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Abstract
Binsch, E., An adaptive finite-element strategy for the three-dimensional time-dependent Navier—Stokes
equations, Journal of Computational and Applied Mathematics 36 (1991) 3-28.

An adaptive strategy for three-dimensional time-dependent problems in the context of the FEM is presented.
The basic tools are a mechanism for local refinement and coarsening of simplicial meshes and an unexpensive
error-estimator. The algorithm for local grid modification is based on bisecting tetrahedra. The method is
applied to the Navier—Stokes equations.

Keywords: Adaptivity, local mesh refinement, Navier—Stokes equations.

Notation

n =2 or 3 denotes the space dimension.

A triangulation I is a set of (nondegenerate) simplices in R"”. A triangulation  is called
conforming, if the intersection of two nondisjoint, nonidentical simplices consists either of a
common vertex or a common edge or a common face.

T €7 is said to have a nonconforming node, if there is a vertex P of the triangulation which is
not a vertex of T but P T.

Define a relation “ <” for triangulations: 7, <., iff 7, is obtained by refinement of 7.

We call a sequence 7, J,,... stable, if all angles inside T are uniformly bounded away from
0 and = for all TeU,_ 7,.

Throughout this paper we will assume 2 = interior(U.7") and that the connected components
of £ are distinct.

L2(Q) = LA(2) A {ulfu(x) dx=o},
2
H'(R) is the usual Sobolev space with zero boundary values, (-, -) is the inner product of

L*(2), (-, -) is the H ' X H' pairing, |- || is the L*norm, ||- ||, as ||- || but restricted to
TcCS.

0377-0427 /91 /%$03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland)
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0. Introduction
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1 tools for reducing computational cost dramatically.
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FEM fits well into the concept of adaptive techniques. Its great flexibility admits a wide
range of different types of grids and function spaces. Modification of the local grid size
(h-method), the local approximation order ( p-method) as well as combinations of both are the
most common approaches. Lately much attention was paid on applications for time-dependent
problems.

Contrary to two-dimensional problems adaptive methods in three dimensions have not
received adequate interest, although especially in this situation much gain can be expected. For
instance, there are hardly any algorithms for local refinement of tetrahedral meshes.

In this paper some techniques for applying the #-method to transient iaminar flow simuiation
in three dimensions are presented, in particular we develop a mechanism for local grid
modification. The governing equations are the instationary, incompressible Navier—Stokes equa-

tions (NVS). The grid modification is based on simplicial grids which can approximate complex
oeometries very well., Furthermore tetrahedra turn out to be well suited in the adantive context.

geometries well. Furthermor 1edra out to be well suited in the adap
The descnbed techniques were implemented as a FORTRAN code. In Section 5 numerical results
show the success of our approach for the simulation of flows with moderate Reynolds numbers.
More precisely, we consider the Navier—Stokes equations governing the flow of an incom-
pressible viscous fluid in a bounded region 2 C R*:

1 .
a,u——R—éAu+u-Vu+Vp—f, in 2, (0.1)
v-u=0, in £,
where u: R, X 2 — R? is the flow velocity, p: R, X £ —> R is the pressure, f: R, X2 >R%isa

density of external forces and Re is the Reynolds number.
Boundary and initial conditions have to be added:

u=g, onaf2,
with

[2 vdo=0

Jag
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formulation:
2 s O 4 N ¥ ~ N
Fork=1,2,... find u* g+ (H(2)) , p* € L;(2) such that
Kk _k k k-1
(L(Ar, u*, p*), @) + (v-u", q) = (f(Ae, u*7), @), (0.2)

for all € (H"(2))", g € L3(R), where
“=u(k Ar, ) eg+ (H(Q))",  pF=p(k A1, ) e LY(Q),



E. Bansch / Adaptive method for the Navier-Stokes equations 5

with some noniinear functionais 7. and f depending on the discretization scheme. Let us look at
this scheme as a black box for the moment. In Section 4 an example for a time discretization is

A A e on cha
u

nnnnn tad Tha adawmtiva me Ln,l i1l st an [N tha o o
LU WL 11UL Cpv. uu (RO V) lllubll U}J 1 t1IC Sudiciiie,
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To discretize (0. 2) in space we choose function spaces V, and W, for velocity and pressure
consisting of piecew: ue polynomials on a grid 7. We now want to control the error of the
computed solution uf by adjusting the grid J, on each time level k. Because dealing with the
error resulting from the space discretization is the harder task, we ignore the error due to time
discretization for simplicity.

The fully discrete equations then have the form:

For k=1,2,... find u; €g, + V,, pi € W, such that

(L(At, uf, pk)on) +(Vouk, an) = (AL ufY) ), (0.3)

for all @, €V, g, €W,, where V, and W, are function spaces on the mesh .7, . For
simplicity we will drop the subscript 4, and write u*, ¥, etc. instead.

