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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD

MODELS ON LIPSCHITZ DOMAINS

KAIBO HU, WEIFENG QIU, AND KE SHI

Abstract. We discuss a class of magnetic-electric fields based finite element schemes for stationary

magnetohydrodynamics (MHD) systems with two types of boundary conditions. We establish a key

L3 estimate for divergence-free finite element functions for a new type of boundary conditions. With

this estimate and a similar one in [24], we rigorously prove the convergence of Picard iterations

and the finite element schemes with weak regularity assumptions. These results demonstrate the

convergence of the finite element methods for singular solutions.

1. Introduction

Magnetohydrodynamics (MHD) models have various important applications in liquid metal indus-

try, controlled fusion and astronomy etc. There have been extensive discussions on numerical methods

for MHD models. However, due to the nonlinear coupling and rich structures of MHD systems, the

numerical simulation still remains a challenging and active research area. This paper is devoted to the

analysis of a class of stable and structure-preserving finite element methods.

We consider the following stationary MHD system on a polyhedral domain Ω:




(u · ∇)u−R−1
e ∆u− Sj ×B +∇p = f ,

j −R−1
m ∇×B = 0,

∇×E = 0,

∇ ·B = 0,

∇ · u = 0,

j = E + u×B.

(.)

Here u is the fluid velocity, p is the fluid pressure, j is the current density, E and B are the electric

and magnetic fields respectively. The system is characterized by three parameters: the hydrodynamic

Reynolds number Re, the magnetic Reynolds number Rm and the coupling number S.

We mainly consider the following type of boundary conditions:

u = 0, B · n = 0, E × n = 0, on ∂Ω, (.)
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2 KAIBO HU, WEIFENG QIU, AND KE SHI

where n is the unit normal vector of ∂Ω. We also consider an alternative boundary condition c.f., [17]:

u = 0, B × n = 0, E · n = 0, on ∂Ω. (.)

This paper mainly focuses on the error estimates of the proposed FEM. For the sake of simplicity, we

only consider above two homogeneous boundary conditions. We refer to [14, 27] for a more comprehen-

sive discussion on the practical aspects such as boundary conditions and dimensionless parameters of

the MHD systems. Finite element discretizations of the MHD system (.) have a long history. Based

on the function and finite element spaces for the magnetic variable B, these schemes can be classified

as H1-, H(curl)- and H(div)-based formulations. Gunzburger [17] studied a finite element method

where B was discretized in H1 with the Lagrange elements. With certain conditions on the boundary

data and right hand side, Gunzburger [17] proved the existence and uniqueness of the weak solutions

and established optimal error estimates for the finite element methods. The domain is assumed to

be bounded in R3 which is either convex or has a C1,1 boundary. Under this assumption, the true

solution is smooth. And the convergence proof in [17] also relies on this assumption. To remove this

restriction on the domain, Schötzau [32] proposed another variational formulation with the magnetic

variable in H(curl). In the finite element scheme based on this formulation, B is discretized in the

H(curl)-conforming Nédélec spaces [28, 29] and the quasi-optimal convergence of the approximation

solutions was shown in [32]. We refer to, e.g., [12, 16, 18, 19, 13, 4, 34, 36, 38] for some variants and

the convergence analysis of iterative methods and finite element discretizations.

For MHD systems, magnetic Gauss’s law plays an important role in both physics (nonexistence of

magnetic monopole) and numerical simulations (c.f., [7, 11]). However, in the above H(curl) based

approach, magnetic Gauss’s law is only preserved in the weak sense. One way to obtain schemes with

precisely preserved magnetic Gauss’s law is to use the vector potential of B, see [1, 21, 22] and the

references therein. Since the vector potential belongs to H(curl), this method also falls in the category

of H(curl) based formulations.

To preserve magnetic Gauss’s law precisely on the discrete level with electric and magnetic fields as

variables, a class of finite element schemes was developed in [23, 24] for the time dependent and the

stationary MHD systems respectively. The magnetic field B is discretized by the H(div) conforming

Raviart-Tomas [31] or BDM [9] elements. An electric variable, either the electric field E in [23] or

the current density j in [24], is retained in the formulation and discretized by the H(curl) conforming

elements in the same discrete de Rham complex.

In this paper, we prove the convergence of the H(div) based methods for stationary MHD problems

with weak regularity assumptions. Several variants of this type of schemes exist, and we choose to

consider a B-E based formulation in the discussions below. This formulation is the stationary case

of [23] and differs from the B-j formulation in [24] by a projection of nonlinear terms (see Section

4 below for details). Therefore we do not claim the discretization studied in this paper as a brand

new method, although the precise formulation has not appeared in the literature to the best of our

knowledge.

To show the convergence with both types of boundary conditions, we extend the key Hodge mapping

and L3 estimates established in [24] to a new type of boundary condition. With an analysis based

on the reduced systems, we show that the schemes are unconditional stable and well-posed.We prove

the convergence of the finite element scheme by carefully choosing interpolation functions (see (.)

below). Comparing with the convergence analysis in [24] for the B-j based finite element methods, we
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS3

adopt a new strategy and, as a result, only assume weak regularity of the solutions in this paper ((.)

below). This demonstrates the convergence of the Picard iterations and the finite element schemes for

singular solutions.

We also show another strategy to impose the strong divergence-free condition, instead of using

Lagrange multipliers as in the previous work [24] by one of the authors and collaborator. We introduce

an augmented term (∇ ·B,∇ ·C) in the variational formulation. Thanks to the structure-preserving

properties, these two approaches are actually equivalent and Faraday’s law ∇ · B = 0 also holds

precisely on the discrete level.

The remaining part of this paper will be organized as follows. In Section 2, we provide some

preliminary settings. In Section 3, we give two types of L3 estimates for the discrete magnetic field. In

Sections 4, 5 and 6, we formulate the numerical method for the MHD models with boundary condition

(.), show that its Picard iterations are well-posed and convergent, and show the optimal convergence

of approximations to the velocity field and magnetic field even for singular solutions. In Section 7, we

generalize the numerical method for the MHD models with boundary condition (.), provide its basic

properties and show the optimal convergence.

2. Preliminaries

We assume that Ω is a bounded Lipschitz polyhedron. For the ease of exposition, we further assume

that Ω is contractable, i.e. there is no nontrivial harmonic form.

Using the standard notation for the inner product and the norm of the L2 space

(u, v) :=

∫

Ω

u · vdx, ‖u‖ :=

(∫

Ω

|u|2dx

)1/2

.

The scalar function space H1 is defined by

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)

}
.

For a function u ∈ W k,p(Ω), we use ‖u‖k,p for the standard norm in W k,p(Ω). When p = 2 we drop

the index p, i.e. ‖u‖k := ‖u‖k,2 and ‖u‖ := ‖u‖0,2. We define vector function spaces

H(curl,Ω) := {v ∈ L2(Ω),∇× v ∈ L2(Ω)},

and

H(div,Ω) := {w ∈ L2(Ω),∇ ·w ∈ L2(Ω)}.
With explicit boundary conditions, we define

H1
0 (Ω) :=

{
v ∈ H1(Ω) : v |∂Ω = 0

}
,

H0(curl,Ω) := {v ∈ H(curl,Ω),v × n = 0 on ∂Ω},
and

H0(div,Ω) := {w ∈ H(div,Ω),w · n = 0 on ∂Ω}.
We often use the following notation:

L2
0(Ω) :=

{
v ∈ L2(Ω) :

∫

Ω

v = 0

}
.

