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a b s t r a c t

This article is devoted to designing efficient linear finite element algorithm for the
fractional Cahn–Hilliard equation, an important and newly proposed phase field model.
Combining the advantages of the classic BiCG algorithm and the Toeplitz-like structure
of the coefficient matrix, we develop a fast BiCG(FBiCG) algorithm for the linearized
scheme to compute numerically the fractional Cahn–Hilliard equation. Our theoretical
analysis and numerical experiments demonstrate that the proposed FBiCG reduces
the computation cost and the storage to O(M logM) and O(M), possesses the same
convergence rates as Newton’s algorithm does in space and time, and preserves the
energy dissipation and equality laws. The numerical experiments also demonstrate that
the FBiCG is almost mass conserved, recognizes accurately the phase separation by a very
clear coarse graining process and the influences of different indices r and s of fractional
Laplacian and different coefficients K and a on the width of the interfaces.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Phase field models have become more and more popular in recent years to describe a host of free boundary problems in
various research fields. For mathematical descriptions of the thermodynamics and dynamics of two components systems
in phase field approach, Cahn and Hilliard [1] in 1958s applied the minimization of the Ginzburg–Landau free energy
functional∫

Ω

(
1
2
|∇u|2 + ψ(u))dx

with the double-well potential ψ(u) =
a
4u

4
+

b
2u

2, a > 0, b < 0, and employed Fick’s First Law and the continuity equation
to formulate the Cahn–Hilliard equation

∂tu = M∇
2w,

w = −K∇
2u + ψ ′(u). (1.1)
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In phase field models with the double-well potential ψ(u) and ψ ′(u) = f (u) = u(u2
− 1) as a = 1, b = −1, u(x) can be

viewed as an indicator of the concentration or volume fraction of one fluid A1 at the location x in the immiscible mixture
with the second fluid A2, that is, if we let V (Ai) denote the volume fraction of fluid Ai, and V (A1) + V (A2) = 1, then,

uA1 (x) = −V (A1) + V (A2) = 1 − 2V (A1).

It is easily seen that the range of the indicator u is [−1, 1]. Generally, if the double-well potential ψ(u) satisfies ψ ′(u) =

f (u) = u(au2
+ b) with a > 0 and b < 0, we can define the weighted volume fraction for fluid A1 as

uA1 (x) =

√
|b|
a

(−V (A1) + V (A2)) =

√
|b|
a

(1 − 2V (A1)).

In this case, the range of uA1 (x) is [−

√
|b|
a ,

√
|b|
a ], which depends on the parameters a and b. Some other models such as

the Ising ferromagnet, the binary alloys and polymer mixtures, can be found in [1,2].
The key feature of the Cahn–Hilliard equation is that surfaces and interfaces can be described implicitly by continuous

scalar field u that takes constant values in the bulk phases and vary continuously but across steeply its diffuse front. Since
then, many and many research results on its theories, applications and numerics have been achieved, see the reviews [2–4]
and the references cited therein.

If checking carefully the derivation of the Cahn–Hilliard equation (1.1) one could find out that the long-range
interactions between particles, which should be expressed as a spatial convolution or a nonlocal integral, was simplified
as an integral of local derivative 1

2 |∇u|2 for easy mathematical deduction. This may lose some important information
coming from the long-range interactions. Numerous experiments also show that fractional diffusion equations provide an
adequate and accurate description of nonlocal transport processes which cannot be modeled properly by second-order
diffusion equations [5–9]. Therefore, it could reasonably make physical significance if the Laplacian operator in (1.1) is
replaced by its fractional version of Riesz-type potential to form the fractional Cahn–Hilliard equation. In this line, different
fractional Cahn–Hilliard models have been proposed and the solvabilities were discussed recently in [10,11], respectively.
Fourier spectral method [12] for the fractional Cahn–Hilliard model in [10] and the discontinuous Galerkin method [13]
for the linear Caputo-type fractional Cahn–Hilliard model are proposed and analyzed consecutively. As far as we know,
there are few works on efficient Galerkin finite element algorithms to simulate numerically the fractional Cahn–Hilliard
Models so far.

In this paper, we devote our interest to the efficient finite element algorithm for the fractional Cahn–Hilliard equation
proposed in [10],

∂tu + (−∆)sw(x) = 0, in Ω × (0, T ],

w = K (−∆)ru(x) + au3
+ bu, in Ω × (0, T ],

u(x, 0) = u0(x), in Ω,

u = w = 0, in R\Ω × (0, T ].

(1.2)

Here Ω = (0, 1), 0 < r, s < 1, K and a are positive constants and b negative constant. The fractional Laplace operator
(−∆)l(l = r, s) is defined as Riesz-type potential on the whole space R by Definition 2.1 in Section 2. We also notice that
the fractional Cahn–Hilliard equation (1.2) will be reduced to the Cahn–Hilliard model (1.1) as s = r = 1, the fractional
Allen–Cahn equation [14] as s = 0 and the fractional porous medium equation [15] as r = 0.

The challenges to design a high-performance algorithm are from those: (1) the whole space R as the domain of (−∆)l
aggravates the nonlocality of the fractional operators, which makes the computation to be done on an unbounded domain
and makes the coefficient matrix resulted from the discrete system being non-sparse; and (2) the algorithm should
recognize those physical characteristics: the mass conservation, the energy laws and the phase separation or coarse
graining process, as the classic Cahn–Hilliard equation (1.1) does.

The objectives of this paper are to: (1) reduce those computations over unbounded domains to bounded domain
computations by using the properties of the operators (−∆)l and the linear finite element spaces, to formulate a nonlinear
finite element system; (2) apply the Brouwer’s fixed point theorem to prove the solvability of the discrete system for
sufficiently small time step, and sharpen the solvability theorem by applying the convex splitting property of the scheme;
demonstrate that the discrete solution preserves the energy dissipation and equality laws; (3) combine the merits of the
classic BiCG algorithm and the Toeplitz-like structure of the coefficient matrix to design a fast BiCG for the linearized
finite element scheme, which reduces the computation cost and the storage to O(M logM) and O(M), respectively; (4)
conduct numerical experiments to verify the efficiency of the proposed FBiCG, which show that the FBiCG possesses the
ideal convergence rates as Newton’s algorithm does in space and time, preserves the energy dissipation and equality laws
and almost the mass conservation, and recognizes accurately the phase separation by a very clear coarse graining process.
The numerical experiments also test the tunable sharpness, that is, the influences of different indices r and s of fractional
Laplacian and different coefficients K and a on the width of the interfaces.