In the sequel basically two tools are needed. Flrst we need a criterion where to insert and
where to eliminate degrees of freedom from a grid. This will be done by locally estimating the
(space-)error of the computational solution. Secondly we have to develop a mechanism for local
modification of a grid

The paper is organized as foll
Section 2 deals with the second

O
v CQame detaile Af the actinal imnlamentatinn can ha fannd
Y. SULLC ulialils Ul uib dliludi HOpICiiCiitalivnl vaii o0 104l in

iscuss numerical results showing the efficiency of our approach.

1 - a QL at

ws. In Section 1 we briefly describe some local error estimators.
to ol. In Section 3 we explain how to use these tools for the

w
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Section 4. In the last section w
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1. LITOr esumators

Many proposals for estimating the error of a computational solution can be found in
literature. We mention three classes of estimators for laminar flow problems.

(i) Heuristic methods. Make use of physically motivated quantities like gradients, vorticity, etc
to select regions where refinement is needed [6]
(11) Error estimators based on interpolation estimates. Startine from an interpolation estimate
(11) stimators based on interpolation estimates. Starting from an interpolation estimate
like
Y i k—1pyk _
|D(u—Lu)|<C||A* D u|l, [=0,...,k-1,
“/;t some 1ntemr\]qﬁr\n onerator the term DX ic annrovimated numerically Far evamnle lat
YYiuLid 15X 1ix AyVLuLAVAA Vyvxutvx Ah, VAAN WN/L AL X7 “u 19 utlylul\llllub\du PRR VS PULVIDANISIG I SN G V] § \./Aullltll\./, v
k = 2 and substitute D“u by
2 [9,un(x)]
Dju, = sup ——F———
h“h h (x) >
x€oT

where u, is the numerical solution, [d,u,(x)] denotes the jump of the normal derivative across
the boundary of the simplex 7 and # is the local grid size. In [7,9] this idea is used to develop

error estimators and show their reliability.
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We choose the third method.
(iii) Error estimators based on the solution of local problems respectively estimation of residuals
[1,2,4,17]. Consider first the stationary Stokes equations:

—Au+vp=f, in,
v-u=0, in 2, (1.1)
u=g, on 9§2.
The standard variational formulation is given by
Find [u, p] € [g, 0] + H such that
A([u, pl, [v, q]) = (vu, vv) = (p, v-0v) = (q, V- u) = (f, v), (1.2)
for all [v, g] € H == (H"2(2))" X L(), and for the discrete problem
Find [u,, p,] €[gs, 0] + H, such that

A([un, pals [oas an]) = (5 va), (1.3)

for all [v,, g, ] € H,==V, X W,.
To estimate the error we solve local problems of the same type with the residuals as right-hand
side. Let T€ 7, find [uy, py] € [u,, 0] + H such that

A([“T’ PT]’ [UT’ ‘IT]) =RT([UT’ ‘IT])’ (1.4)

for all [vs, q;] € Hy == X; X Y.
X, and Y; are spaces of functions on T that are of higher order than V}, and W, in a suitable
sense. For instance, if we consider the so called Taylor—Hood element, that means

Ve=({vec®(Q)|v|€ 2} nH(Q))
W, = {WECO(Q)|W|T€-@1} N L5(2),

n
>

set
Xr=({ve?, |v(Q)=0, Q avertex or a midpoint})n,
Yy = span{ A, 0<i<j<n},

where A; are the barycentric coordinates of 7.
R, denotes the local residual:

RT([UT’ ‘IT]) = (P0f+ Au, — Vpy, UT)T+ (QT’ V'“h)r"‘ [[avuh]’ UT]B(Tﬁﬂ)’

where
1
Pof = ;(m/;f)xr-
Now define the local error estimator ¢;:
br=||Vurllr+ | prllr, for TET, (1.5)
and the global error estimator #:

0==( 7 a;)m (1.6)

Ted
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As the calculation of ¢ for three-dimensional problems may add substantially to the computa-
tional cost, we are interested in less expensive estimators. This can be done by simply estimating
the residuals with an appropriate scaling factor. Define

1,2
nr= B CUT IR = wpll2+ G T (18] 17+ Gl vy 1)
reorn
(1.7)

and

=5 09

Teg
Verfiirth [17] showed the following.

Proposition 1.1. There are constants c, C such that

(i) Iv(u—u) 1>+ 1 p=—pull><C?+ X T f— PofII7s
TeT

(i) <y < CYy, forall TET .

Remark. The proposition implies that ¢ and 7 are asymptotically equivalent. Using 4 we would
expect more precise quantitative information about the error. If the main objective is to control
an automatic adaptive process, 1 may be preferred because of its lower cost.