The corresponding norms in H1, H(curl) and H(div) spaces are defined by

‖u‖21 = ‖u‖2 + ‖∇u‖2,
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4 KAIBO HU, WEIFENG QIU, AND KE SHI

‖F ‖2curl := ‖F ‖2 + ‖∇ × F ‖2,

‖C‖2div := ‖C‖2 + ‖∇ ·C‖2.
For a general Banach space Y with a norm ‖ · ‖Y , the dual space Y ∗ is equipped with the dual

norm defined by

‖h‖Y ∗ := sup
06=y∈Y

〈h,y〉
‖y‖Y

.

For the special case that Y = H1
0 (Ω), the dual space Y ∗ = H−1(Ω) and the corresponding norm is

denoted by ‖ · ‖−1, which is defined by

‖f‖−1 := sup
06=v∈[H1

0 (Ω)]3

〈f ,v〉
‖∇v‖ .

In this paper, we will use C to denote a generic constant in inequalities which is independent of the

exact solution and the mesh size. For instance, we will need the following Poincaré’s inequality:

‖u‖0,6 ≤ C‖∇u‖, ∀ u ∈ H1
0 (Ω). (.)

Since the fluid convection frequently appears in subsequent discussions, we introduce a trilinear

form

L(w;u,v) :=
1

2
[((w · ∇)u,v)− ((w · ∇)v,u)].

Considering w as a known function, L(w;u,v) is a bilinear form of u and v.

Let Th be a triangulation of Ω, and we assume that the mesh is regular and quasi-uniform, so that

the inverse estimates hold [8]. We use Pk(Th) to denote the piecewise polynomial space of degree

k on Th. The finite element de Rham sequence is an abstract framework to unify the above spaces

and their discretizations, see e.g. Arnold, Falk, Winther [2, 3], Hiptmair [20], Bossavit [6] for more

detailed discussions. Figure 1 and Figure 2 show the commuting diagrams we will use. The electric

field E and the magnetic field B will be discretized in the middle two spaces respectively. Notice that

though projections in Figure 1 can be different from corresponding ones in Figure 2, we don’t need to

distinguish them in any analysis in this paper.

H0(grad)
grad−−−−→ H0(curl)

curl−−−−→ H0(div)
div−−−−→ L2

0yΠgrad

yΠcurl

yΠdiv

yΠ0

Hh
0 (grad)

grad−−−−→ Hh
0 (curl)

curl−−−−→ Hh
0 (div)

div−−−−→ L2,h
0

Figure 1. Continuous and discrete de Rham sequence - homogeneous boundary conditions

H(grad)
grad−−−−→ H(curl)

curl−−−−→ H(div)
div−−−−→ L2

yΠgrad

yΠcurl

yΠdiv

yΠ0

Hh(grad)
grad−−−−→ Hh(curl)

curl−−−−→ Hh(div)
div−−−−→ L2,h

Figure 2. Continuous and discrete de Rham sequence - no boundary condition
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS5

As we shall see, H(div) functions with vanishing divergence will play an important role in the study.

So we define on the continuous level

H0(div0,Ω) := {C ∈ H0(div,Ω) : ∇ ·C = 0},

and the finite element subspace

Hh
0 (div0,Ω) := {Ch ∈ Hh

0 (div,Ω) : ∇ ·Ch = 0}.

We use Vh to denote the finite element subspace of velocity uh, and Qh for pressure ph. There

are many existing stable pairs for Vh and Qh, for example, the Taylor-Hood elements [15, 5]. Spaces

Hh
0 (div,Ω) and L2,h

0 (Ω) are finite elements from the discrete de Rham sequence. For these spaces we

use the explicit names for clarity, and use the notation Vh and Qh for the fluid part to indicate that

they may be different from Hh
0 (grad,Ω) and L2,h

0 (Ω) in the de Rham sequence. We use V 0
h to denote

the discrete velocity space, i.e.

V 0
h := {vh ∈ Vh : (∇ · vh, qh) = 0, ∀qh ∈ Qh} .

There is a unified theory for the discrete de Rham sequence of arbitrary order [5, 2, 3]. In the case

n = 3, the lowest order elements can be represented as:

R ⊂- P3Λ0 d- P2Λ1 d- P1Λ2 d- P0Λ3 - 0,

R ⊂- P2Λ0 d- P1Λ1 d- P−1 Λ2 d- P0Λ3 - 0,

R ⊂- P2Λ0 d- P−2 Λ1 d- P1Λ2 d- P0Λ3 - 0,

R ⊂- P1Λ0 d- P−1 Λ1 d- P−1 Λ2 d- P0Λ3 - 0.

The correspondence between the language of differential forms and classical finite element methods is

summarized in Table 1.

To obtain compatible finite element schemes, below we require that the discrete spaces Hh
0 (curl,Ω),

Hh
0 (div,Ω) and L2,h

0 (Ω) belong to the same finite element de Rham sequence.

k Λkh(Ω) Classical finite element space

0 PrΛ0(T ) Lagrange elements of degree ≤ r
1 PrΛ1(T ) Nedelec 2nd-kind H(curl) elements of degree ≤ r
2 PrΛ2(T ) Nedelec 2nd-kind H(div) elements of degree ≤ r
3 PrΛ3(T ) discontinuous elements of degree ≤ r

0 P−r Λ0(T ) Lagrange elements of degree ≤ r
1 P−r Λ1(T ) Nedelec 1st-kind H(curl) elements of order r − 1

2 P−r Λ2(T ) Nedelec 1st-kind H(div) elements of order r − 1

3 P−r Λ3(T ) discontinuous elements of degree ≤ r − 1

Table 1. Correspondences between finite element differential forms and the classical

finite element spaces for n = 3 (from [2])
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6 KAIBO HU, WEIFENG QIU, AND KE SHI

As we shall see, it is useful to group the spaces to define

Xh := Vh ×Hh
0 (curl,Ω)×Hh

0 (div,Ω).

and group Qh × L2,h
0 (Ω) to define

Yh := Qh × L2,h
0 (Ω).

For the analysis, we also need to define a reduced space, where Eh is eliminated:

Wh := Vh ×Hh
0 (div,Ω).

Denote the kernel space

X00
h := V 0

h ×Hh
0 (curl,Ω)×Hh

0 (div0,Ω),

and

W 00
h := V 0

h ×Hh
0 (div0,Ω).

By definition, any (uh,Bh) ∈W 00
h satisfies (∇ · uh, qh) = 0, ∀qh ∈ Qh and ∇ ·Bh = 0.

In order to define appropriate norms, we introduce the discrete curl operator on the discrete level.

For any Ch ∈ Hh
0 (div,Ω), define ∇h ×Ch ∈ Hh

0 (curl,Ω) by:

(∇h ×Ch,Fh) = (Ch,∇× Fh), ∀Fh ∈ Hh
0 (curl,Ω). (.)

For any wh ∈ Hh
0 (curl,Ω), we define ∇h ·wh ∈ Hh

0 (grad,Ω) by

(∇h ·wh, vh) = −(wh,∇vh), ∀vh ∈ Hh
0 (grad,Ω). (.)