The outline of the article is organized as follows. The first two sections are Introduction and Preliminaries. In Section 3,
we construct mixed-type linear finite element procedure. In Section 4, we prove the solvability of the discrete system and
demonstrate the discrete solution preserves the energy laws. By combining the Toeplitz-like structure with BiCG method,
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we design a fast FBiCG for the linearized finite element scheme to reduce computation cost and storage to O(MlogM)
and O(M) in Section 5. In Section 6, we perform numerical experiments to demonstrate the performance of the FBiCG
algorithm and the finite element procedure.

2. Preliminaries

We first briefly review the definitions and properties of fractional Laplacian operator.

Definition 2.1 ([10,16]). For u(x) ∈ S(R), the Schwartz class of the rapidly decaying functions at infinity, the fractional
Laplacian operator (−∆)l, 0 < l < 1, is defined by the following Riesz-type potential,

(−∆)lu(x) := Cl lim
ϵ→0

∫
R\B(x,ϵ)

u(x) − u(y)
|x − y|1+2l dy,

in which

Cl =
4llΓ ( 12 + l)
π1/2Γ (1 − l)

.

Definition 2.2 ([10,17,18]). For 0 < l < 1, the fractional Sobolev spaces H l(R) are defined by

H l(R) := {v ∈ L2(R) :
|v(x) − v(y)|2

|x − y|1+2l ∈ L1(R × R)}

and equipped with the norm

∥v∥2
H l(R) := ∥v∥2

L2(R) +
Cl

2

∫
R

∫
R

|v(x) − v(y)|2

|x − y|1+2l dxdy.

Let

H0(R) := {v ∈ L2(R) : v = 0 a.e. in R\Ω},

Hl,0(R) := {v ∈ H l(R) : v = 0 a.e. in R\Ω}.

We define energy and energy space for the system as follows,

Er (v) :=
K
2

∥v∥2
Hr,0

+
a
4

∫
R
v4dx +

b
2

∫
R
v2dx,

Hr (R) := {v ∈ H0(R) : Er (v) < +∞}.

Definition 2.3 ([10]). For 0 < l < 1. We introduce the operator Tl : Hl,0(R) → H ′

l,0(R)

⟨Tlu, v⟩Hl,0 :=
Cl

2

∫
R

∫
R

(u(x) − u(y))(v(x) − v(y))
|x − y|1+2l dxdy, ∀ u, v ∈ Hl,0.

It is easily seen that Tl is a symmetric positive definite operator.

Definition 2.4 ([10]). Let T > 0. If u ∈ Cw([0, T ];Hr ) ∩ C([0, T ];H0) ∩ W 1,2(0, T ;H ′

r,0), w ∈ L2(0, T ;Hs,0) satisfies

(a) ∂tu + Tsw = 0, in H ′

s,0,

(b) w = KTru + au3
+ bu, in H′

r ,
(2.3)

then, the (u, w) is called a weak solution to the Problem (1.2).

Lemma 2.1 ([10]). If s, r ∈ (0, 1) and u0(x) ∈ Er , the fractional Cahn–Hilliard system (1.2) admits a unique weak solution
(u, w) in the sense of Definition 2.4.

3. Mixed-type linear finite element procedure

In this section, we borrow the weak formulation (2.3) for fractional Cahn–Hilliard equation to construct mixed-type
linear finite element procedure.

The weak formulation (2.3) can be rewritten in the following variational form: Find u ∈ Hr,0 and w ∈ Hs,0 to satisfy

(∂tu, σ ) + ⟨Tsw, σ ⟩ = 0, ∀ σ ∈ Hs,0,

(w, v) = K ⟨Tru, v⟩ + a(u3, v) + b(u, v), ∀ v ∈ Hr,0,

u(x, 0) = u0(x).
(3.4)
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For positive integers M and N , we define a uniform partition forΩ = [0, 1] by xi = ih, i = 0, 1, 2, . . . ,M with h = 1/M ,
and for time interval [0, T ] by tn = nτ for n = 0, 1, . . . ,N with time step τ = T/N . Upon the space partition, we define
the two finite element spaces as

Vh = Wh = {vh ∈ C(Ω) : vh|Ii∈ P1(Ii), i = 1, 2, . . . ,M; vh(0) = vh(1) = 0},

where P1(Ii) denote the set of polynomials of degree not bigger than 1 on the interval Ii = (xi−1, xi).
We then define the fully discrete mixed-type finite element procedure of (3.4) as to find (un

h, w
n
h) ∈ Vh ×Wh such that

(
un
h − un−1

h

τ
, σh) + ⟨Tswn

h, σh⟩ = 0, ∀ σh ∈ Wh,

(wn
h, vh) = K ⟨Trun

h, vh⟩ + a((un
h)

3, vh) + b(un−1
h , vh), ∀ vh ∈ Vh.

(3.5)

Let ϕi(x) be the inner nodal base function at xi, i = 1, 2, . . . ,M − 1 with the structure

ϕi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − xi−1

h
, x ∈ (xi−1, xi],

xi+1 − x
h

, x ∈ (xi, xi+1],

0, others

and Vh = Wh = span{ϕi}M−1
i=1 , we then express the numerical solution un

h and wn
h as

un
h(x) =

M−1∑
i=1

un
i ϕi(x) := Un

·Φ,

wn
h(x) =

M−1∑
i=1

wn
i ϕi(x) := W n

·Φ,

(3.6)

where Φ is the linear base vector,

Un
= (un

1, u
n
2, . . . , u

n
M−1)

T and W n
= (wn

1, w
n
2, . . . , w

n
M−1)

T

are the unknown vectors.
Using these symbols we rewrite the fully discrete mixed-type finite element procedure (3.5) into the following matrix

form,

(a) τAsW n
+ HUn

= HUn−1,

(b) HW n
− (KAr + aB)Un

= bHUn−1,
(3.7)

where H is a symmetric and positive matrix

H = [(ϕi, ϕj)](M−1)×(M−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2h
3

h
6

0 · · · 0

h
6

2h
3

h
6

· · · 0

...
. . .

. . .
. . .

...

0
. . .