In order to apply these techniques to the instationary Navier-Stokes equations we modify the
residual by adding the time derivative and the nonlinearity, thus getting the following definition
for m (¥ is changed in an analogous way):

2

n 1
Po(f_ 0,u;, — ”h'Vuh) + Re Au, — vp,

T

Ny = h“(Re C, |T|‘

1/2
+G Y T I3,u) ||ﬁ+cg||v-uh||%) (1.9)

redrng

(9,u,, is the discrete time derivative of u,,).

Remark. (i) C,, C,, C; have to be fitted with the help of some explicit solutions. However, if the
focus is more on qualitative information, the definition of the constants is less critical.
(11) Actually we use a slightly simplified version of (1.9):

ROk =Re Cy | T ||| Po(f— uy V) — vpy |12
+C, X T [Bu] 12
I'edTng2

Our experience showed that the dropped terms are of low numerical significance. The divergence
of u is used as a stopping criterion for the iterations of the (NVS)-solver and the volume
integrals are scaled by |7 | which vanishes faster than |I'|.
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Fig. 2.1. Fig. 2.2. Bisection of a single triangle.

2. Techniques for local grid modification
2.1. Local refinement

The local refinement of a tetrahedral mesh is studied in [5]. We follow the description given
there.

There are many references about local grid refinement in two dimensions [3,6,10,14-17]. Most
of the papers consider either dividing a triangle into two or into four new ones (where possible).
Our strategy is based on the bisectioning of simplices. The 2-dimensional method is similar to
that described in [14]. Unlike in the 2-d case there is hardly any algorithm for 3-d refinement. We
introduce a refinement strategy which turns out to be a canonical generalization of the 2-d case.
It can be applied to an arbitrary conforming initial triangulation.

For convenience we briefly describe the 2-d case first and then deal with the triangulation in
R’

2.1.1. The two-dimensional case

The “philosophy” behind our approach is to look at the situation as local as possible. Let us
first consider a single triangle 7€ R?. Mark an arbitrary edge, called the refinement edge, see
Fig. 2.1.

If T has to be divided this will always be done by cutting through the midpoint of the
refinement edge and the vertex opposite to the refinement edge. We get two new triangles. The
position of the new refinement edges are as shown in Fig. 2.2. This leads to the following
algorithm for (local) refinement of a given conforming triangulation 7, into J, ;.

2-d algorithm. Let each T €7, have one refinement edge and let 2 be the set of those triangles,
which have to be divided.

(1) Bisect each T € 2 as described above. Let 91 be the resulting (possibly nonconforming)
triangulation.

(2) Let now 2 be the set of those triangles with a nonconforming node.

(3) If =g, set J,,,=9, and stop. Otherwise go to (1).

Figure 2.3 shows an example 9, —.7; with initial 2 :=9,,.

Proposition 2.1. The algorithm stops in a finite number of steps, I, ., is conforming and the
sequence Ty, I, ,,... is stable.
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Proof. The proof is very simple and can be found in [5]. O

Remark. Note that we do not require any compatibility condition for the initial position of the
refinement edges of neighbouring triangles. A good choice would be the longest edge of each
triangle.

2.1.2. The three-dimensional case

Let J be a conforming triangulation, consisting of tetrahedra 7' C R>. The main idea of the
algorithm presented here is to divide 7' by bisection such that the faces of T are divided as in the
2-dimensional case.

Consider a tetrahedron T €., which has been cut open along the three edges which meet at
vertex P, and unfolded. Assume that there is one refinement edge in each of the four triangular
faces of T (one example is shown in Fig. 2.4). We make the following assumptions.

s A AN i R 4 . —_— e

(A1) For each tetrahedron there is at least one common refinement edge for two different faces

t
of the tetrahedron, which meet at this edge (P, P,, in Fig. 2.4). We call such an edge a global

i
finomont 2rdoe
i ea

&
3
3
)
g
-
)
o

Fig. 2.4.
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Y

P

4
Fig. 2.5. “ *” means an arbitrary distribution Fig. 2.6.
of the refinement edges.

(A2) If T,, T, are two tetrahedra with 7, N T, = S and S is a triangle, then the refinement edge
of S with respect to 7} and the refinement edge of S with respect to T, is the same.

Note that assumptions (A1) and (A2) can be fulfilled for an arbitrary conforming triangula-
tion: by small (hypothetical) perturbations of the coordinates of the nodes one can achieve that
there is exactly one longest edge for each triangle of the triangulation. Take this as the
refinement edge of the triangle. Then (Al) and (A2) are fulfilled. Just as in the two-dimensional
case we first look at a single tetrahedron, see Fig. 2.5.