We define P : L2(Ω)→ Hh
0 (curl,Ω) to be the L2 projection

(Pφ,Fh) = (φ,Fh), ∀Fh ∈ Hh
0 (curl,Ω), φ ∈ L2(Ω).

We further define ‖ · ‖d as a modified norm of Hh
0 (div,Ω) by

‖Ch‖2d := ‖Ch‖2 + ‖∇ ·Ch‖2 + ‖∇h ×Ch‖2.

Now we define the norms for various product spaces. For space Yh, we define

‖(q, r)‖2Y := ‖q‖2 + ‖r‖2. (.)

For other product spaces, we define

‖(v,F ,C)‖2X := ‖v‖2 + ‖∇v‖2 + ‖∇ × F ‖2 + ‖F + v ×B−‖2 + ‖C‖2 + ‖∇ ·C‖2, (.)

∀(v,F ,C) ∈Xh,

and

‖(uh,Bh)‖2W := ‖uh‖21 + ‖Bh‖2d, ∀(uh,Bh) ∈Wh.

Here B− ∈ H(div,Ω) is a given function.

The constant SR−1
m will appear in the discussions below frequently, therefore we denote

α := SR−1
m .
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS7

3. Hodge mapping and Lp estimates for divergence-free finite elements

In this section we present some key L3 embedding results which are crucial for our analysis in the

following sections.

Theorem 1. For any function dh ∈ Hh
0 (div 0,Ω), we have

‖dh‖0,3 ≤ C‖∇h × dh‖,

where the generic constant C solely depends on Ω.

Theorem 1 and its proof can be found in [24, Theorem 1]. For the boundary condition given in

(.), we have similar estimates.

Theorem 2. For any function dh ∈ Hh(div 0,Ω), we have

‖dh‖0,3 ≤ C‖∇̃h × dh‖,

where ∇̃h × dh ∈ Hh(curl,Ω) satisfies

(∇̃h × dh,F ) = (dh,∇× F ), ∀F ∈ Hh(curl,Ω).

The generic constant C solely depends on Ω.

Proof. We define Z0 = H0(curl,Ω)∩H(div 0,Ω), Zh0 = Hh(div,Ω)∩H(div 0,Ω). Obviously, dh ∈ Zh0 .

We define an operator Hd : Zh0 → Z0 by

(∇× (Hddh),∇× v) = (∇̃h × dh,∇× v), ∀v ∈ Z0.

Obviously, Hd is well defined. Since Hddh ∈ Z0, we have

‖Hddh‖ 1
2 +δ ≤ C‖∇ × (Hddh)‖ ≤ C‖∇̃h × dh‖, (.)

where δ ∈ (0, 1
2 ].

We use the projections Πcurl and Πdiv in the commuting diagram in Figure 2.

Since ∇ · (dh − Πdiv(Hddh)) = 0 in Ω, there exists φh ∈ {v ∈ Hh(curl,Ω) : (v,∇s) = 0, ∀s ∈
Hh(grad,Ω)}, such that

∇× φh = dh −Πdiv(Hddh).

We consider the auxiliary problem:

∇×∇×ψ =∇× φh in Ω, (.)

∇ ·ψ =0 in Ω,

ψ × n =0 on ∂Ω.

Since ∇ · (∇× φh) = 0 in Ω, the auxiliary problem (.) is well-posed. Obviously, ∇×ψ satisfies

∇× (∇×ψ) =∇× φh in Ω,

∇ · (∇×ψ) =0 in Ω,

(∇×ψ) · n =0 on ∂Ω.

According to [20, Lemma 4.2], we have

‖∇ ×ψ‖ 1
2 +δ ≤ C‖∇ × φh‖ = C‖dh −Πdiv(Hddh)‖. (.)
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8 KAIBO HU, WEIFENG QIU, AND KE SHI

We claim that

‖∇ ×ψ − φh‖ ≤ Ch
1
2 +δ‖dh −Πdiv(Hddh)‖. (.)

Notice that by (.),

∇×Πcurl(∇×ψ) = Πdiv(∇×∇×ψ) = Πdiv(∇× φh) = ∇× φh.

Since Πcurl(∇×ψ),φh ∈ Hh(curl,Ω), there exists sh ∈ Hh(grad,Ω) such that

Πcurl(∇×ψ)− φh = ∇sh in Ω.

Since (∇×ψ) · n = 0 on ∂Ω, we have

(∇×ψ,Πcurl(∇×ψ)− φh) = (∇×ψ,∇sh) = 0.

By the construction of φh, we have

(φh,Π
curl(∇×ψ)− φh) = (φh,∇sh) = 0.

Thus

(∇×ψ − φh,Πcurl(∇×ψ)− φh) = 0.

So, by the above identify and (.), we have

‖∇ ×ψ − φh‖ ≤‖(∇×ψ − φh)− (Πcurl(∇×ψ)− φh)‖
=‖∇ ×ψ −Πcurl(∇×ψ)‖

≤Ch 1
2 +δ‖dh −Πdiv(Hddh)‖.

Therefore, the claim (.) is correct.

By the construction of Hd and the fact that ψ ∈ Z0,

(∇̃h × dh,∇×ψ) = (∇× (Hddh),∇×ψ) = (Hddh,∇×∇×ψ) = (Hddh,∇× φh).

By the fact that φh ∈ Hh(curl,Ω) and the above identity,

(dh,∇× φh) = (∇̃h × dh,φh)

=(∇̃h × dh,φh −∇×ψ) + (∇̃h × dh,∇×ψ)

=(∇̃h × dh,φh −∇×ψ) + (Hddh,∇× φh).

Thus we have

(dh −Hddh,dh −Πdiv(Hddh)) = (dh −Hddh,∇× φh) = (∇̃h × dh,φh −∇×ψ).

So we have

‖dh −Hddh‖2

=(dh −Hddh,dh −Πdiv(Hddh)) + (dh −Hddh,Π
div(Hddh)−Hddh)

=(∇̃h × dh,φh −∇×ψ) + (dh −Hddh,Π
div(Hddh)−Hddh)

≤‖∇̃h × dh‖ · ‖φh −∇×ψ‖+ ‖dh −Hddh‖ · ‖Πdiv(Hddh)−Hddh‖.

By applying (.) in the above inequality, we have

‖dh −Hddh‖ ≤ Ch
1
2 +δ‖∇̃h × dh‖. (.)
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS9

Let k0 be a positive integer such that Hh
0 (div 0,Ω) ⊂ [Pk0(Th)]3. We denote by Π the standard

L2-orthogonal projection onto [Pk0(Th)]3. Thus Πdh = dh. So, by the discrete inverse inequality and

the fact that ‖Πv‖0,3 ≤ C‖v‖0,3 for any v ∈ [L3(Ω)]3, we have

‖dh‖0,3 =‖Πdh‖0,3 ≤ ‖Π(dh −Hddh)‖0,3 + ‖Π(Hddh)‖0,3
≤C
(
‖h− 1

2 Π(dh −Hddh)‖+ ‖Hddh‖0,3
)

≤C
(
hδ‖∇h × dh‖+ ‖Hddh‖ 1

2 +δ

)
.

Since Hddh ∈ H0(curl,Ω) ∩H(div 0,Ω),

‖Hddh‖ 1
2 +δ ≤ C‖∇ × (Hddh)‖ ≤ C‖∇h × dh‖.

So, we can conclude that

‖dh‖0,3 ≤ C‖∇h × dh‖.