. . .
2h
3

h
6

0 0 · · ·
h
6

2h
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B = [((un
h)

2ϕi, ϕj)](M−1)×(M−1) is also a symmetric and positive matrix. Al, l = r, s are Toeplitz matrices with its ij-entry
⟨Tlϕi, ϕj⟩ calculated as follows,

⟨Tlϕi, ϕj⟩ =
Cl

2

∫
R

∫
R

(ϕi(x) − ϕi(y))(ϕj(x) − ϕj(y))
|x − y|1+2l dxdy

=
Cl

2

{∫
Ω

∫
R\Ω

(ϕi(x) − ϕi(y))(ϕj(x) − ϕj(y))
|x − y|1+2l dxdy

+

∫
R\Ω

∫
Ω

(ϕi(x) − ϕi(y))(ϕj(x) − ϕj(y))
|x − y|1+2l dxdy

+

∫
Ω

∫
Ω

(ϕi(x) − ϕi(y))(ϕj(x) − ϕj(y))
|x − y|1+2l dxdy

}
.
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Applying the properties of the operator (−∆)l to the compact support of linear Lagrange base functions and integrating
by parts to reduce these multiple integrals over unbounded domains, we obtain the integrals over finite interval,

⟨Tlϕi, ϕj⟩ =
Cl

2

{∫ 1

0

ϕi(y)ϕj(y)y−2l

l
dy +

∫ 1

0

ϕi(y)ϕj(y)(1 − y)−2l

l
dy

+

∫ 1

0

∫ y

0

(ϕi(x) − ϕi(y))(ϕj(x) − ϕj(y))
(y − x)1+2l dxdy

+

∫ 1

0

∫ 1

y

(ϕi(x) − ϕi(y))(ϕj(x) − ϕj(y))
(x − y)1+2l dxdy

}
,

which possesses the same form as those obtained on Page 7 in [19,20].
After a tedious calculation, we obtain, for l = 1/2,

⟨T 1
2
ϕi, ϕj⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cl

2

{
8 ln(2h) − 8 ln h

}
, |j − i| = 0,

Cl

2

{
7 ln h − 16 ln(2h) + 9 ln(3h)

}
, |j − i| = 1,

Cl

2

{
12 ln(2h) + 8 ln(4h) − 2 ln h − 18 ln(3h)

}
, |j − i| = 2,

Cl

2

{
6m2 ln(mh) + (m − 2)2 ln(mh − 2h)

+(m + 2)2 ln(mh + 2h) − 4(m − 1)2 ln(mh − h)

−4(m + 1)2 ln(mh + h)
}
, |j − i| = m,m = 3, . . . ,M − 2.

For l ̸= 1/2, we let S = l(1 − 2l)(2 − 2l)(3 − 2l)/Cl and calculate,

⟨Tlϕi, ϕj⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1−2l

S

{
−4 + 23−2l

}
, |j − i| = 0,

h1−2l

S

{
7
2

− 24−2l
+

33−2l

2

}
, |j − i| = 1,

h1−2l

S

{
3(j − i)3−2l

− 2(j − i + 1)3−2l
− 2(j − i − 1)3−2l

+
(j − i − 2)3−2l

2
+

(j − i + 2)3−2l

2

}
, |j − i| = m,m = 2, . . . ,M − 2.

This indicates that the value of the ij-entry only depends on the index m = |j − i|, the difference between the indices of
the ith row and the jth column, which ensures the entries in each descending diagonal are the same. That is, Al, l = r, s
are Toeplitz matrices.

Remark 3.1. To simply display the effectiveness of the methodology we only employ P1 finite element space in this
section, Sections 5 and 6. Certainly, we can use piecewise kth polynomial spaces to pursuit higher convergence rates. In
this case, the restriction Vh = Wh is required to form the invertible matrix H through the inner products ( u

n
h−un−1

h
τ

, σh) and
(wn

h, vh), and thus the solvability of the finite element scheme (3.5) is ensured.

4. Properties preserved by the finite element procedure

In this section we shall prove the solvability of the nonlinear system (3.7) and demonstrate that the discrete solution
preserves energy dissipation and equality laws. It is worthy to point out that the proof in this section is independent of
the finite element space index k. For this purpose, we first present two lemmas which play key roles in the proof of the
conclusions.

Lemma 4.1. Assume that X = (x1, x2, . . . , xM )T ∈ RM , Y = (y1, y2, . . . , yM )T ∈ RM and the matrix AM×M is symmetric and
positive definite. Then,

2XTA(X − Y ) ≥ XTAX − Y TAY . (4.8)
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Proof. Noting the symmetry of A and applying a simple calculation, we derive

0 ≤ (X − Y )TA(X − Y )
= XTAX − XTAY − Y TAX + Y TAY
= XTAX − 2XTAY + Y TAY

which yields

2XTAY ≤ XTAX + Y TAY .

Then, it follows that
2XTA(X − Y ) = 2XTAX − 2XTAY

≥ 2XTAX − (XTAX + Y TAY )
= XTAX − Y TAY .

This completes the proof. □

Lemma 4.2. Assume that X, Y ∈ RM , E is an invertible M × M matrix, P(X), Q (X) are M × M matrices whose matrix norms
depend Lipschitz continuously on X, and F0 and F1 are given vectors in RM . Then, the following equation

EY + τ 2P(X)X − τQ (X)F0 = F1 (4.9)

can define a mapping F : X ∈ RM
→ Y ∈ RM such that F has one and only one fixed point for sufficiently small parameter τ ,

0 < τ < 1.

Proof. For a given X ∈ RM , we easily obtain, from (4.9), there exists a unique

Y = E−1
{F1 − (τ 2P(X)X − τQ (X)F0)} ∈ RM

such that F(X) = Y , which implies that the mapping F is well-defined and continuous. Further, for X ∈ U(·,1) :=

{X; ∥X − E−1F1∥ ≤ 1},

∥Y − E−1F1∥ = ∥E−1
{τ 2P(X)X − τQ (X)F0}∥

≤ τ∥E−1
∥{∥P(X)∥∥X∥ + ∥Q (X)∥∥F0∥}

≤ τ∥E−1
∥ sup

X∈U(·,1)

{∥P(X)∥∥X∥ + ∥Q (X)∥∥F0∥},

from which, we have

∥Y − E−1F1∥ ≤ 1, for 0 < τ ≤ {∥E−1
∥ sup

X∈U(·,1)

{∥P(X)∥∥X∥ + ∥Q (X)∥∥F0∥}}−1.