Remark. The representation in Fig. 2.5 is unique if there is exactly one global refinement edge
P. P and if we require, e.g., i; <i, in addition. This representation is called standard position.

LR

For simplicity we drop the subscript i and write P;, P,,... instead.

If there is a global refinement edge, we are allowed to bisect T by adding a new point P,
the midpoint of P, P, and cut T along P,P,., and P, P, We get two new tetrahedra, see Fig.
2.6.

The refinement edges of the bisected triangles are chosen as in the 2-dimensional case. The

e wmapn tlhn wafiianeant Agn far tha naw trianaol D D D Nna

omy qucmon is, how to choose the refinement edge for the new tnangle P, P55 One
requirement is of course the condition that both new tetrahedra must have again a global

Fig. 2.7.
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Py P P,

or P P,

Fig. 2.8.

We present a mechanism which does not only fulfil this basic assertion but also generates a
very regular structure (see, for example, Fig. 2.11). For this we look at a special situation for the
moment.

Definition 2.2. A tetrahedron T 1is called red, if it has the distribution of refinement edges as
shown in Fig. 2.7. It is called black in case of the situation shown in Fig. 2.8.

Note that for red and black tetrahedra assumption (Al) is fulfilled automatically.

In [5] is outlined how to choose the refinement edge for the new triangle, such that the
following holds: if T is red, then its children are black. If a black tetrahedron T is divided and
its father was red, then the children of T are again black. On the other hand, if T is black and its
father was also black, then the children are red. For successive bisection we hence have the cycle

red — black — black — red.

Now consider the case that a tetrahedron is neither red nor black. Again there is a position of
the refinement edge of the new triangle such that the children are red or black (see [5] for
details). So without loss of generality we only have red or black tetrahedra.

After having described how to handle the local situation, we now present the global algorithm,
which is in fact identical with the two-dimensional one.

3-d algorithm. Let 2 C .7, be the set of tetrahedra to be divided.

(1) Bisect each T € X as described above. Let j}( be the resulting (possibly nonconforming)
triangulation.

(2) Let now X be the set of those triangles with a nonconforming node.

3) If =40, set I, ., ==j\}( and stop. Otherwise go to (1).

We state the basic properties.

Proposition 2.3. Let the conforming triangulation 7, fulfil assumptions (Al) and (A2). Then the
above algorithm stops in a finite number of steps and 7, ., is conforming. The sequence J,, I,
I3, ... Is stable.
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Ly

Fig. 2.9. 7, ;. Fig. 2.10.
Proof. See [5]. O

2.1.3. “Standard” triangulations

One can easily check that the 2-d as well as the 3-d algorithm generates a regular structure
inside a macrosimplex. More precisely, simplices obtained by refining one simplex / times are
geometrically similar to those obtained after / + n refinement steps.

Furthermore, there are triangulations which are globally consistent with this structure.
Consider in two dimensions the triangulations shown in Fig. 2.9.

In 3-d we start with a subdivision of a cube consisting of six tetrahedra, each geometrically
similar to the situation shown in Fig. 2.10, with P, =(0,0,0), .,=(1,1,1), P,=(1,0, 0) and
P, =(1, 0, 1). The macrotriangulation of the cube and a refined mesh is shown in Fig. 2.11.

Definition 2.4. Consider a macrotriangulation which can be transformed into one of the
triangulations shown in Fig. 2.9 and 2.11; this means that there is a mapping

X R"->R”
and )7, is a subtriangulation of one of the triangulations in Figs. 2.9 and 2.11 (including the

position of the refinement edges). Every .7, that is obtained by refining 7, is called standard
triangulation.

NN

)
N/N/\‘

Fig. 211. 7, 7.
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Fig. 2.12. Macrotriangulation and locally refined mesh.

An example of a locally refined triangulation obtained from a quite unregular macrotriangula-
tion is shown in Fig. 2.12.

2.2. Local coarsening

As a fundamental concept we only consider coarsening such that refined simplices are
coarsened in the same manner as they were refined, ie, two “brothers” are melted into their
father or in other words we just go back in the binary tree generated by the refinement process.

Let us begin with the remark that an adaptive algorithm should not permit the coarsening of
any situation without certain restrictions. To see this, consider Fig. 2.13.

The solution of a problem might have required the refinement into the right corner of T as

indicated. If some local criterion leads to a coarsening of T, all previously refined triangles have

.

Fig. 2.13. Fig. 2.14.



14 E. Bansch / Adaptive method for the Navier—Stokes equations

199

to be eliminated before. This “global” effect is of course not intended. To overcome this
difficulty we look for configurations of simplices which permit to keep the process of coarsening

1Anal

ocal.

We make the following definitions.