This completes the proof.

�

4. Variational formulations

4.1. Nonlinear scheme. We propose the following variational form for (.) with boundary condition

(.):

Problem 1. Find (uh,Eh,Bh) ∈ Xh and (ph, rh) ∈ Yh, such that for any (v,F ,C) ∈ Xh and

(q, s) ∈ Yh,

L(uh;uh,v) +R−1
e (∇uh,∇v)− S(jh ×Bh,v)− (ph,∇ · v) = 〈f ,v〉, (.a)

S(jh,F )− α(Bh,∇× F ) = 0, (.b)

α(∇×Eh,C) + (rh,∇ ·C) = 0, (.c)

− (∇ · uh, q) = 0, (.d)

(∇ ·Bh, s) = 0, (.e)

where jh is given by Ohm’s law: jh = Eh + uh × Bh. Here rh is the Lagrange multiplier which

approximates r = 0.

We verify some properties of the variational form Problem 1:

Theorem 3. Any solution for Problem 1 satisfies

(1) magnetic Gauss’s law:

∇ ·Bh = 0.

(2) Lagrange multiplier rh = 0, and the strong form

∇×Eh = 0,
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10 KAIBO HU, WEIFENG QIU, AND KE SHI

(3) energy estimates:

R−1
e ‖∇uh‖2 + S‖jh‖2 = 〈f ,uh〉, (.)

1

2
R−1
e ‖∇uh‖2 + S‖jh‖2 ≤

Re
2
‖f‖2−1, (.)

R−1
m ‖∇h ×Bh‖ ≤ ‖jh‖, (.)

‖∇h ×Bh‖ ≤ CR
1
2
e RmS

− 1
2 ‖f‖−1, (.)

‖Eh‖ ≤ CR
3
2
e RmS

− 1
2 ‖f‖2−1. (.)

Proof. The magnetic Gauss’s law is a direct consequence of (.e).

Taking C = ∇×Eh in (.c), we have ∇×Eh = 0. Therefore (.c) reduces to

(rh,∇ ·C) = 0, ∀C ∈ Hh
0 (div,Ω).

Since L2
0,h(Ω) = ∇ ·Hh

0 (div,Ω), we get rh = 0.

To obtain the first energy estimate, we take v = uh, F = Eh,C = Bh and q = ph in (.a) - (.d)

and add the equations together. The second energy estimate follows from the Young’s inequality

〈f ,uh〉 ≤ ‖f‖−1‖∇uh‖ ≤
1

2Re
‖∇uh‖2 +

1

2
Re‖f‖2−1.

Taking F = ∇h ×Bh in (.b) we have

R−1
m ‖∇h ×Bh‖2 = R−1

m (jh,∇h ×Bh) ≤ ‖jh‖‖∇h ×Bh‖,

which implies (.). Obviously, the estimate (.) is due to estimates (.) and (.).

Next we take F = Eh in (.b) and by the definition of jh we have

(Eh + uh ×Bh,Eh)−R−1
m (Bh,∇×Eh) = 0.

By the fact that ∇×Eh = 0 and the generalized Hölder’s inequality we have

‖Eh‖2 = −(uh ×Bh,Eh) ≤ ‖uh‖0,6‖Bh‖0,3‖Eh‖
≤ C‖∇uh‖‖∇h ×Bh‖‖Eh‖,

the last step is due to the Sobolev embedding results (.) and Theorem 1. The estimate (.) can be

obtained by combining the above estimate with (.) and (.). This completes the proof. �

Remark 1. From the above result we can see that the energy norm of the unknowns uh,Bh,Eh solely

depends on ‖f‖−1 and the physical constants Rm, Re, S. In addition, it is easy to verify that the exact

solution satisfies the same stability estimate

‖∇u‖ ≤ Re‖f‖−1, (.)

‖B‖0,3 + ‖∇ ×B‖ ≤ CR
1
2
e RmS

− 1
2 ‖f‖−1,

‖E‖ ≤ CR
3
2
e RmS

− 1
2 ‖f‖2−1.

Theorem 4. Problem 1 is well-posed.

In the remaining part of this section we prove the well-posedness of Problem 1. We will first recast

Problem 1 into an equivalent form ((.) and Problem 2) where E is formally eliminated. Then we

demonstrate that this equivalent form is well-posed using the Brezzi theory and the key L3 estimate

(Theorem 5). Then we can conclude with the well-posedness of Problem 1.
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS11

Using (.b), we have

Eh + P(uh ×Bh) = R−1
m ∇h ×B.

Now the Lorentz force has an equivalent form

− (jh ×Bh,v) = (Eh + P (uh ×Bh) ,v ×Bh) + ((I − P)(uh ×Bh),v ×Bh)

= R−1
m (∇h ×Bh,v ×Bh) + ((I − P)(uh ×Bh), (I − P)(v ×Bh)) . (.)

Even though the velocity field uh is smooth, the H(div) conformality of the magnetic field Bh cannot

guarantee uh×Bh ∈ H(curl,Ω). The term (I −P)(uh×Bh) on the right hand side of (.) measures

the deviation of uh ×Bh from Hh(curl) and ((I − P)(uh ×Bh), (I − P)(uh ×Bh)) can be regarded

as a penalty term.

Therefore (.) is equivalent to the following problem: Find (uh,Bh) ∈Wh and (ph, rh) ∈ Yh such

that for any (vh,Ch) ∈Wh and (qh, sh) ∈ Yh,




L(wh;uh,vh) +R−1
e (∇uh,∇vh)− α(∇h ×Bh,Bh × vh)

+ S ((I − P)(uh ×Bh), (I − P)(vh ×Bh))− (ph,∇ · vh) = (f ,vh),

− α(uh ×Bh,∇h ×Ch) + SR−2
m (∇h ×Bh,∇h ×Ch) + (rh,∇ ·Ch) = 0,

(∇ · uh, qh) = 0,

(∇ ·Bh, sh) = 0.

(.)

We note that the reduced system (.) has a similar form compared with the work by Gunzburger

[17] and Schötzau [32]. However, this similarity is only formal. The magnetic field B is discretized as

0-forms with the Lagrange finite elements in [17] and treated as 1-forms with the Nédélec elements in

[32]. In both approaches [17, 32], the curl operator can be evaluated on B in a straightforward way. In

contrast, B is discretized as a 2-form in (.). As a result, the discrete curl operator ∇h× is globally

defined by (.), which leads to a new mixed formulation. This also makes the analysis essentially

different from [17] or [32]. Compared with the B-j based scheme in [24], a quadratic term

S ((I − P)(uh ×Bh), (I − P)(vh ×Bh)) ,

comes into the reduced variational formulation (.). This is due to the different choice of variables.

Denote ψh = (wh,Gh), ξh = (uh,Bh), ηh = (vh,Ch) and xh = (ph, rh), yh = (qh, sh). Define

as (ψh; ξh,ηh) :=
1

2
[((wh · ∇)uh,vh)− ((wh · ∇)vh,uh)] +R−1

e (∇uh,∇vh)

− α (∇h ×Bh,Gh × vh) + S ((I − P)(uh ×Gh), (I − P)(vh ×Gh))

− α (uh ×Gh,∇h ×Ch) + SR−2
m (∇h ×Bh,∇h ×Ch) ,

and

bs(ξh,yh) := −(∇ · uh, qh) + (∇ ·Bh, sh).