This shows that the mapping F maps the ball centered at E−1F1 with radius 1 into itself. Thus, the Brouwer’s fixed point
theorem [21,22] ensures that the mapping F has at least one fixed point in U(·,1).

The remaining is to show that the fixed point is unique. Let Y1 and Y2 in U(·,1) are fixed points, we derive, by subtracting,

E(Y1 − Y2) = −τ 2P(Y1)Y1 + τQ (Y1)F0 + τ 2P(Y2)Y2 − τQ (Y2)F0
= −τ 2{P(Y1)(Y1 − Y2) + (P(Y1) − P(Y2))Y2} + τ (Q (Y1) − Q (Y2))F0.

After applying the boundedness of ∥E−1
∥ and the Lipschitz continuity of P and Q , we have the following bounds,

∥Y1 − Y2∥ ≤ Cτ∥Y1 − Y2∥,

in which the parameter τ can be selected small enough such that 0 < Cτ < 1
2 to force Y1 = Y2. This completes the

proof. □

Theorem 4.3. There exists a unique solution (un
h, w

n
h) ∈ Vh × Wh satisfying (3.7) for n = 1, 2, . . . ,N and sufficiently small

τ > 0.

Proof. The proof is based on two steps: the first is to construct, based on the algebraic equation (3.7), a continuous
mapping from a ball of RM−1 into itself, the second step is to apply Lemma 4.2 and the restriction on τ to prove the
mapping has one and only one fixed point.

Noting that H is invertible and thus solving Un with respect to W n from (3.7)(a)

Un
= Un−1

− τH−1AsW n. (4.10)

We recall un
h = Un

·Φ and substitute it into the second term and third term on the left-hand side of (3.7)(b) to eliminate
Un. Then, the obtained matrix B in (3.7)(b) and its entries are expressed by

((un
h)

2ϕi, ϕj) = ((Un
·Φ)2ϕi, ϕj)

= ((Un−1
·Φ − τH−1AsW n

·Φ)2ϕi, ϕj)
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and
BUn

= (B1 − 2τB2(W n) + τ 2B3(W n))Un

= (B1 − 2τB2(W n) + τ 2B3(W n))(Un−1
− τH−1AsW n)

with
B1(i, j) = ((Un−1

·Φ)2ϕi, ϕj),
B2(W n)(i, j) = ((Un−1

·Φ)(H−1AsW n
·Φ)ϕi, ϕj),

B3(W n)(i, j) = ((H−1AsW n
·Φ)2ϕi, ϕj).

The second term is obtained analogously. Collecting the expressions for these two terms we reformulate (3.7)(b) as the
following equation with the unknown W n,

EW n
+ aτ 2P(W n)W n

− aτQ (W n)Un−1
= F1, (4.11)

where

E = H + τKArH−1As + aτB1H−1As,

P(W n) = τB3(W n)H−1As − 2B2(W n)H−1As,

Q (W n) = τB3(W n) − 2B2(W n),

F1 = bHUn−1
+ KArUn−1

+ aB1Un−1.

Noticing that the matrices E, P and Q satisfy the assumptions of Lemma 4.2 we conclude that the mapping F defined by
(4.11) has one and only one fixed point, which is the unique solution W n to Eq. (3.7)(b), and thus Un. This completes the
proof. □

The restriction for τ being sufficiently small in Theorem 4.3 can be removed by applying its convex splitting property
of (3.5) and sharing the argument techniques in [23–27]. From this, a more sharpened result is presented as follows.

Theorem 4.4. There exists a unique solution (un
h, w

n
h) ∈ Vh × Wh to the finite element scheme (3.5) for τ > 0.

Proof. Noticing that H is invertible and thus solving W n with respect to Un from (3.7)(a)

W n
=

1
τ
A−1
s H(Un−1

− Un).

We substitute it into the second term and third term on the left-hand side of (3.7)(b) to eliminate W n and obtain

1
τ
HA−1

s H(Un
− Un−1) + KArUn

+ aBUn
+ bHUn−1

= 0.

We then construct the function F (X) with respect to variable X ∈ RM−1,

F (X) =
1
2τ

XTHA−1
s HX +

K
2
XTArX +

a
2
XTBX

−
1
τ
XTHA−1

s HUn−1
+ bXTHUn−1.

It is easily verified that the Hessian matrix for F (X), which is consisted of HA−1
s H , Ar and B, is positive definite, and thus

the function F is strictly convex. This implies that the minimizer of F (X) exists uniquely and the minimizer is just the
solution to the system

1
τ
HA−1

s H(Un
− Un−1) + KArUn

+ aBUn
+ bHUn−1

= 0.

This completes the proof. □

Theorem 4.5. The solution (un
h, w

n
h) ∈ Vh × Wh to the nonlinear system (3.5) satisfies the energy dissipation law, that is, for

n = 1, 2, . . . ,N,

Er (un
h) ≤ Er (un−1

h ) ≤ · · · ≤ Er (u0).

Proof. Choosing vh = wn
h in (3.5)(a), vh =

unh−un−1
h
τ

in (3.5)(b) and making subtraction, we obtain

⟨Tswn
h, w

n
h⟩ + K ⟨Trun

h,
un
h − un−1

h

τ
⟩

+a((un
h)

3,
un
h − un−1

h

τ
) + b(un−1

h ,
un
h − un−1

h

τ
) = 0.

(4.12)
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Noting the fact that

∥un
h∥

2
L2

= (un
h, u

n
h) = (Un)THUn,

∥un
h∥

2
H l = ⟨Tlun, un

⟩ = (Un)TAlUn, l = s, r,

and combining Lemma 4.1, we obtain

(un−1
h , un−1

h − un
h) = (Un−1)TH(Un−1

− Un)

≥
1
2
((Un−1)THUn−1

− (Un)THUn),

and

⟨Trun
h, u

n
h − un−1

h ⟩ = (Un)TAr (Un
− Un−1)

≥
1
2
((Un)TArUn

− (Un−1)TArUn−1).

In addition, we use the inequality ab ≤
1
2 (a

2
+ b2) to derive

((un
h)

3, un
h − un−1

h ) = ((un
h)

2, un
h(u

n
h − un−1

h ))

≥
1
2
((un

h)
2, (un

h)
2
− (un−1

h )2)

≥
1
4
((un

h)
4
− (un−1

h )4, 1).