Definition 2.5. (i) A simplex T 7 has level [ if T was obtained after / refinement steps

(i) A simplex T is said to have locally finest level if the levels of all neighbours are les

or equal to the level of T.

(i) Let 7€J andlet T’ b

e
T’ is called the coarsening node o
(iv) Let K be an edeoe of the trianoulation .7 and K’ the “father’-ed
}-

V )
/2]
-
_—

A Ve all LA 558 101w §

ge
Q. Set M={TeJ|TNK #0}.IfQis i the coarsening node for all T € M, then M is called a
resolvable patch.

Figwra 2 1
riguic .1

I
>

Remark. If M is a resolvable patch, all T € M can be coarsened without effecting any 7' €
outside M.

Resolvable patches are the configuration which we allow to be coarsened. This guarantees that
the coarsening process stays local. But now the question arises whether there are “enough”
resolvable patches in an arbitrary triangulation. The following can easily been shown.

Lemma 2.6. (i) Let I be a refinement of a standard triangulation. If T € J has locally finest level,
then T belongs to a resolvable patch.

(ii) At least local structures in the interior of macrosimplices of an arbitrary triangulation can
always be totally coarsened.

Remark. Actually there are situations where a refined triangulation cannot be coarsened into its
macrotriangulation, see Fig. 2.15. In this example refined triangles at the node where macrosim-
plices meet cannot be eliminated.

Fig. 2.15. J, refined triangulation and final triangulation after coarsening.
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In this section we describe how the tools introduced above are used to adapt the mesh during
the transient process. Because three-dimensional flow calculation requires a huge amount of
storage — even for locally refined grids — only the triangulation for the current time step is
kept in storage. Thus we also develop some special procedures, for instance to interpolate
between grids of different time levels.

As already pointed out we want to apply the hA-method on each time level. So the problem can
be stated as follows. Given a certain tolerance € > 0, find the 7,, k the kth time level, with
fewest degrees of freedom, such that the estimation of the error 5 fuifiis

12
"I=( 2 ﬂT(uk)z) SE€.
TEJ,
We shall not attempt to solve this optimization problem exactly. It is sufficient to obtain grids
which are in a certain sense nearly optimal. A reasonable criterion to establish a “good” mesh is

thn anssdictelaiitine ~AF tha arene
LI1IC CblululbtllUULlUll Ul ulv Cl11uU) —

ny(u*) = —, with N, = #J7,.
V%
This leads to the following criteria for refining or coarsening the mesh.

3.1. Criteria for modifications of the grids

Given k and T€ J,:

b€

if np(u*) > W’ refine T m times, (3.1)
k
if n(u*) < b coarsen T r ti (32
u*) < , r times, )
Nr v, a mes )

where 0 < 8, < 6, <1 are constants, m, r € N. We choose m = r = 1. Of course some compatibil-
ity conditions have to be added to insure that regions where nodes are eliminated do not
intersect regions where nodes have been inserted. We actually permit a resolvable patch to be
coarsened iff

(i) there is no T in the patch which fulfils (3.1),

(i1) there is at least one T which fulfils (3.2).

A0 1 4l Cgatl VI Aadl 22222223 3\

Jw+1 can now be determined by an iterative process. Make a guess 7;°,, for the new mesh

(e.g.. 721 =7;) and compute u§*' on 7% ,. Then J;',, is obtained by applying (3.1) and
(3.2) on 7%, via evaluating n(ug*"'). Repeat this procedure until .7}, , is satisfactory and set

/
1= ‘7;(+1~ ) .
However, it is very expensive to compute each u}*'. Provided that the time step Az is small
compared to the velocity of the local error and the corresponding local mesh size,
AL < B(x) | Uerror (X)) |

(Uerror(x) 1s the velocity of a “local perturbation”), we can choose a less expensive strategy.
Given J, and u* we obtain J,,, by simply applying (3.1) and (3.2) to I, once.
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Remark. The choice of 6, and #, permits to influence the “character” of the triangulation. Small
values of 8,/8, will yield more uniform grids whereas large values will create steeper gradients of
the local grid size A(x).

3.2. Interpolation between I, and I, .,

Consider a time step k and the solution «* on 7. The right-hand side ( f*),_,
for the new time step k + 1 is given by

< ( k) k+1>
where for instance (@f*?'), is the nodal basis of a discrete subspace V., of (H"3(2))" on the
grid 7, 1. If 7, ., > 7, there is a canonical representation of u* on 7, ,,; by prolongation and
(f5), can be calculated as usual.

Consider the case where .7, ., <7,. This means that f(u*) is given on a finer grid than the
test functions ¢f*'. We introduce the notation of the hierarchical basis ,, i =1,. s Ny Let ,,
[=0,...,r, be the conforming intermediate triangulations between I and T+ w1th I =7,
and 9" =97,+1- The discrete function spaces on .7; are denoted by V Let the enumeration of
the nodes be such that

~, Of (0.3)

.....

