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Abstract 

Bansch, E., An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes 
equations, Journal of Computational and Applied Mathematics 36 (1991) 3-28. 

An adaptive strategy for three-dimensional time-dependent problems in the context of the FEM is presented. 
The basic tools are a mechanism for local refinement and coarsening of simplicial meshes and an unexpensive 
error-estimator. The algorithm for local grid modification is based on bisecting tetrahedra. The method is 
applied to the Navier-Stokes equations. 

Keywords: Adaptivity, local mesh refinement, Navier-Stokes equations. 

Notation 

n = 2 or 3 denotes the space dimension. 
A triangulation 7 is a set of (nondegenerate) simplices in IL!“. A triangulation 7 is called 

conforming, if the intersection of two nondisjoint, nonidentical simplices consists either of a 
common vertex or a common edge or a common face. 

T E F is said to have a nonconforming node, if there is a vertex P of the triangulation which is 
not a vertex of T but P E T. 

Define a relation “ G ” for triangulations: Fr 6 F2 iff F2 is obtained by refinement of Fr. 
We call a sequence F,, Y2, . . . stable, if all angles inside T are uniformly bounded away from 

0 and IT for all T E lJ,Tk. 
Throughout this paper we will assume fi = interior(U7) and that the connected components 

of ti are distinct. 

L~(S2)=L2(S2)n(uI~(x)dx=O), 

J?rg2( a) is the usual Sobolev space with zero boundary values, (. , . ) is the inner product of 
L2(Q, ( ., . ) is the H-’ X H’ pairing, 11 . 11 is the L2-norm, II - II T as I( . 11 but restricted to 
Tc 52. 
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0. Introduction 

Since the late 70s adaptive methods have been studied for different classes of PDEs (see, e.g., 
[1,3,4,10,12,13]). Especially in complex situations, such as flow simulation, these methods prove 
to be powerful tools for reducing computational cost dramatically. 

The FEM fits well into the concept of adaptive techniques. Its great flexibility admits a wide 
range of different types of grids and function spaces. Modification of the local grid size 
(h-method), the local approximation order (p-method) as well as combinations of both are the 
most common approaches. Lately much attention was paid on applications for time-dependent 
problems. 

Contrary to two-dimensional problems adaptive methods in three dimensions have not 
received adequate interest, although especially in this situation much gain can be expected. For 
instance, there are hardly any algorithms for local refinement of tetrahedral meshes. 

In this paper some techniques for applying the h-method to transient laminar flow simulation 
in three dimensions are presented, in particular we develop a mechanism for local grid 
modification. The governing equations are the instationary, incompressible Navier-Stokes equa- 
tions (NVS). The grid modification is based on simplicial grids which can approximate complex 
geometries very well. Furthermore tetrahedra turn out to be well suited in the adaptive context. 

The described techniques were implemented as a FORTRAN code. In Section 5 numerical results 
show the success of our approach for the simulation of flows with moderate Reynolds numbers. 

More precisely, we consider the Navier-Stokes equations governing the flow of an incom- 
pressible viscous fluid in a bounded region 52 & lR3: 

+-A Au+u.vu+vp=f, in fi, 

v*u=o, in 3, 

whereu:IW+~~~~~istheflowvelocity,p:IW+X~~~isthepressure, f:lR+Xti+lR3isa 
density of external forces and Re is the Reynolds number. 

Boundary and initial conditions have to be added: 

with 

J g.v do=O, 
af2 

v outward unit vector normal to ati, 

~(0, .) = uo, in 9. 

After time discretization by means of an appropriate scheme we get the following weak 
formulation: 

For k=l,2,... find UkEg+ (fi’;‘(G))“, pk~Li(L?) such that 

(L(At, uk, p”), QJ) + (v-uk, 4) = (f(At> uk-‘)> cp>> 

for all cp E ( g1,2( In))“, q E Li( O), where 

uk = u(k At, 0) E g + (+‘(a))“, pk =p(k At, 0) E L;(O), 

(0.2) 
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with some nonlinear functionals L and f depending on the discretization scheme. Let us look at 
this scheme as a black box for the moment. In Section 4 an example for a time discretization is 
presented. The adaptive method will not depend too much upon the scheme. 

To discretize (0.2) in space we choose function spaces Vh and W, for velocity and pressure 
consisting of piecewise polynomials on a grid 7. We now want to control the error of the 
computed solution ZAP by adjusting the grid Yk on each time level k. Because dealing with the 
error resulting from the space discretization is the harder task, we ignore the error due to time 
discretization for simplicity. 

The fully discrete equations then have the form: 

For k= 1, 2,... find z.& E ghk + VhA, p& E Wh, such that 

for all (Ph, E vtAy qh, E wh,, where vh/h, and Wh, are function spaces on the mesh Yh,. For 
simplicity we will drop the subscript h, and write uk, V,, etc. instead. 

