u− u) + (c0(u−Q0u), Q0ψ)

∣∣∣∣

≤
∑

T∈Th

(
‖∇ · bbb‖L∞(T )‖Q0u− u‖T ‖Q0ψ‖T + ‖bbb‖L∞(T )‖∇(Q0ψ)‖T ‖Q0u− u‖T

+ ‖c0‖L∞(T )‖Q0u− u‖T ‖Q0ψ‖T
)

.
∑

T∈Th
‖Q0u− u‖T ‖ψ −Q0ψ‖T +

∑

T∈Th
‖Q0u− u‖T ‖ψ‖T

+
∑

T∈Th
‖∇ψ −∇(Q0ψ)‖T ‖Q0u− u‖T +

∑

T∈Th
‖∇ψ‖T ‖Q0u− u‖T

≤
( ∑

T∈Th
‖Q0u− u‖2T

)1/2( ∑

T∈Th
‖ψ −Q0ψ‖2T

)1/2

+
( ∑

T∈Th
‖Q0u− u‖2T

)1/2( ∑

T∈Th
‖ψ‖2T

)1/2

+
( ∑

T∈Th
‖∇ψ −∇(Q0ψ)‖2T

)1/2( ∑

T∈Th
‖Q0u− u‖2T

)1/2

+
( ∑

T∈Th
‖∇ψ‖2T

)1/2( ∑

T∈Th
‖Q0u− u‖2T

)1/2

. hk+3‖ψ‖2‖u‖k+1 + hk+2‖ψ‖2‖u‖k+1 + hk+1‖ψ‖2‖u‖k+1

. hk+1‖ψ‖2‖u‖k+1. (6.32)
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By (5.14), (5.15) and Theorem 6.2, we obtain

tψ,bbb(eh) . h2|||eh|||‖ψ‖2 . hk+2‖ψ‖2‖u‖k+1, (6.33)

λψ,bbb(eh) . h2|||eh|||‖ψ‖2 . hk+2‖ψ‖2‖u‖k+1. (6.34)

With (5.4), Lemma 5.6 and Theorem 6.2, we can obtain the following estimate

∣∣∣∣−
1

2
(∇ · bbb, (Q0ψ − ψ)e0)− (bbb · ∇e0, Q0ψ − ψ) + (c0e0, ψ −Q0ψ)

∣∣∣∣

≤
∑

T∈Th

(
‖∇ · bbb‖L∞(T )‖Q0ψ − ψ‖T ‖e0‖T + ‖bbb‖L∞(T )‖∇e0‖T ‖Q0ψ − ψ‖T

+ ‖c0‖L∞(T )‖Q0ψ − ψ‖T ‖e0‖T
)

.
∑

T∈Th

(
‖Q0ψ − ψ‖T ‖e0‖T + ‖∇e0‖T ‖Q0ψ − ψ‖T

)

.
( ∑

T∈Th
‖Q0ψ − ψ‖2T

)1/2

|||eh|||+
( ∑

T∈Th
‖Q0ψ − ψ‖2T

)1/2

‖eh‖1,h

. hk+2‖ψ‖2‖u‖k+1. (6.35)

Combining (6.25) with the estimates (6.26)-(6.35), we obtain

‖e0‖2 . hk+1‖u‖k+1‖ψ‖2,

which, combined with the regularity assumption (6.18) and the triangle inequality, gives the
desired optimal-order error estimate (6.19).

7 Numerical experiments

The goal of this section is to report some numerical results for the new weak Galerkin finite
element scheme proposed and analyzed in previous sections. For simplicity, we consider a rect-
angular domain Ω = [0, 1]×[0, 1] with uniform triangulation in this section. The triangular mesh
is constructed by: 1) uniformly partitioning the domain into n × n sub-rectangles; 2) dividing
each rectangular element by diagonal line with a negative slope. The mesh size is denoted by
h = 1/n.