Then, substituting these inequalities into (4.12) we derive

τ∥wn
h∥

2
Hs +

K
2
(∥un

h∥
2
Hr − ∥un−1

h ∥
2
Hr )

+
a
4
(∥un

h∥
4
L4 − ∥un−1

h ∥
4
L4 ) −

b
2
(∥un−1

h ∥
2
L2 − ∥un

h∥
2
L2 ) ≤ 0.

Namely,

τ∥wn
h∥

2
Hs +

K
2

∥un
h∥

2
Hr +

a
4
∥un

h∥
4
L4 +

b
2
∥un

h∥
2
L2

≤
K
2

∥un−1
h ∥

2
Hr +

a
4
∥un−1

h ∥
4
L4 +

b
2
∥un−1

h ∥
2
L2 .

It follows that Er (un
h) ≤ Er (un−1

h ) for n = 1, . . . ,N . This completes the proof. □

Further, analogous to the deduction in [23–27], we can rewrite (4.12) and replace the energy dissipation law to the
following energy equality law under a redefined energy.

Theorem 4.6. Let (un
h, w

n
h) ∈ Vh ×Wh be the solution to the nonlinear system (3.5). Then, the following new-energy equality

law holds for J = 1, 2, . . . ,N,

Er (u
J
h) + τ

J∑
n=1

∥wn
h∥

2
s +

K
2

J∑
n=1

∥un
h − un−1

h ∥
2
r −

b
2

J∑
n=1

∥un
h − un−1

h ∥
2

+
a
4

J∑
n=1

∥(un
h)

2
− (un−1

h )2∥2
+

a
2

J∑
n=1

∥un
h(u

n
h − un−1

h )∥2
= Er (u0

h),

(4.13)

of which the left hand side is defined as the new-energy expression.

Proof. Rewriting (4.12), we have

τ∥wn
h∥

2
s +

K
2

∥un
h∥

2
r −

K
2

∥un−1
h ∥

2
r +

K
2

∥un
h − un−1

h ∥
2
r +

a
4
∥un

h∥
4
L4

−
a
4
∥un−1

h ∥
4
L4 +

a
4
∥(un

h)
2
− (un−1

h )2∥2
+

a
4
∥un

h(u
n
h − un−1

h )∥2

+
b
2
∥un

h∥
2
−

b
2
∥un−1

h ∥
2
−

b
2
∥un

h − un−1
h ∥

2
= 0.
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Adding all the terms from n = 1 to n = J , we derive the following energy equality,

Er (u
J
h) + τ

J∑
n=1

∥wn
h∥

2
s +

K
2

J∑
n=1

∥un
h − un−1

h ∥
2
r −

b
2

J∑
n=1

∥un
h − un−1

h ∥
2

+
a
4

J∑
n=1

∥(un
h)

2
− (un−1

h )2∥2
+

a
2

J∑
n=1

∥un
h(u

n
h − un−1

h )∥2
= Er (u0

h).

This completes the proof. □

5. Fast bi-conjugate gradient stabilized algorithm (FBiCG)

The finite element scheme (3.5) is a nonlinear scheme, which can be solved through iteration algorithms such as
Newton’s iteration [28] or through CG algorithm for its linearized version. The linearized scheme can combine itself with
FFT and the Toeplitz matrix to develop a fast algorithm naturally. On the other hand, noticing that a direct application of
CG algorithm to the coefficient matrix in (3.7) may lead to a rapid growth of iterations, we rewrite the system (3.7) into
an equivalent system with the non-symmetric coefficient matrix

Ã =

⎛⎝As
1
τ
H

H −KAr − aB

⎞⎠
2(M−1)×2(M−1)

.

and then, we can employ the bi-conjugate gradient stabilized method (BiCG) [29] to solve its linearized version of (3.7).
Therefore, from now on, we linearize the nonlinear equation (3.7) by taking (un−1

h )2 to replace (un
h)

2 in the matrix B, as
commonly used techniques in real computation, and combine the BiCG algorithm, the fast Fourier transform (FFT) [30,31]
and the Toeplitz-like structure of the matrix to construct a fast BiCG (FBiCG) to solve the linearized version of (3.7).

By checking BiCG algorithm [29] carefully we find out that what causes the computation cost to be O(M2) and storage
O(M2) per iteration are the matrix–vector multiplications. We hope to modify these matrix–vector multiplications of BiCG
algorithm by combining the FFT and the Toeplitz-like structure of the coefficient matrix. The modifications and the related
computations are outlined as follows.

Computations for the decomposition of a circulant matrix. A M × M circulant matrix C can be decomposed as [30,31]

C = F−1
M diag(FMc)FM ,

where c is the first row vector of C , FM and F−1
M are the discrete Fourier transform matrix and its inverse with i2 = −1

and the entries

FM (j, ω) = exp(−
2π ijω
M

) and F−1
M (j, ω) =

1
M

exp(
2π ijω
M

), 0 ≤ j, ω ≤ M − 1.

Noticing that exp(− 2π ijω
M ) = exp(− 2π ik

M ) as jω = k mod (M), k = 0, 1, . . . ,M − 1 and j, ω = 0, . . . ,M − 1, we only need
calculate M entries to form the Fourier transform matrix FM , which needs O(M) multiplications and additions. Similarly,
the computations of F−1

M , the conjugate transpose of FM , is O(M), and the computations for FMc, which can be realized via
fast Fourier transform(FFT) for c, is O(M logM). Thus, the computational cost for the decomposition of circulant matrix C
is O(M logM).

Computations for circulant matrix–vector multiplication. According to [30,32,33], the circulant matrix–vector multi-
plication, which can be implemented by FFT or iFFT, needs O(MlogM) computational cost and O(M) memory.

Computations for Toeplitz matrix–vector multiplication. For a M ×M Toeplitz matrix TM , its each descending diagonal
from left to right is a same constant qi, i = 0,±1, . . .± (M −1), and thus it requires 2M storage. On the other hand, it can
be embedded into a 2M × 2M circulant matrix C2M [31]. Hence, for a vector x ∈ RM , TMx can be drawn from C2M (x, 0)T
via

C2MX =

(
TM DM
DM TM

)(
x
0

)
=

(
TMx
DMx

)
(5.14)

with computational cost O(MlogM). Here DM is a Toeplitz matrix whose each descending diagonal from left to right is qi,
i = 1, . . . ,M − 1, 0, 1 − M, . . . ,−1.