In the sequel basically two tools are needed. First we need a criterion where to insert and 
where to eliminate degrees of freedom from a grid. This will be done by locally estimating the 
(space-)error of the computational solution. Secondly we have to develop a mechanism for local 
modification of a grid. 

The paper is organized as follows. In Section 1 we briefly describe some local error estimators. 
Section 2 deals with the second tool. In Section 3 we explain how to use these tools for the 
purpose of an adaptive strategy. Some details of the actual implementation can be found in 
Section 4. In the last section we discuss numerical results showing the efficiency of our approach. 

1. Error estimators 

Many proposals for estimating the error of a computational solution can be found in 
literature. We mention three classes of estimators for laminar flow problems. 

(i) Heuristic methods. Make use of physically motivated quantities like gradients, vorticity, etc. 
to select regions where refinement is needed [6]. 

(ii) Error estimators based on interpolation estimates. Starting from an interpolation estimate 
like 

IID’(u-Ihu)(I~Cllhk-‘DkuII, Z=O,...,k-1, 

with some interpolation operator IA, the term Dku is approximated numerically. For example, let 
k = 2 and substitute D2u by 

where uh is the numerical solution, [a,uh(x)] denotes the jump of the normal derivative across 
the boundary of the simplex T and h is the local grid size. In ]7,9] this idea is used to develop 
error estimators and show their reliability. 
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We choose the third method. 
(iii) Error estimators based on the solution of local problems respectively estimation of residuals 

[1,2,4,17]. Consider first the stationary Stokes equations: 

-Au+vp=f, in 52, 

v*u=o, in a, (1.1) 
u = g, on aa. 

The standard variational formulation is given by 

Find [u, p] E [g, 0] + H such that 

A([& PI> b, cd):= (vu, vu) - (P, v4 - (4, v.4 = (f, v), 

for all [u, q] E H := ( k1*2( a))n X Li( fi), and for the discrete problem 

Find [ uh, ph] E [g,, 0] + Hh such that 

41 uh, Ph], [“h, qh]) = (f, vh), 

for all [v,, qh] E Hh := V, X W,. 

(1.2) 

0.3) 

To estimate the error we solve local problems of the same type with the residuals as right-hand 
side. Let T ET, find [ur, pT] E [uh, 0] + HT such that 

4 uT, PT], [ vT, qT]) = RT([ ‘T, qT])y (1.4) 

for all [vT, qT] E HT := XT X Y,. 
XT and Y, are spaces of functions on T that are of higher order than V, and W, in a suitable 

sense. For instance, if we consider the so called Taylor-Hood element, that means 

v,:=({vEC0(~)Iv1TE~*}n~1~2(~))“, 

w,:= {wEc”(J2)IwITEPI} nL;(S2), 

set 

X,:=({u~9,Iu(Q)=O,Qavertexoramidpoint})”, 

Y,:=span{X,A,,O<i<j<n}, 

where Ai are the barycentric coordinates of T. 
R, denotes the local residual: 

RT([ uT, qT]) := (&)f + Au, - vPh> vT)T+ b?T, vpUh)T+ [[avuh], vT]a(Tnti), 

where 

pOf:=; [;I f XT. 
i-1 i 

Now define the local error estimator 9,: 

aT:= llV~uTllT+ lIpTIlT, forTEy> 
and the global error estimator 9: 
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As the calculation of 9 for three-dimensional problems may add substantially to the computa- 
tional cost, we are interested in less expensive estimators. This can be done by simply estimating 
the residuals with an appropriate scaling factor. Define 

( 
l/2 

qT:=h2-” C,lTl II&f-vp,,II:+C, c lrl lI[%%,] lI,‘+Glb’%ll: 
r=arnn 1 

0.7) 

and 

77 := [ c &)li2. 
T&9- 

Verftirth [17] showed the following. 

O-8) 

Proposition 1.1. There are constants c, C such that 

(9 Ilvb--u,)l12+ IIP-P~II~~C~~+ c ITI IL-Wll,2, 
T&7 

(ii) c9,<71T< c9,, for all T E 7. 

Remark. The proposition implies that 9 and 17 are asymptotically equivalent. Using 8 we would 
expect more precise quantitative information about the error. If the main objective is to control 
an automatic adaptive process, 77 may be preferred because of its lower cost. 

In order to apply these techniques to the instationary Navier-Stokes equations we modify the 
residual by adding the time derivative and the nonlinearity, thus getting the following definition 
for 1) (8 is changed in an analogous way): 

+c2 c ITI llb+J II 
I‘sFlTnO 

( ^aruh is the discrete time derivative of uh). 