Py,..., Py, are the nodes of I,

Then
yi=¢er, ifM_ <i<M,
and @j’., j=1,..., M,, is the nodal basis of 17, u €9, can be represented in terms of cpf.‘ and {;:
Ny N
u= Z uj(ij= Z *l‘b
Jj=1 Jj=1

Note that ¢f "' =y,. Let S € R™*™ be the matrix transforming (*), into (u,),:
2: ij J _'u

Define f,:= ( f(u*), ¢¥), i=1,..., N,, with test functions ¢* on the fine grid, which can be
computed as usual and f,* == { f(u*), ¥,). Then we have

S=r*.
and particularly,
(STf)i=<f(uk)’ ¢i>=<f(uk)’ ‘Pf‘c+l>, (3.3)

for i< N, ;.

Remark. There is a factorization for ST =S --- ST where S, can easily be computed on each
intermediate triangulation .7 (see [18] for detaﬂs)
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( Start ’

Compute Ty, u°, f°
k:=1

Solve NVS-equations: find u*, p*
< L{u¥,pk),of >=< fluF=1),oF >
for all @* € Vi

l

Compute nr(uf,pF) for all T € 7,

!

Grid Modification:

Refinement step:
Modify 7 into T according to (3.1)

Prolongate u*, compute f*

Coarsening step:
Modify 7 into Tr4; according to (3.2)
Transform f* into f* according to (3.3)

ki=k+1

{ Stop )

Fig. 3.1.

3.3. Self-adaptive algorithm

Now we are able to present the algorithm for the time-dependent adaptive strategy, see Fig.
3.1
4. Description of the implementation

In this section we describe the “black box” of the Navier—Stokes solver and mention some
details of the actual implementation which are not straightforward.
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We follow a proposal of [6] and use the so-called §-scheme. Let u° = u(0, -); then
k+6 k
T —u a
_ - A_lk+0 +v k+8 fk+0 i L\_uk _ {Lk V‘Lk in Q
0 At Re Re * 7 ’
k+6 . k+0 _ _k+8
v-u"""=0, in &, u ' =g"""" ondg, (4.1)

k-0 gk+1—0 on 082, (4_2)

k+1 k+1
FAr— ~ R AT+ vp

=fk+1 4 % Auk+l—0_ (uk+1-0. V)uk+1_0, in Q,

v-ukt1=0, in Q, uktl=gk*1 0onoQ, (4.3)
1, with=1-1/2 and a=(1-28)/(1-8), B=6/(1 — 8).

=
.,
o
i
=
VA

By (4 1) (4.3) the main problems in solvmg NVS numer1cally are uncoupled namely the
treatment of the divergence condition and the highly nonlinear structure. Formulas (4.1) and
(4.3) are Stokes-like problems, whereas (4.2) is a nonlinear system without solenoidal constraint.
In [6] efficient tools for solving these subproblems are introduced. The Stokes-like equations are
transformed into operator equations for the pressure with a positive definite, self-adjoint
operator. These transformed equations can easily be resolved by an abstract version of the
conjugate gradient method via a cascade of scalar equations of the form u — 7 Au=1{.

Formula (4.2) is treated by a nonlinear conjugate gradient method with an appropriate
preconditioning. Again the actual numerical work is done by solving a cascade of scalar
equations of the above type (see [6] for details).

One of the most fundamental 1cquuc1ucutb on the scheme in connectior
approach is the unconditional stability. A stability condition of the form

At< minh(x),

with some a > 1, would lead to ina iIC tiime step leﬁsum

Stability and convergence for a slightly modified version of (4.1)-(4.3) are shown in [8].
However, only conditional stability is nmved there. Nevertheless, numerical experiments show
that the scheme behaves well. We gained the experience that for given k> 0 there is a Az, such
that (4.1)—(4.3) is stable for all #(x) < h, and At < Az, at least for moderate Reynolds numbers.

Remark. With the time discretization (4.1)—(4.3) the right-hand side of (0.2) becomes (without
external forces)

. At L_l \ 1 /
(flar, u™ "), @) = N

e k-1 \ [ k-1 F—1 \

@)+ Rﬁk Love) - (uf vt
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4.2. Space discretization

We use the so-called Taylor-Hood element with piecewise quadratic, globally continuous
velocities and piecewise linear, globally continuous pressures. This combination is stable with
regard to the BabuSka-Brezzi condition [11].

4.3. The implementation

Although nowadays there are powerful software tools for handling complicated data struc-
tures, we use FORTRAN as programming language. This guarantees the portability of the code and
permits the profitable use of vector and parallel hardware.