Applying the analysis above to the linearized scheme of (3.7) and noting that Al, l = r and s, are (M − 1) × (M − 1)
Toeplitz matrices, we can embed Al into a 2(M − 1)× 2(M − 1) circulant matrix C2(M−1). The matrix–vector multiplication
Alx can be drawn from C2(M−1)(x, 0)T as done in (5.14). This only requires the computational cost O(MlogM) and storage
O(M). Also, we notice that H and B are (M −1)× (M −1) tri-diagonal sparse matrices and require the computational cost
O(M) and storage O(M) for matrix–vector multiplications.

Collecting these deductions above, we modify the traditional BiCG to formulate our fast BiCG algorithm (FBiCG), which
is presented sentence by sentence in Algorithm 1, and give the conclusion concerning the efficiency of the FBiCG.
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Theorem 5.1. Compared with BiCG method, the FBiCG proposed in this section reduces computational cost and storage from
O(M2) and O(M2) to O(MlogM) and O(M) per iteration.

Algorithm 1 The FBiCG for Ak
2n×2nu

k
= bk−1(Here, set n = M − 1)

Input: u(0)
= (u(0)

1 ; u(0)
2 ) = (W k−1

;Uk−1)
Cl = (Al(1, 1), · · · , Al(n, 1), 0, Al(1, n), · · · , Al(1, 2))T , l = s, r

Compute:
x(1) = FFT(Cs); x(2) = FFT(Cr )
W̃ 0

= (W 0
; 0, · · · , 0); Ũ0

= (U0
; 0, · · · , 0)

v(1) = FFT(W̃ 0); y(1) = v(1). ∗ x(1); z(1) = iFFT(y(1))
v(2) = FFT(Ũ0); y(2) = v(2). ∗ x(2); z(2) = iFFT(y(2))
w(1)

= z(1)(1 : n); w(2)
= z(2)(1 : n)

r (0) = (r (0)1 ; r (0)2 ) = (bk−1
1 − τw(1)

− H · U0
; bk−1

2 − H · W 0
+ w(2)

+ B · U0)
Choose: r̃ = r (0)
for i = 1, 2, . . . do
ρi−1 = r̃T r (i−1)

if ρi−1 = 0 method fails;
if i = 1 then
p(i) = (p(i)1 ; p(i)2 ) = (r (i−1)

1 ; r (i−1)
2 )

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
p(i) = r (i−1)

+ βi−1(p(i−1)
− ωi−1ν

(i−1))
end if
p̃(i)1 = (p(i)1 ; 0, · · · , 0); p̃(i)2 = (p(i)2 ; 0, · · · , 0)
v(1) = FFT(p̃(i)1 ); y(1) = v(1). ∗ x(1); z(1) = iFFT(y(1))
v(2) = FFT(p̃(i)2 ); y(2) = v(2). ∗ x(2); z(2) = iFFT(y(2))
w(1)

= z(1)(1 : n); w(2)
= z(2)(1 : n)

ν(i) = (ν(i)1 ; ν
(i)
2 ) = (τw(1)

+ H · p(i)2 ;H · p(i)1 − w(2)
− B · p(i)2 )

αi = ρi−1/r̃Tν(i)

s = (s1; s2) = (r (i−1)
1 − αiν

(i)
1 ; r (i−1)

2 − αiν
(i)
2 )

If s small enough: u(i)
= u(i−1)

+ αip(i)

s̃(i)1 = (s(i)1 ; 0, · · · , 0); s̃(i)2 = (s(i)2 ; 0, · · · , 0);
v(1) = FFT(s̃(i)1 ); y(1) = v(1). ∗ x(1); z(1) = iFFT(y(1))
v(2) = FFT(s̃(i)2 ); y(2) = v(2). ∗ x(2); z(2) = iFFT(y(2))
w(1)

= z(1)(1 : n); w(2)
= z(2)(1 : n)

t = (t1; t2) = (τw(1)
+ H · s2;H · s1 − w(2)

− B · s2)
ωi = tT s/tT t
u(i)

= u(i−1)
+ αip(i) + ωis

r (i) = s − ωit
Check convergence; continue if necessary

end for
Output: uk

= u(i)

6. Numerical experiments

We carry out two types of numerical experiments to investigate the performance of the finite element procedure and
the corresponding FBiCG algorithm. The first one is to test the convergence rates and computation cost, then compare the
results with other existing algorithms. The second is to test their abilities of the preservation of physical characteristics
such as mass conservation, energy laws, phase separation and tunable sharpness. These experiments are implemented by
Matlab program on a family computer with configuration: Intel(R) Core(TM) i5-4590 CPU 3.3 GHz and 4 GB RAM.

6.1. Tests on the efficiency of the finite element procedure and FBiCG

Example 1. Assume Ω = [0, 1], T = 1, K = 1, a = 1, b = −1. The analytic solution is prescribed to be

u(x, t) = x2(1 − x)2et ∈ H2+γ
0 (Ω) and w(x, t) = x(1 − x)et ∈ H1+γ

0 (Ω)
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Fig. 1. The initial value, solution and numerical solution at t = 1.

with the initial conditions

u(x, 0) = x2(1 − x)2, w(x, 0) = x(1 − x)

and the source terms f1 and f2,

f1 =x2(1 − x)2et + Cs

{
x1−2set

2s(1 − 2s)
+

(1 − x)1−2set

2s(1 − 2s)
−

x2−2set

s(1 − 2s)(2 − 2s)

−
(1 − x)2−2set

s(1 − 2s)(2 − 2s)

}
,

f2 =x(1 − x)et − KCr

{
x2−2ret

r(1 − 2r)(2 − 2r)
+

(1 − x)2−2ret

r(1 − 2r)(2 − 2r)

−
6x3−2ret

r(1 − 2r)(2 − 2r)(3 − 2r)
−

6(1 − x)3−2ret

r(1 − 2r)(2 − 2r)(3 − 2r)

+
12x4−2ret

r(1 − 2r)(2 − 2r)(3 − 2r)(4 − 2r)
+

12(1 − x)4−2ret

r(1 − 2r)(2 − 2r)(3 − 2r)(4 − 2r)

}
− bx3(1 − x)3e3t − ax2(1 − x)2e2t .

Here, γ ∈ (0, 1
2 ) can be selected as close to 1

2 as possible [6–9].