U-9) 

Remark. (i) C,, C,, C, have to be fitted with the help of some explicit solutions. However, if the 
focus is more on qualitative information, the definition of the constants is less critical. 

(ii) Actually w e use a slightly simplified version of (1.9): 

h2(n-2)qc:= Re C, I T I II P,( f- uh. vuh) - vph 11,’ 

+ G& I r I II P”%l Ilk 

Our experience showed that the dropped terms are of low numerical significance. The divergence 
of u is used as a stopping criterion for the iterations of the (NVS)-solver and the volume 
integrals are scaled by I T I which vanishes faster than I r 1. 
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Fig. 2.1. Fig. 2.2. Bisection of a single triangle. 

2. Techniques for local grid modification 

2.1. Local refinement 

The local refinement of a tetrahedral mesh is studied in [5]. We follow the description given 
there. 

There are many references about local grid refinement in two dimensions [3,6,10,14-171. Most 
of the papers consider either dividing a triangle into two or into four new ones (where possible). 
Our strategy is based on the bisectioning of simplices. The 2-dimensional method is similar to 
that described in [14]. Unlike in the 2-d case there is hardly any algorithm for 3-d refinement. We 
introduce a refinement strategy which turns out to be a canonical generalization of the 2-d case. 
It can be applied to an arbitrary conforming initial triangulation. 

For convenience we briefly describe the 2-d case first and then deal with the triangulation in 

R3. 

2.1.1. The two-dimensional case 
The “philosophy” behind our approach is to look at the situation as local as possible. Let us 

first consider a single triangle T E R*. Mark an arbitrary edge, called the refinement edge, see 
Fig. 2.1. 

If T has to be divided this will always be done by cutting through the midpoint of the 
refinement edge and the vertex opposite to the refinement edge. We get two new triangles. The 
position of the new refinement edges are as shown in Fig. 2.2. This leads to the following 
algorithm for (local) refinement of a given conforming triangulation & into Y_+,. 

2-d algorithm. Let each T E Fk have one refinement edge and let 2 be the set of those triangles, 
which have to be divided. 

(1) Bisect each T E 2 as described above. Let yk 
triangulation. 

be the resulting (possibly nonconforming) 

(2) Let now 1 be the set of those triangles with a nonconforming node. 
(3) If 2 =O, set Yk+r := yk and stop. Otherwise go to (1). 

Figure 2.3 shows an example Y0 + Y1 with initial _E := .9$. 

Proposition 2.1. The algorithm stops in a finite number of steps, Yk+l is conforming and the 
sequence FO, YI, F2,. . . is stable. 
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. ~ 

~ 
Fig. 2.3. To, .L& and 7,. 

Proof. The proof is very simple and can be found in [5]. 0 

Remark. Note that we do not require any compatibility condition for the initial position of the 
refinement edges of neighbouring triangles. A good choice would be the longest edge of each 
triangle. 

2. I .2. The three-dimensional case 
Let Y be a conforming triangulation, consisting of tetrahedra T c R3. The main idea of the 

algorithm presented here is to divide T by bisection such that the faces of T are divided as in the 
2-dimensional case. 

Consider a tetrahedron T E F, which has been cut open along the three edges which meet at 
vertex P4 and unfolded. Assume that there is one refinement edge in each of the four triangular 
faces of T (one example is shown in Fig. 2.4). We make the following assumptions. 

(Al) For each tetrahedron there is at least one common refinement edge for two different faces 
of the tetrahedron, which meet at this edge (P,,P,, in Fig. 2.4). We call such an edge a global 
refinement edge of the tetrahedron. 

Fig. 2.4. 
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p4 p, p3 p4 

* * 

? ? 
P P4 4 v:: p, ,’ ” np*l ne ‘. P, 

P, P4 

Fig. 2.5. “ *” means an arbitrary distribution Fig. 2.6. 

of the refinement edges. 

(A2) If 7’,, T2 are two tetrahedra with Tl n T2 = S and S is a triangle, then the refinement edge 
of S with respect to Tl and the refinement edge of S with respect to T2 is the same. 

Note that assumptions (Al) and (A2) can be fulfilled for an arbitrary conforming triangula- 
tion: by small (hypothetical) perturbations of the coordinates of the nodes one can achieve that 
there is exactly one longest edge for each triangle of the triangulation. Take this as the 
refinement edge of the triangle. Then (Al) and (A2) are fulfilled. Just as in the two-dimensional 
case we first look at a single tetrahedron, see Fig. 2.5. 

Remark. The representation in Fig. 2.5 is unique if there is exactly one global refinement edge 
P,,P,, and if we require, e.g., i, < i, in addition. This representation is called standard position. 