Furthermore, multi-level data structures, which could be implemented even in FORTRAN, might
make life much easier. The drawback of those techniques consists of higher storage requirements.
For three-dimensional problems, storage becomes very expensive. We therefore use a data
structure based on arrays (that has a high vectorization potential) and keep only information
about the triangulation of the current time step. As already mentioned in Section 3 this requires
some additional techniques, for instance the coarsening procedure and the interpolation formula.

In this section we sketch some details how the adaptive strategy introduced in Section 3.3 was
actually implemented. The following code may be the body of a FORTRAN main program
representing the algorithm:

DO 1 K=1,N_TIME_LEVELS
CALL REFINE(U,P,REF_FLAG)
CALL CONNEC
CALL RIGHT_HAND_SIDE(U,F)
CALL DEREF(F,REF_FLAG)
CALL COMPR
CALL CONNEC
CALL MATRIX
CALL THETA_SCHEME
CALL ERROR_ESTIMATOR(U,P,REF_FLAG)

1 CONTINUE

where NT is the number of tetrahedra, NV is the number of vertices, NK is the number of nodes,

UC3,NK) is the velocity field, F(3,NK) is the right-hand side, P(NV) is the pressure and

REF_FLAG(NT) is the flag, whether a tetrahedron has to be divided, coarsened or unchanged.
In the sequel we explain the various subroutines.

REFINE

REFINE executes the refinement step. The basic tool in this routine is the procedure which
bisects a single tetrahedron. This is done in the following way.
e Let T be a tetrahedron with number K represented in standard position as shown in Fig. 4.1.
(The representation in standard position simplifies many manipulations on the simplex.)
e Set NT:=NT+1, bisect T and pass all information from 7 to its “children”. The new
tetrahedra get the numbers K (left one) and NT (right one).
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P,

Pl new ne 2

Py Py
Fig. 4.1. A tetrahedron T in standard position and its “children”.

e Due to the local design of the algorithm, exchange of information with adjacent tetrahedra is
needed only in three cases (for notation see Fig. 4.1).
(i) The neighbour of T at face I has to be told that the number of its neighbour is now NT.
(i1) We need to check whether P, already exists. This might be the case if a tetrahedron
which lies at edge P, P, has been bisected before. To trace that, we store some information
about edges.
(iii) There might be “conflicts” with the neighbours at face III and IV which arise from
nonconforming nodes. The vectors keeping this information have to be updated.
o Finally the new tetrahedra K and NT are transformed into standard position.

Remark. Because we use quadratic elements for the velocity, not only vertices but also the
midpoints of edges have to be taken into account during the grid modification. They carry
information (of the old time step) which is needed, e.g., while evaluating the right-hand side. It
turns out that we cannot enumerate the nodes for the velocity space in such a way that
P,,..., Py, are the vertices of the triangulation. On the other hand, the nodes for the pressure
space, say Py,..., Py, are just the vertices of the triangulation. Two permutation vectors are
needed to provide the mapping between the two enumerations.

CONNEC, MATRIX
CONNEC generates the connectivity for the nodes of the pressure and velocity space. In
MATRIX the stiffness matrices are assembled. The connectivity and matrix for the pressure space
are stored in arrays as:
NEIGHBOUR_P(NKP, IBAND)
A_P(NKP ,IBAND),
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where IBAND is the maximal number of neighbours of a vertex.

Storing the information for the velocity space in the same way would requlre an 1nacceptable
amount of mem
more, the hull of
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26 Therefore we want to stare the elemente of
26. Theretore we want to store the elements ot

the matrix in a linear order. That means we have vectors of the form

In order to get vectorizable code, we store the elements of a row consecutively. For that purpose
we use the vector

IPOINT(NK).

Ie at]

The elements a, ; are represented b
iJ

ACIPOINTC(I)),...,ACIPOINT(I+1)-1).

To assign values to the vector IPOINT we a priori have to know the number of nonzero elements
for each node. If we have this information for the pressure space (note that the nodes for the
pressure space are just the vertices), we are able to calculate this number by means of the Euler
formula

#vertices — #edges + # triangles = 2 — #holes, (4.4)
for a triangulation of a closed 2-d manifoid in R>. Let P, be a node of our trianguiation and
NT,,.:== #{T €I | P, T}. Note that NT, _ can easily be calculated. Denote by ¢ the number of
neighbours of the node P,. With the help of (4.4) it is obvious that:

if P, is a vertex, then

q= 3NVIOC+ NTIOC_Z’ lf I-EQ,
+ — ANV I MNT . | £ D~ 20,
q Jl‘VlOC‘rI‘Iloc 1, 11 liCUﬂa,

0
8G.

_+
}‘h
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Here NV, . denotes the number of neighbouring vertices in the pressure space.