Remark 6.1. Considering the facts that the main aim of this numerical example is to verify its computing efficiency of
FBiCG, and the closed form of (1.2) is hardly available, we have to construct such an exact solution by adding the nonzero
source terms, without weakening the computing difficulties resulted from the non-locality of the fractional operators.
This equation may be thought as a transformed version of the corresponding fractional Cahn–Hilliard equation (1.2) with
non-homogeneous boundary conditions. Consequently, the meaningful interval for the transformed solution u is changed
to [0, e

16 ] from [−1, 1].

We use this example to test the efficiency on convergence rates in space and time at t = 1, and to test computation
costs up to t = 1. The calculated results are presented in Fig. 1 and Tables 1–5. Fig. 1 shows the comparisons for the
initial value, the exact solution and the numerical solution at t = 1.

Tables 1 and 2 test the spatial convergence rates for ∥Ihu− uh∥Hr,0 and ∥Ihw−wh∥Hs,0 with the time increment τ = h2

for r = 2/3, s = 1/3 and τ = h3 for r = 2/3, s = 5/6, the errors between the finite element solution (uh, wh) and the
linear interpolation (Ihu, Ihw) of the exact solution (u, w), for fixed r and different s. The convergence rates for u are at
least 1.7 as r =

2
3 , s =

1
3 and 1.4 as r =

2
3 , s =

5
6 , which are not lower than its interpolation error min{2, 2+γ }−r ≈ 1.33.

The convergence rates for w are at least 1.76 as r =
2
3 , s =

1
3 and 0.74 as r =

2
3 , s =

5
6 , which are not lower than its

interpolation errors min{2, 1 + γ } − s ≈ 1.17 as s =
1
3 and 0.67 as s =

5
6 . The results also show that the convergence

rates of FBiCG for u and w are almost the same as the Newton’s algorithm does.
Tables 3 and 4 show that the temporal convergence rates for u and w are almost equal to 1 for r = 2/3, s = 1/3

and r = 2/3, s = 4/5 with the spatial increment h = τ 2, which are consistent with the theoretical expectations for the
backward Euler scheme. This also shows that the temporal convergence rates for u and w are a little bit higher than those
of Newton’s algorithm.
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Table 1
Spatial errors and convergence rates for ∥Ihu − uh∥Hr,0 .

r = 2/3 h Newton’s Rate FBiCG Rate

s = 1/3 2−3 4.214572448E−03 4.230172050E−03
2−4 1.425158899E−03 1.56 1.428530430E−03 1.62
2−5 4.409662874E−04 1.69 4.416794448E−04 1.73
2−6 1.317504169E−04 1.74 1.319009008E−04 1.76
2−7 3.865339671E−05 1.77 3.868534126E−05 1.78

s = 5/6 2−3 4.572250166E−03 4.575099755E−03
2−4 1.711169460E−03 1.42 1.711545111E−03 1.44
2−5 5.978203662E−04 1.52 5.978702263E−04 1.53
2−6 2.140711079E−04 1.48 2.140777889E−04 1.49
2−7 8.158504985E−05 1.40 8.158590603E−05 1.40

Table 2
Spatial errors and convergence rates for ∥Ihw − wh∥Hs,0 .

r = 2/3 h Newton’s Rate FBiCG Rate

s = 1/3 2−3 7.945480243E−03 7.916795736E−03
2−4 2.135531933E−03 1.89 2.128326044E−03 1.89
2−5 5.808970898E−04 1.88 5.791599917E−04 1.87
2−6 1.619746397E−04 1.84 1.615386331E−04 1.83
2−7 4.754414866E−05 1.77 4.745417998E−05 1.76

s = 5/6 2−3 1.125758385E−02 1.125594841E−02
2−4 5.329058002E−03 1.08 5.328897215E−03 1.09
2−5 2.804765013E−03 0.93 2.804750383E−03 0.93
2−6 1.596474049E−03 0.81 1.596472836E−03 0.81
2−7 9.534104874E−04 0.74 9.534104178E−04 0.74

Table 3
Temporal errors and convergence rates for ∥Ihu − uh∥Hr,0 .

r = 2/3 τ Newton’s Rate FBiCG Rate

s = 1/3 1/8 3.685041081E−03 1.991127989E−03
1/10 3.036427736E−03 0.87 1.583257182E−03 1.02
1/12 2.576300059E−03 0.90 1.318463339E−03 1.00
1/14 2.235275507E−03 0.92 1.131004037E−03 0.99
1/16 1.973147111E−03 0.93 9.907809489E−04 0.99

s = 4/5 1/8 5.494343271E−03 1.044545905E−03
1/10 4.532660927E−03 0.86 7.958475702E−04 1.22
1/12 3.850359950E−03 0.89 6.460511657E−04 1.14
1/14 3.343923266E−03 0.91 5.450433400E−04 1.10
1/16 2.954027229E−03 0.93 4.719842117E−04 1.08

Table 4
Temporal errors and rates for ∥Ihw − wh∥Hs,0 .

r = 2/3 τ Newton’s Order FBiCG Order

s = 1/3 1/8 6.587203592E−03 3.649569961E−03
1/10 5.289138492E−03 0.98 2.892873465E−03 1.04
1/12 4.426584275E−03 0.98 2.403511137E−03 1.02
1/14 3.808791569E−03 0.98 2.058423962E−03 1.01
1/16 3.343498632E−03 0.98 1.801080699E−03 1.00

s = 4/5 1/8 3.691532710E−03 2.552985169E−03
1/10 2.832449976E−03 1.19 1.885641568E−03 1.36
1/12 2.303708874E−03 1.13 1.491400599E−03 1.29
1/14 1.944064915E−03 1.10 1.231990030E−03 1.24
1/16 1.682920953E−03 1.08 1.048677194E−03 1.21

Table 5 tests the efficiency of the FBiCG algorithm. We measure the time for the complete simulation until t = 1 with
the time increment τ = h2 for r = 2/3, s = 1/3 and τ = h3 for r = 2/3, s = 5/6. We easily see that as the space step
h becomes smaller and smaller or equivalently the scale of the equation to be solved becomes larger and larger, the CPU
time consumed by the FBiCG is much less than that of the Gauss elimination, Newton’s algorithm and the BiCG, and the
iterations are the same as BiCG’s, which do not scale with M . For example, the CPU time of FBiCG is 0.5 h compared to
the Gauss elimination’s 14.55 h, Newton’s 2.45 h and the BiCG’s 6.37 h respectively as h = 2−8, r =