Let uh = {u0, ub} and u be the solutions to the weak Galerkin equation (4.5) and the original
problem (1.1)-(1.2), respectively. Define the error by eh = uh−Qhu = {e0, eb} where Qhu is the
L2 projection of u onto appropriately defined spaces. The following norms will be measured in
all the numerical experiments:

Discrete H1 norm: |||eh||| =
(∑

T∈Th
( ∫

T |∇weh|2dT + h−1
∫
∂T |Qbe0 − eb|2ds

)) 1
2

,

Element-based L2 norm: ‖e0‖ =

(∑
T∈Th

∫
T |e0|2dx

) 1
2

.

7.1 Case 1: a model problem with ordinary coefficient

In this case, we consider A =

(
1 0
0 1

)
, bbb = (1, 1)T , c = 1 and the boundary condition u|∂Ω

and f are chosen such that the exact solution is given by u = sin(πx)cos(πy). In the test of
convergence, the first (k = 1) and second (k = 2) order of weak Galerkin elements are used
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Table 1: Case 1. Numerical results for first-order WG (k = 1).
h |||eh||| order ‖e0‖ order

1/4 1.0466e+00 1.3612e-01

1/8 5.2317e-01 1.0003e+00 3.4362e-02 1.9860e+00

1/16 2.6150e-01 1.0004e+00 8.6000e-03 1.9967e+00

1/32 1.3074e-01 1.0001e+00 2.1537e-03 1.9992e+00

1/64 6.5368e-02 1.0000e+00 5.3850e-04 1.9998 e+00

1/128 3.2684e-02 1.0000e+00 1.3463e-04 2.0000 e+00

Table 2: Case 1. Numerical results for second-order WG (k = 2).
h |||eh||| order ‖e0‖ order

1/4 1.9511e-01 1.6626e-02

1/8 4.9543e-02 1.9776e+00 2.1126e-03 2.9763e+00

1/16 1.2436e-02 1.9941e+00 2.6511e-04 2.9944e+00

1/32 3.1125e-03 1.9984e+00 3.3168e-05 2.9987e+00

1/64 7.7838e-04 1.9995e+00 4.1469e-06 2.9997e+00

1/128 1.9461e-04 1.9998e+00 5.1838e-07 2.9999e+00

in the construction of the finite element space Vh. For simplicity, these two elements shall be
referred to as (P1(T ), P0(e)) and (P2(T ), P1(e)).

The numerical results on Table 1 and Table 2 show the rate of convergence for the WG
solutions in H1 and L2 norms associated with k = 1 and k = 2, respectively. The numerical
results indicate that the WG solution is convergent with rate O(hk) in H1 norm and O(hk+1)
in L2 norm, which are same as the theoretical results shown in Theorems 6.2 and 6.4.

7.2 Case 2: a model problem with variable coefficient

In this case, we consider the test problems where the coefficient A =

(
x+ y 0

0 x+ y

)
, the

coefficient bbb = (x, y)t and c = 1. We set the exact solution to be u = sin(πx)sin(πy) in the
homogeneous boundary case and u = sin(πx)sin(πy) + x+ y in the nonhomogeneous boundary
case, respectively. In these tests, we only consider the linear weak Galerkin elements (k = 1)
in the finite element space Vh. The numerical results are shown in Table 3 for homogeneous
boundary case and Table 4 for homogeneous boundary case. From Tables 3 and 4, we can see
that the WG solution is convergent with rate O(h) in H1 norm and O(h2) in L2 norm.

All the numerical examples given above are in good agreement with the theoretical analysis in
Section 6, which demonstrate that the new weak Galerkin finite element scheme (4.5) is accurate
and robust.