Equation (.) can be recast into a mixed system:

Problem 2. Given θ ∈W ∗
h and ψ ∈ Y ∗h , find (ξh,xh) ∈Wh × Yh, such that





as(ξh; ξh,ηh) + bs(ηh,xh) = 〈θ,ηh〉, ∀ ηh ∈Wh,

bs(ξh,yh) = 〈ψ,yh〉, ∀yh ∈ Yh.
(.)

Theorem 5. Problem 2 is well-posed.
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12 KAIBO HU, WEIFENG QIU, AND KE SHI

We prove the existence of solutions to the discrete variational form. To use the Brezzi theory and

the fixed point theorem (see [15]), we need to show

• each term in (.) is bounded,

• the inf-sup condition for bs,

• coercivity of as on W 00
h .

We establish these conditions in the subsequent lemmas.

The boundedness of the variational form is a direct consequence of the key L3 estimate.

Lemma 1. The trilinear form as(·; ·, ·) and the bilinear form bs(·, ·) are bounded, i.e. there exists a

positive constant C such that

as(ψh; ξh,ηh) ≤ C‖ψh‖W ‖ξh‖W ‖ηh‖W , ∀ψh, ξh,ηh ∈Wh,

and

bs(ηh,yh) ≤ C‖ηh‖W ‖yh‖Y , ∀ηh ∈Wh,yh ∈ Yh.

Since we have used a stronger norm for Bh,Ch ∈ Hh
0 (div,Ω), the inf-sup condition for the bilinear

form bs(·, ·) becomes more subtle. Following a similar proof as shown in [24] for the B-j formulation,

we get:

Lemma 2. (inf-sup conditions for bs(·, ·)) There exists a positive constant γ such that

inf
yh∈Yh

sup
ηh∈Wh

bs(ηh,yh)

‖ηh‖W ‖yh‖Y
≥ γ > 0.

The coercivity of as(·; ·, ·) holds on the kernel space W 00
h .

Lemma 3. On W 00
h we have

as(ξh; ξh, ξh) ≥ γ‖ξh‖2W ,

where γ is a positive constant.

Proof. We note that

as(ξh; ξh, ξh) = R−1
e ‖∇uh‖2 + S‖(I − P) (uh ×Bh) ‖2 + SR−2

m ‖∇h ×Bh‖2.

Discrete Poincaré’s inequality holds on W 00
h :

‖Bh‖ . ‖∇h ×Bh‖.

This completes the proof. �

By Lemma 1, Lemma 2 and Lemma 3, the nonlinear variational form (.) is well-posed. Therefore

(.) has at least one solution. For suitable source and boundary data, the solution is also unique.
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS13

4.2. Picard iterations. We propose the following Picard type iterations for Problem 1:

Algorithm 1 (Picard iterations for nonlinear schemes). Given (un−1,Bn−1), find (un,En,Bn) ∈Xh

and (pn, rn) ∈ Yh, such that for any (v,F ,C) ∈Xh and (q, s) ∈ Yh,

L(un−1;un,v) +R−1
e (∇un,∇v)− S(jnn−1 ×Bn−1,v)− (pn,∇ · v) = 〈f ,v〉, (.)

S(jnn−1,F )− α(Bn,∇× F ) = 0, (.)

α(∇×En,C) + (rn,∇ ·C) = 0, (.)

−(∇ · un, q) = 0, (.)

(∇ ·Bn, s) = 0, (.)

where jnn−1 is defined by jnn−1 = En + un ×Bn−1.

The convergence of Picard iterations is summarized in the following theorem:

Theorem 6. If both R2
e‖f‖−1 and ReR

3
2
m‖f‖−1 are small enough, then the method (.) (Problem 1)

with the boundary condition (.) has a unique solution, and the solution of the Picard iteration

(Algorithm 1) converges to it with respect to the norms defined by (.) and (.).

We skip the proof of Theorem 6, since it is a simpler version of the proofs of the Theorem 13 in

Section 5.

The divergence-free property, compatibility and energy estimates can be obtained in an analogous

way:

Theorem 7. For any possible solution to Algorithm 1:

(1) magnetic Gauss’s law holds precisely:

∇ ·Bn = 0.

(2) the Lagrange multiplier rn = 0, therefore (.) has the form

∇×En = 0.

(3) the energy estimates hold:

R−1
e ‖∇un‖2 + S‖jnn−1‖2 = 〈f ,un〉,

and

1

2
R−1
e ‖∇un‖2 + S‖jnn−1‖2 ≤

1

2
Re‖f‖2−1. (.)

We will use the Brezzi theory to prove the well-posedness of the Picard iterations. We first

recast Picard iterations (Algorithm 1) as follows. Given (u−,B−) ∈ Wh. For U = (u,E,B),

V = (v,F,C) ∈Xh and (p, r), (q, s) ∈ Yh, define bilinear forms as,L(·, ·) and b(·, ·):

as,L(U,V) :=
1

2
L
(
u−;u,v

)
+R−1

e (∇u,∇v) + S(E + u×B−,F + v ×B−)

− α(B,∇× F ) + α(∇×E,C).

Given a nonlinear iterative step, the mixed form of the iterative scheme in Algorithm 1 can be

written as: for any h = (f , r, l) ∈ X∗h and g ∈ Y ∗h , find (U,x) ∈ Xh × Yh, such that for any
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14 KAIBO HU, WEIFENG QIU, AND KE SHI

(V,y) ∈Xh × Yh,




as,L(U,η) + bs(V,x) = 〈h,η〉,
bs(U,y) = 〈g,y〉.

(.)

To prove the well-posedness of (.) based on the Brezzi theory, we need to verify the boundedness

of each term, the inf-sup condition of bs(·, ·) and the coercivity of as,L(·, ·) on X00
h .

For the inf-sup condition of bs(·, ·), we have:

Lemma 4. (inf-sup conditions of bs(·, ·)) There exists a positive constant γ such that

inf
y∈Yh

sup
V∈Xh

bs(V,y)

‖V‖X‖y‖Y
≥ γ > 0.

Proof. There exists a positive constant γ0 > 0 such that

inf
q∈Qh

sup
v∈Vh

−(∇ · v, q)
‖v‖1‖q‖

≥ α0 > 0.

Consequently, for any q ∈ Qh there exists vq ∈ Vh, such that

−(∇ · vq, q) ≥ γ0‖q‖2,

and

‖vq‖1 = ‖q‖.
For the magnetic multiplier, we have ∇ ·Hh

0 (div,Ω) = L2
0,h(Ω). For any s ∈ L2

0,h(Ω), there exists

Cs ∈ Hh
0 (div,Ω) such that ∇ ·Cs = s, ‖Cs‖div ≤ C‖s‖, where C is a positive constant.

For any V = (q, s), take y = (vq,Cs). Then

bs(V,y) = −(∇ · vq, q) + (∇ ·Cs, s) ≥ γ0‖q‖2 + ‖s‖2 ≥ min(γ0, 1)‖y‖2Y ,

and

‖vq‖21 + ‖Cs‖2div ≤ ‖q‖2 + C2‖s‖2 ≤ max(1, C2)‖y‖2Y .
This completes the proof. �

Theorem 8. Problem (.), therefore Algorithm 1, is well-posed with the norms defined by (.) and

(.).