2
3 , s =

1
3 .
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Table 5
Computing efficiency of Gauss, Newton’s, BiCG and FBiCG.
r = 2/3 h Gauss Newton’s BiCG FBiCG

CPU CPU Iter. CPU Iter. CPU Iter.

s = 1/3 2−3 0 s 0 s 3 0.05 s 9 0.08 s 9
2−4 0.05 s 0.05 s 2 0.68 s 17 0.70 s 17
2−5 1.86 s 0.33 s 2 4.51 s 26 4.86 s 27
2−6 54.1 s 24.4 s 2 71.1 s 48 32.6 s 47
2−7 27.5 m 5.72 m 2 22.3 m 73 5.10 m 74
2−8 14.55 h 2.45 h 2 6.38 h 91 31.7 m 91

s = 5/6 2−3 0 s 0.06 s 2 0.44 s 9 0.64 s 9
2−4 0.95 s 0.75 s 2 7.50 s 15 8.55 s 15
2−5 58.52 m 11.65 s 2 2.22 m 23 2.06 m 23
2−6 0.95 h 0.4 h 2 0.73 h 27 0.34 h 27
2−7 58.7 h 12.22 h 2 18.68 h 30 4.32 h 30

Fig. 2. Mass conservation for r = 2/3, s = 1/3.

These results demonstrate that the finite element procedure (3.5) possesses ideal temporal and spatial approximation
ability and the FBiCG algorithm evidently improves the computational efficiency compared to the existing algorithms.

6.2. Tests on physical characteristics preserved by the finite element solution

Example 2. Let b = −1, h = 1/100, τ = 1/1200. The initial function is prescribed to be [34]

u(x, 0) = 100x2(x − 1)2(x −
1
2
).

We use this example by taking K = 0.002 and a = 1 to test the abilities of the finite element solution of (3.5) to
preserve the mass conservation, energy laws and phase separation for fixed s and r . The corresponding numerical results
are plotted in Figs. 2–9. We also use this example by taking different r, s, K , a to test the influences of these parameters
on the interface width. The numerical results are presented by Figs. 10–14, respectively.

Mass Conservation. The classic Cahn–Hilliard equation (1.1) is derived by the continuity equation and therefore the
mass conservation is preserved. However, if we multiply the first equation of its fractional version (1.2) by the constant
function 1 and then integrate, we find out that ⟨Tsw, 1⟩ ̸= 0 may destroy the mass balance due to the operator being
defined over R. This may reflect a fact in physics that a small amount of the mass may be transported to R\Ω through
the fractional flux. Nevertheless, we do think that its fractional version (1.2) should inherit, at least in part, this very
important physical property—mass conservation. In fact, our numerical results plotted in Figs. 2 and 3 also confirm this
conjecture. Fig. 2 shows that the mass jumps in the scale of 10−15 at the very beginning, and then begins to be conserved
after t ≈ 6.4 s. In Fig. 3, the mass conservation is going to be preserved after t ≈ 5.83 s. This demonstrates that the
finite element solution to (3.5) almost preserves the mass conservation and the fractional Cahn–Hilliard equation inherits
partially the mass conservation properties from its integer version (1.1).

Energy Law. The energy laws are very important physical properties to reflect the energy conversion among different
substances. It has been proved in [10] that the energy dissipation law holds for the fractional Cahn–Hilliard equation
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Fig. 3. Mass conservation for r = 3/5, s = 2/3.

Fig. 4. Energy dissipation for r = 2/3, s = 1/3.

Fig. 5. Energy dissipation for r = 3/5, s = 2/3.
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Fig. 6. Energy conservation for r = 2/3, s = 1/3.

Fig. 7. Energy conservation for r = 3/5, s = 2/3.

Fig. 8. Coarse graining for r = 2/3, s = 1/3.



F. Wang, H. Chen and H. Wang / Journal of Computational and Applied Mathematics 356 (2019) 248–266 263

Fig. 9. Coarse graining for r = 3/5, s = 2/3.

Fig. 10. Tunable sharpness for fixed s at t = 166.7.

Fig. 11. Tunable sharpness for fixed s at t = 166.7.
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Fig. 12. Tunable sharpness for fixed r at t = 166.7.

Fig. 13. Tunable sharpness for fixed K at t = 166.7.

Fig. 14. Tunable sharpness for fixed a at t = 166.7.
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and the finite element procedure (3.5) also possesses these energy dissipation law by Theorem 4.5. We further prove the
new-energy conservation law under the redefined energy in Theorem 4.6. Our numerical results sketched in Figs. 4 and 5
show that the total energy decreases with time for different indices of r and s. The results in Figs. 6 and 7 show that the
new-energy is kept constant in the scale of 10−4. The numerical experiments confirm again that the energy dissipation
and equality laws are preserved by the finite element procedure (3.5) and the fractional Cahn–Hilliard equation (1.2).

Phase Separation. The spatial patterns with different r and s represented by the numerical solutions in Figs. 8 and
9 correspond to the physical phenomenon of a coarse graining process as the time increases. We can see that the final
numerical solutions of Figs. 8 and 9 correspond exactly to the monotone and smooth solution that is the global minimizer
of the total energy, which means that the phase separation is achieved.

Tunable Sharpness. ‘‘Tunable sharpness’’ refers to the influences of the index of temporal fractional derivative on the
width of the interfaces in the simulation for the fractional Allen–Cahn equation [35,36]. Here we borrow this name to
describe the influences of the indices r and s on the width of the interfaces or the influences of the diffusion coefficient
K and the double-well potential parameter a on the width of the interfaces, at t = 166.7 respectively.

The effect of parameters r and s on interface width. We test the tunable sharpness for fixed s =
1
4 or s =

4
7 against

different r by Figs. 10 and 11, respectively. The numerical results demonstrate that as r increases, the corresponding
widths of the equilibrium state are becoming wider a bit. The numerical results in Fig. 12 show that, for fixed r , the
width of the interface becomes wider and wider as s increases.

The effect of parameters K and a on interface width. Figs. 13 and 14 display the effect of parameters K and a on
interface width, respectively. As K or a increases, the interface thickness, proportional to

√
Ka, becomes wider and the

absolute value of equilibrium state is
√

|b|
a . These are in accordance with the observations of the integer Cahn–Hilliard

equation.
These results are reasonable since the diffusive ability of the components becomes stronger as r, s or K , a increase.
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