RIGHT_HAND_SIDE
Assembles the right-hand side of the system (4.1).

DE_REF
Ehmmates those refined tetrahedra which were marked in REF_FLAG and transforms the

nnnnnnnn +~ £ )
according to (3.3).

A C

cr

To coarsen a te trahedron T we ha to check whether T belongs to a resolvable patch. One of
the hrnhle‘ 1s tha n e

“children”.

coarsening node of the “father” after having melted it

a,
AAAAA S ALUT Ol L& LTl Grili G Vildg iviiva

:
»

wn



22 E. Bénsch / Adaptive method for the Navier—Stokes equations

COMPR
After eliminating degrees of freedom there are “holes” left in arrays. COMPR compresses these

arrays.

THETA_SCHEME
This routine represents the solver of NVS as described in Section 4.1. As mentioned above, the
inner loop of the algorithm consists of several solvers for scalar equations of the type
u—tlAu=f.

These problems can efficiently be solved by a preconditioned conjugate gradient method.

ERROR _ESTIMATOR
Computes the estimation 71,, T €7,, and fills the array REF_FLAG according to (1.9).

5. Numerical results

As a test example consider a local perturbation moving with approximately constant speed in
a uniform flow. For that define

o(x) = le(l +o.5‘r’—j), (x) = —A(x2+x2)(a? = r?),

with 7= \/x7 + x5+ x3 and a, U, 4 > 0. ¢ describes the potential of a flow around a ball with
radius a and velocity Ue, at infinity. ¢ is the so-called Hill’s spherical vortex with strength A.

Now define
rot ¥(x), |x|<a,
Uo(x)‘=
vo(x), |x|>a.

In the sequel we assume U= {5 - 0.2 a?4. This implies that v, is globally continuous and that it
is a stationary solution of the Euler equations.
We solved N'VS numerically with the following data:

Q=]-1,2[x]0.5,05[2

uy(x) =0.5(vy(x) +e), forxeg,

g(x)=e,, forxecaf,

Re = 1000, At =0.04, a=0.27, U=1.

Note that the initial and boundary data are almost compatible for a << 1. In Fig. 5.1 p, is
sketched.

The following figures show the numerical results computed on a CONVEX C-210 obtained by
using a uniform grid respectively the adaptive strategy.

As expected the vortex moves to the right with a velocity of about 0.5 and is damped by the
influence of the viscosity (see Figs. 5.4, 5.6-5.11). The adaptive strategy is able to track the
vortex through the computational domain. The error estimator recognizes the region occupied by
the vortex as an area where a locally finer mesh is needed (see Figs. 5.5-5.8). Especially the
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Fig. 5.1. Streamlines of v, on the plane x, = 0.
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time steps time steps
Fig. 5.2. History of the error. Fig. 5.3. History of the number of unknowns.
Table 5.1
Strategy Total CPU-time Overhead *
Uniform 81,780 sec —
Adaptive 20,920 sec 1,820 sec

* “Overhead” includes all additionally computational
work for the adaptive strategy such as calls of RE-
FINE, MATRIX, CONNEC etc.
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Fig. 5.4. Solution at time #, = 0.0, z, =0.64, 1;=1.28; Fig. 5.5. Grids at time 1, =00, #,=0.64, 1,=1.28;
intersections with planes x, =0 and x; = —0.04, x; = intersections with planes x, =0 and x; =008, x; =
0.32, x; = 0.68. 044, x; =0.8.
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Fig. 5.6. Solution and grid at time 1, = 0; intersection with plane x, = 0.
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Fig. 5.7. Solution and grid at time ¢, = 0.64; intersection with plane x, = 0.
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Fig. 5.10. Solution and uniform grid at time ¢, = 0.64; intersection with plane x, = 0.
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Fig. 5.11. Solution and uniform grid at time r; =1.28; intersection with plane x, = 0.

he)

boundary of the vortex — where there are jumps in derivatives of the solutions at time =0 —
has to be refined.

When using a uniform grid, the error decreases due to the damping of the solution as time ¢
increases. The adaptive strategy is able to reduce the amount of unknowns to keep a given
tolerance in the error. Actually the error is nearly constant for each time step thus indicating the
(quasi-)optimality of the grids (see Figs. 5.2 and 5.3).

Table 5.1 shows the benefit in CPU-time when using the adaptive strategy.

Figures 5.4-5.8 show the solutions and grids obtained by the adaptive strategy. The solution
resulting from the computation with a uniform grid is presented in Figs. 5.9-5.11 for compari-
son. The flow is visualized by projecting arrows representing the velocity onto a clipping-plane.

Different grey-values are used to indicate the mesh width. Dark means fine grid size whereas
light colour indicates a locally coarse mesh.
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