Proof. The boundedness of the variational form is obvious from the definition of ‖ · ‖X . Moreover, we

note that as,L(U,U) = R−1
e ‖∇u‖+S‖E+u×B−‖2. Therefore the bilinear form as,L(·, ·) is coercive

on X00
h .

Combining the boundedness of the variational form, the inf-sup condition of bs(·, ·) (Lemma 4) and

the coercivity of as,L(·, ·) on X00
h , we complete the proof.

�

From the triangular inequality and Hölder’s inequality, we have

‖E‖ ≤ ‖E + u×B−‖+ ‖u×B−‖ . ‖E + u×B−‖+ ‖u‖1‖B−‖0,3.

In Picard iterations (Algorithm 1), function B− is given by the magnetic field from the previous

iterative step, i.e. B− = Bn−1. We have the following estimate:

‖B−‖0,3 = ‖Bn−1‖0,3 . ‖∇h ×Bn−1‖ . ‖f‖−1 , (.)

where the last equality is due to the energy law.
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS15

Therefore the L2 norm of the electric field E can be bounded by ‖(u,E,B)‖X and given data, i.e.,

norm ‖(u,E,B)‖X is equivalent to the decoupled norm

(
‖u‖21 + ‖E‖2curl + ‖B‖2div

) 1
2 .

The constants involved in the equivalence depend on ‖B−‖0,3 which further depends on ‖f‖−1.

4.3. Schemes without magnetic Lagrange multipliers. Thanks to the structure-preserving prop-

erties of the discrete de Rham complex, we can design a finite element scheme for stationary MHD

problems without using magnetic multipliers. The resulting scheme is equivalent to (.), therefore

magnetic Gauss’s law is precisely preserved.

Consider the following weak form:

Problem 3. Find (uh,Eh,Bh) ∈Xh and ph ∈ Qh, such that for any (v,F ,C) ∈Xh and q ∈ Qh,




L(uh;uh,v) +R−1
e (∇uh,∇v)− S(jh ×Bh,v)− (ph,∇ · v) = 〈f ,v〉,

S(jh,F )− α(Bh,∇× F ) = 0,

α(∇×Eh,C) + α(∇ ·Bh,∇ ·C) = 0,

−(∇ · uh, q) = 0,

(.)

where jh is given from Ohm’s law: jh = Eh + uh ×Bh.

Compared with Problem 1, the magnetic Lagrange multiplier has been removed and we augment

the variational formulation by introducing (∇·Bh,∇·C) term. Next we verify some properties of the

proposed schemes.

Theorem 9. Any solution to Problem 3 satisfies

(1) magnetic Gauss’s law in the strong sense:

∇ ·Bh = 0,

(2) the discrete energy law:

R−1
e ‖∇uh‖2 + S‖jh‖2 = 〈f ,uh〉,

and
1

2
R−1
e ‖∇uh‖2 + S‖jh‖2 ≤

Re
2
‖f‖2−1.

Proof. The proof of the discrete energy law is almost the same as Problem 1. Therefore we only prove

the magnetic Gauss’s law.

Taking C = ∇×Eh in (.), we have ∇×Eh = 0. Therefore

(∇ ·Bh,∇ ·Ch) = 0, ∀Ch ∈ Hh
0 (div 0,Ω).

This implies that ∇ ·Bh = 0.

�

To verify the well-posedness, we can formally eliminate Eh to get a system with uh, ph and B. For

the Lagrange multiplier ph, one can verify the inf-sup condition of the (∇ · u, q) pair. We can also

verify the boundedness and coercivity in V 0
h ×Hh

0 (curl,Ω)×Hh
0 (div,Ω) for other terms. Consequently,

we have the well-posedness result:
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16 KAIBO HU, WEIFENG QIU, AND KE SHI

Theorem 10. Problem 3 has at least one solution (uh,Eh,Bh, ph) ∈ Xh × Qh. With suitable data,

the solution is unique.

We can similarly define Picard iterations: For n = 1, 2, · · · , given
(
un−1,Bn−1

)
∈ Wh, find

(un,En,Bn) ∈Xh and pn ∈ Qh, such that for any (v,F ,C) ∈Xh and q ∈ Qh,




L(un−1;un,v) +R−1
e (∇un,∇v)− S(jnn−1 ×Bn−1,v)− (pn,∇ · v) = 〈f ,v〉,

S(jnn−1,F )− α(Bn,∇× F ) = 0,

α(∇×En,C) + α(∇ ·Bn,∇ ·C) = 0,

−(∇ · un, q) = 0,

(.)

where jnn−1 is given by Ohm’s law: jnn−1 = En + un ×Bn−1. one can similarly verify the following

properties:

Theorem 11. Any solution to Problem . satisfies

(1) magnetic Gauss’s law in the strong sense:

∇ ·Bn = 0, n = 1, 2, · · · ,

(2) the discrete energy law:

R−1
e ‖∇un‖2 + S‖jnn−1‖2 = 〈f ,un〉,

and
1

2
R−1
e ‖∇un‖2 + S‖jnn−1‖2 ≤

Re
2
‖f‖2−1.

Analogous to Theorem 5, we can verify the well-posedness:

Theorem 12. Variational form (.) has a unique solution (un,En,Bn, pn) ∈Xh ×Qh.

5. Convergence of finite element methods

In this section, we present the error estimates of the method (.), which is for the boundary

condition (.). Our analysis is based on the weak regularity assumption on the exact solutions (c.f.

[32]). Namely, we assume

u ∈ [H1+σ(Ω)]3, B,∇×B,E ∈ [Hσ(Ω)]3, p ∈ Hσ(Ω) ∩ L2
0(Ω), (.)

here σ > 1
2 . Next we introduce notations used in the analysis. For a generic unknown U and its

numerical counterpart Uh we split the error as:

U − Uh = (U −ΠU) + (ΠU − Uh) := δU + eU .

Here ΠU is a projection of U into the corresponding discrete space that Uh belongs to. Namely, for

(E, r) we use the projections (ΠcurlE,Π0r) in the commuting diagram in Figure 1. For B and p we

define the L2 projection ΠDB,ΠQp into Hh
0 (div 0,Ω), Qh respectively. Notice here r = 0 implies that

Π0r = 0 and hence δr = 0. Finally, for the velocity u we define (ΠV u, p̃h) ∈ Vh × Qh be the unique

numerical solution of the Stokes equation:

(∇ΠV u,∇v) + (p̃h,∇ · v) = (∇u,∇v), (.)

(∇ ·ΠV u, q) = 0, (.)
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CONVERGENCE OF A B-E BASED FINITE ELEMENT METHOD FOR MHD MODELS ON LIPSCHITZ DOMAINS17

for all (v, q) ∈ Vh ×Qh. Notice that (u, 0) is the exact solution of the Stokes equations:

−∆ũ+∇p̃ = −∆u,

∇ · ũ = 0,

with ũ = 0 on ∂Ω. Hence, if Vh ×Qh is a stable Stokes pair, we should have optimal approximation

for the above equation:

‖u−ΠV u‖1 ≤ C inf
v∈Vh

‖u− v‖1. (.)

Immediately we can see that

(δu, q) = 0 for all q ∈ Qh. (.)

Since B,ΠDB,Bh ∈ H0(div 0,Ω) and E,Eh,Π
curlE ∈ H0(curl 0,Ω) we have

∇ · eB = ∇ · δB = 0, ∇× eE = ∇× δE = 0. (.)