8 Discussion on convection-dominated problems

Letting A = ε, where ε is a constant coefficient and 0 < ε � 1, one can rewrite the problem
(1.1)-(1.2) by the following convection-dominated problem: seek an unknown function u = u(xxx)
such that

−ε∆u+∇ · (bbbu) + cu = f in Ω, (8.1)

u = g on ∂Ω. (8.2)
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Table 3: Case 2. Numerical results for homogeneous boundary problems.
h |||eh||| order ‖e0‖ order

1/4 1.1639e+00 1.3831e-01

1/8 5.8995e-01 9.8027e-01 3.5787e-02 1.9504e+00

1/16 2.9597e-01 9.9513e-01 9.0347e-03 1.9859e+00

1/32 1.4811e-01 9.9878e-01 2.2648e-03 1.9961e+00

1/64 7.4072e-02 9.9969e-01 5.6662e-04 1.9989e+00

1/128 3.7038e-02 9.9992e-01 1.4168e-04 1.9997e+00

Table 4: Case 2. Numerical results for nonhomogeneous boundary problems.
h |||eh||| order ‖e0‖ order

1/4 1.1560e+00 1.3820e-01

1/8 5.8644e-01 9.7913e-01 3.5930e-02 1.9436e+00

1/16 2.9429e-01 9.9473e-01 9.0888e-03 1.9830e+00

1/32 1.4728e-01 9.9866e-0 2.2803e-03 1.9949e+00

1/64 7.3659e-02 9.9965e-01 5.7073e-04 1.9983e+00

1/128 3.6832e-02 9.9990e-01 1.4275e-04 1.9993e+00

It is well-known that standard finite element methods often suffer from the deterioration of
numerical accuracy for convection-dominated problems due to local singularities arising from
interior or boundary layers. A lot of research has been devoted to solving such kinds of problems
properly, such as stabilized methods [21, 22], discontinuous Galerkin(DG) methods [23, 24] and
WG methods [25].

From the numerical examples in Section 7, we can see that the WG scheme (4.5) is accurate.
However, considering 0 < ε � h in the convection-dominated problem (8.1)-(8.2), one can find
that the numerical accuracy is deteriorating. This disappointing behaviour occurs because the
numerical solutions can not adequately approximate the solutions inside layers. One remedy to
this problem is to modify the stabilization operator s(·, ·) in the scheme (4.5). To this end, we
may give the stabilization operator having the form of

∑

T∈Th
κ〈Qbu0 − ub, Qbv0 − vb〉∂T ,

where κ is a stabilization parameter and need to be suitably selected. That is, the WG scheme for
the convection-dominated problem (8.1)-(8.2) can be established as follows: seek uh = {u0, ub} ∈
Vh satisfying both ub = Qbg on ∂Ω and the following equation

ah(uh, v) +
∑

T∈Th
κ〈Qbu0 − ub, Qbv0 − vb〉∂T = (f, v0), ∀v = {v0, vb} ∈ V 0

h , (8.3)

where

ah(uh, v) = ε(∇wuh,∇wv) +
1

2
(bbb · ∇wuh, v0)− 1

2
(bbb · ∇wv, u0) + (c0u0, v0).

From [25], we see that it is difficult to choose such stabilization parameter κ. Different problems
lead to different choices of κ. For most (general) second-order elliptic problems, it is suitable to
choose κ = h−1

T to establish the corresponding WG scheme (see [2, 3]). However, for convection-
dominated problems, the choice of the stabilization parameter κ becomes more complicated.
For instance, Chen, Feng and Xie select κ related to ε, bbb and hT in [25]. Since the choice of the
stabilization parameter κ for convection-dominated problems is complicated and the different
κ corresponds to the different stabilization operator which involves the different mathematical
convergence theory for the corresponding WG method, we leave this to our next work.
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9 Conclusions

We have presented a new weak Galerkin finite element scheme for general second-order elliptic
problems. The advantage of the new scheme is that the system of linear equations from the
scheme is positive definite and one might easily get the well-postedness of the system. The
new WG method has improved the method in [1] for general second-order elliptic equations in
two ways. First, the new WG method can be applied on general polytopal meshes while the
method in [1] only works for simplicial elements. Second, the error analysis has been simplified
by using a skew symmetric form for handling the convection term. The theoretical analysis and
the numerical results indicate that the new WG scheme is accurate and robust.
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