In addition, since ∇×Hh
0 (curl,Ω) ⊂ Hh

0 (div 0,Ω) we have

(δB,∇× F ) = 0 for all F ∈ Hh
0 (curl,Ω). (.)

Let Πdiv be the H(div)-conforming projection in the commuting diagram in Figure 1. Obviously,

ΠdivB ∈ Hh
0 (div 0,Ω). Then, due to the construction of ΠD, we have

‖ΠDB −B‖ = inf
C∈Hh

0 (div 0,Ω)
‖B −C‖ ≤ ‖ΠdivB −B‖ ≤ C inf

C∈Hh
0 (div,Ω)

‖B −C‖. (.)

Now we are ready to present the error equations for the error estimates. Notice that the exact

solution (u,E,B, r, p) also satisfies the discrete formulation (.). Subtracting two systems, with the

spliting of the errors and above properties of the projections (.), (.) and (.), we arrive at:

(L(u;u,v)− L(uh;uh,v)) +R−1
e (∇eu,∇v)− S(j ×B − jh ×Bh,v)− (ep,∇ · v)

= −R−1
e (∇δu,∇v) + (δp,∇ · v), (.)

S(j − jh,F )− α(eB,∇× F ) = 0, (.)

α(∇× eE ,C) + (er,∇ ·C) = −(δr,∇ ·C), (.)

−(∇ · eu, q) = 0, (.)

(∇ · eB, s) = 0, (.)

for all (v,F ,C) ∈Xh and (q, s) ∈ Yh.

Lemma 5. We have the energy identity:

R−1
e ‖∇eu‖2 + α‖∇h × eB‖2 =− (L(u;u, eu)− L(uh;uh, eu)) + (δp,∇ · eu)−R−1

e (∇δu,∇eu)

+ S(j ×B − jh ×Bh, eu) + S(j − jh,∇h × eB).

Proof. Taking v = eu,F = −∇h × eB, q = ep in (.), (.) and (.) and adding these equations,

we can obtain the above identity by rearranging terms in the equation. �

From the above result we can see that it suffices to bound the terms on the right hand side of the

energy identity to get the error estimates in the energy norm. The first four terms can be handled

with standard tools for Navier-Stokes equations, see [15, 37] for instance. In particular, we need the

following continuity result for the advection term, see [37]:
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Lemma 6. For any u,v,w ∈ [H1
0 (Ω)]3, we have

L(w;u,v) ≤ C‖∇w‖‖∇u‖‖∇v‖,

where C solely depends on the domain Ω.

In order to bound the last two terms, we need the following auxiliary results:

Lemma 7. If the regularity assumption (.) is satisfied, we have

‖u×B − uh ×Bh‖ ≤ C
(
‖u‖0,∞‖δB‖+Re‖f‖−1‖∇h × eB‖+R

1
2
e RmS

− 1
2 ‖f‖−1(‖eu‖1 + ‖δu‖1)

)
,

‖eE‖ ≤ ‖δE‖+ ‖u×B − uh ×Bh‖.

Proof. For ‖u×B − uh ×Bh‖, we have

‖u×B − uh ×Bh‖ = ‖u× δB + u× eB + (δu + eu)×Bh‖
≤ ‖u× δB‖+ ‖u× eB‖+ ‖(δu + eu)×Bh‖
≤ ‖u‖0,∞‖δB‖+ ‖u‖0,6‖eB‖0,3 + (‖δu‖0,6 + ‖eu‖0,6)‖Bh‖0,3,

the last step is due to Hölder’s inequality. By (.) and Theorem 1, we have

‖u×B − uh ×Bh‖ ≤ C(‖u‖0,∞‖δB‖+ ‖u‖1‖∇h × eB‖+ (‖∇δu‖+ ‖∇eu‖)‖∇h ×Bh‖).

Finally we can obtain the estimate for this term by the stability result in Theorem 3 and Remark 1.

Next, taking F = eE in (.), by (.), we have

(j − jh, eE) = 0.

By the definition of j, jh, we obtain:

‖eE‖2 = −(δE , eE)− (u×B − uh ×Bh, eE).

The proof is completed by Cauchy-Schwarz inequality. �

Now we are ready to give our first error estimate:

Theorem 13. If the regulartity assumtion (.) holds, in addition, both R2
e‖f‖−1 and ReR

3
2
m‖f‖−1

are small enough, then we have

R
− 1

2
e ‖∇eu‖+ α

1
2 ‖eB‖0,3 + α

1
2 ‖∇h × eB‖ ≤ C(‖δp‖+ ‖∇δu‖+ (‖u‖1+σ + ‖∇ ×B‖σ)‖δB‖+ ‖δE‖),

where C depends on all the parameters Rm, Re, S and ‖f‖−1.

Proof. Since ∇ · eB = 0 by (.), we can apply Theorem 1 to obtain

‖eB‖0,3 ≤ C‖∇h × eB‖.

By Lemma 5, it suffices to bound terms on the right hand side in the energy identity. The two

bilinear terms can be bounded by using Cauchy-Schwarz inequality as,

(δp,∇ · eu) ≤ ‖δp‖‖∇eu‖,
R−1
e (∇δu,∇eu) ≤ R−1

e ‖∇δu‖‖∇eu‖.
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For the convection term, by Lemma 6 we have

L(u;u, eu)− L(uh;uh, eu) = L(u− uh;u, eu) + L(uh;u− uh, eu)

≤ C(‖∇δu‖+ ‖∇eu‖)‖∇u‖‖∇eu‖+ C(‖∇δu‖+ ‖∇eu‖)‖∇uh‖‖∇eu‖
≤ CR2

e‖f‖−1

(
R−1
e ‖∇eu‖2 +R−1

e ‖∇δu‖ · ‖∇eu‖
)
,

the last step is by the stability result (.) in Remark 1. In order to obtain the convergent result, we

need R2
e‖f‖−1 to be small enough.

Next we need to bound the last two terms in Lemma 5. By Cauchy-Schwarz inequality we have

S(j − jh,∇h × eB) ≤ S‖j − jh‖‖∇h × eB‖
= S‖E + u×B − (Eh + uh ×Bh)‖‖∇h × eB‖
≤ S(‖δE‖+ ‖eE‖+ ‖u×B − uh ×Bh‖)‖∇h × eB‖
≤ CS

(
‖δE‖+ ‖u‖0,∞‖δB‖+Re‖f‖−1‖∇h × eB‖

+R
1
2
e RmS

− 1
2 ‖f‖−1(‖eu‖1 + ‖δu‖1)

)
‖∇h × eB‖

= CS
(
‖δE‖+ ‖u‖0,∞‖δB‖+R

1
2
e RmS

− 1
2 ‖f‖−1‖δu‖1

)
‖∇h × eB‖

+ C
(
ReS‖f‖−1‖∇h × eB‖2 +R

1
2
e RmS

1
2 ‖f‖−1‖eu‖1‖∇h × eB‖

)

≤ CS
(
‖δE‖+ ‖u‖0,∞‖δB‖+R

1
2
e RmS

− 1
2 ‖f‖−1‖δu‖1

)
‖∇h × eB‖

+ C
(
ReRm‖f‖−1(α‖∇h × eB‖2) +ReR

3
2
m‖f‖−1(R−1

e ‖∇eu‖2 + α‖∇h × eB‖2)
)
.

In order to obtain the convergent result, we need ReR
3
2
m‖f‖−1 to be small enough. Finally, for the last

term we begin by spliting the term into three terms and applying the generalized Hölder’s inequality

to have

S(j ×B − jh ×Bh, eu) = S(j × δB, eu) + S(j × eB, eu) + S((j − jh)×Bh, eu)

= T1 + T2 + T3.

By the fact that j = R−1
m ∇×B, we can further apply the generalized Hölder’s inequalities, Sobolev

embedding inequalities, Hσ(Ω) ↪→ L3(Ω), (.) and Theorem 1 for T1, T2 and T3 as:

T1 ≤ S‖j‖0,3‖δB‖‖eu‖0,6 ≤ CSR−1
m ‖∇ ×B‖σ‖δB‖‖∇eu‖,

T2 ≤ S‖j‖‖eB‖0,3‖eu‖0,6 ≤ CSR−1
m ‖∇ ×B‖‖∇h × eB‖‖∇eu‖ ≤ CR

1
2
e S

1
2 ‖f‖−1‖∇h × eB‖‖∇eu‖

≤ CReR
1
2
m‖f‖−1(R−1

e ‖∇eu‖2 + α‖∇h × eB‖2),

T3 ≤ S‖j − jh‖‖Bh‖0,3‖eu‖0,6 ≤ CS‖j − jh‖‖∇h ×Bh‖‖∇eu‖ ≤ CR
1
2
e RmS

1
2 ‖f‖−1‖j − jh‖‖∇eu‖

≤ CR
1
2
e RmS

1
2 ‖f‖−1

(
‖δE‖+ ‖u‖0,∞‖δB‖+Re‖f‖−1‖∇h × eB‖+R

1
2
e RmS

− 1
2 ‖f‖−1(‖eu‖1 + ‖δu‖1)

)
‖∇eu‖

≤ CR
1
2
e RmS

1
2 ‖f‖−1

(
‖δE‖+ ‖u‖0,∞‖δB‖+R

1
2
e RmS

− 1
2 ‖f‖−1‖δu‖1

)

+ CR
3
2
e RmS

1
2 ‖f‖2−1‖eu‖1‖∇h × eB‖+ CReR

2
m‖f‖2−1‖eu‖21

≤ CR
1
2
e RmS

1
2 ‖f‖−1

(
‖δE‖+ ‖u‖0,∞‖δB‖+R

1
2
e RmS

− 1
2 ‖f‖−1‖δu‖1

)

+ReR
3
2
m‖f‖2−1(R−1

e ‖∇eu‖2 + α‖∇h × eB‖2) + CR2
eR

2
m‖f‖2−1(R−1

e ‖∇eu‖2).
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Referring to T2 and T3, we need ReR
1
2
m‖f‖−1, ReR

3
2
m‖f‖2−1 and R2

eR
2
m‖f‖2−1 to be small enough such

that convergent results can be obtained.

So, if R2
e‖f‖−1 and ReR

3
2
m‖f‖−1 are both small enough, we have

R
− 1

2
e ‖∇eu‖+ α

1
2 ‖∇h × eB‖ ≤ C(‖δp‖+ ‖∇δu‖+ (‖u‖1+σ + ‖∇ ×B‖σ)‖δB‖+ ‖δE‖).

Here C depends on all the parameters Rm, Re, s and ‖f‖−1. This completes the proof. �

6. Nonlinear scheme for the alternative boundary condition

We propose the following variational form for (.) with boundary condition (.):

Problem 4. Find (uh,Eh,Bh) ∈ X̃h and (ph, rh) ∈ Yh, such that for any (v,F ,C) ∈ X̃h and

(q, s) ∈ Yh,

L(uh;uh,v) +R−1
e (∇uh,∇v)− S(jh ×Bh,v)− (ph,∇ · v) = 〈f ,v〉, (.a)

S(jh,F )− α(Bh,∇× F ) = 0, (.b)

α(∇×Eh,C) + (rh,∇ ·C) = 0, (.c)

− (∇ · uh, q) = 0, (.d)

(∇ ·Bh, s) = 0, (.e)

where jh is given by Ohm’s law: jh = Eh +uh ×Bh and rh is the Lagrange multiplier which approxi-

mates r = 0, and X̃h = Vh ×Hh(curl,Ω)×Hh(div,Ω).

Similar to Theorem 3, we have Theorem 14, whose proof is the same as that of Theorem 3.

Theorem 14. Any solution for Problem 4 satisfies

(1) magnetic Gauss’s law:

∇ ·Bh = 0.

(2) Lagrange multiplier r = 0, and the strong form

∇×Eh = 0,

(3) energy estimates:

R−1
e ‖∇uh‖2 + S‖jh‖2 = 〈f ,uh〉, (.)

1

2
R−1
e ‖∇uh‖2 + S‖jh‖2 ≤

Re
2
‖f‖2−1, (.)

R−1
m ‖∇h ×Bh‖ ≤ ‖jh‖, (.)

‖∇h ×Bh‖ ≤ CR
1
2
e RmS

− 1
2 ‖f‖−1, (.)

‖Eh‖ ≤ CR
3
2
e RmS

− 1
2 ‖f‖−1. (.)

Similar to the argument in Section 4.1, we can conclude that Problem 4 is well-posed.

We define eu, δu, ep, δp, er, δr the same as those in Section 5. We use Πcurl in Figure 2 for the

electric field E. We define eE = ΠcurlE − Eh and δE = E − ΠcurlE. For the magnetic field B, we
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define the L2-projection ΠD̃ into Hh(div 0,Ω). We denote eB = ΠD̃B −Bh and δB = B − ΠD̃B. It

is easy to see that

∇ · eB = 0,

(B −ΠD̃B,∇× F ) = 0 for all F ∈ Hh(curl,Ω),

‖B −ΠD̃B‖ ≤ C inf
C∈Hh(div,Ω)

‖B −C‖.

Thus by using Theorem 2 to replace Theorem 1, we can use the same argument in Section 5 to obtain

Theorem 15.

Theorem 15. If the regulartity assumtion (.) holds, in addition, both R2
e‖f‖−1 and ReR

3
2
m‖f‖−1

are small enough, then we have

R
− 1

2
e ‖∇eu‖+ α

1
2 ‖eB‖0,3 + α

1
2 ‖∇h × eB‖ ≤ C(‖δp‖+ ‖∇δu‖+ (‖u‖1+σ + ‖∇ ×B‖σ)‖δB‖+ ‖δE‖),

where C depends on all the parameters Rm, Re, S and ‖f‖−1.

7. Conclusion

We analyzed a mixed finite element scheme for the stationary MHD system where both the electric

and the magnetic fields were discretized on a discrete de Rham complex. Two types of boundary

conditions were considered. We rigorously established the well-posedness and proved the convergence

of the finite element schemes based on weak regularity assumptions.

The electric-magnetic mixed formulation (also see [23, 24]) and the technical tools developed in this

paper may also be useful for a broader class of plasma models and numerical methods, for example,

compressible MHD models and discontinuous Galerkin methods (c.f. [30, 25, 35, 33]).

The theoretical analysis in this paper also lays a foundation for further investigation of block pre-

conditioners for stationary MHD systems (c.f. [26, 10]).
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