For simplicity we drop the subscript i and write P,, P2,. . . instead. 
If there is a global refinement edge, we are allowed to bisect T by adding a new point P,,,,, 

the midpoint of PIP2 and cut T along P3Pnew and P,,,,P,. We get two new tetrahedra, see Fig. 

2.6. 
The refinement edges of the bisected triangles are chosen as in the 2-dimensional case. The 

only question is, how to choose the refinement edge for the new triangle P,,,,P,P,. One 

requirement is of course the condition that both new tetrahedra must have again a global 
refinement edge. 

p4 

Fig. 2.7 
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Fig. 2.8. 

We present a mechanism which does not only fulfil this basic assertion but also generates a 
very regular structure (see, for example, Fig. 2.11). For this we look at a special situation for the 
moment. 

Definition 2.2. A tetrahedron T is called red, if it has the distribution of refinement edges as 
shown in Fig. 2.7. It is called black in case of the situation shown in Fig. 2.8. 

Note that for red and black tetrahedra assumption (Al) is fulfilled automatically. 
In [5] is outlined how to choose the refinement edge for the new triangle, such that the 

following holds: if T is red, then its children are black. If a black tetrahedron T is divided and 
its father was red, then the children of T are again black. On the other hand, if T is black and its 
father was also black, then the children are red. For successive bisection we hence have the cycle 

red + black -+ black -+ red. 

Now consider the case that a tetrahedron is neither red nor black. Again there is a position of 
the refinement edge of the new triangle such that the children are red or black (see [5] for 
details). So without loss of generality we only have red or black tetrahedra. 

After having described how to handle the local situation, we now present the global algorithm, 
which is in fact identical with the two-dimensional one. 

3-d algorithm. Let ,Z c Yk be the set of tetrahedra to be divided. 
(1) Bisect each T E 2 as described above. Let yk 

triangulation. 
be the resulting (possibly nonconforming) 

(2) Let now ,Z be the set o,f those triangles with a 
(3) If 2 =fl, set Tk+i := Tk and stop. Otherwise 

We state the basic properties. 

nonconforming node. 
go to (1). 

Proposition 2.3. Let the conforming triangulation Fk fulfil assumptions (Al) and (A2). Then the 
above algorithm stops in a finite number of steps and Fkfl is conforming. The sequence FO, .FI, 
Y2,. . . is stable. 



12 E. Btinsch / Adaptive method for the Navier-Stokes equations 

Fig. 2.9. .f& T5. Fig. 2.10. 

Proof. See [5]. 0 

2. I. 3. “Standard” triangulations 
One can easily check that the 2-d as well as the 3-d algorithm generates a regular structure 

inside a macrosimplex. More precisely, simplices obtained by refining one simplex I times are 
geometrically similar to those obtained after I + n refinement steps. 

Furthermore, there are triangulations which are globally consistent with this structure. 
Consider in two dimensions the triangulations shown in Fig. 2.9. 

In 3-d we start with a subdivision of a cube consisting of six tetrahedra, each geometrically 
similar to the situation shown in Fig. 2.10, with P, = (0, 0, 0), P2 = (1, 1, l), P3 = (1, 0, 0) and 
P4 = (1, 0, 1). The macrotriangulation of the cube and a refined mesh is shown in Fig. 2.11. 

Definition 2.4. Consider a macrotriangulation which can be transformed into one of the 
triangulations shown in Fig. 2.9 and 2.11; this means that there is a mapping 

and &‘YO is a subtriangulation of one of the triangulations in Figs. 2.9 and 2.11 (including the 
position of the refinement edges). Every Yk that is obtained by refining Y0 is called standard 
triangulation. 

Fig. 2.11. To, 3. 
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Fig. 2.12. Macrotriangulation and locally refined mesh. 

An example of a locally refined triangulation obtained from a quite unregular macrotriangula- 
tion is shown in Fig. 2.12. 

2.2. Local coarsening 

As a fundamental concept we only consider coarsening such that refined simplices are 
coarsened in the same manner as they were refined, i.e., two “brothers” are melted into their 
father or in other words we just go back in the binary tree generated by the refinement process. 

Let us begin with the remark that an adaptive algorithm should not permit the coarsening of 
any situation without certain restrictions. To see this, consider Fig. 2.13. 

The solution of a problem might have required the refinement into the right corner of T as 
indicated. If some local criterion leads to a coarsening of T ‘, all previously refined triangles have 

Fig. 2.13. Fig. 2.14. 
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to be eliminated before. This “global” effect is of course not intended. To overcome this 
difficulty we look for configurations of simplices which permit to keep the process of coarsening 
local. 

We make the following definitions. 

Definition 2.5. (i) A simplex T E F has level 1 if T was obtained after 1 refinement steps. 
(ii) A simplex T is said to have locally finest level if the levels of all neighbours are less than 

or equal to the level of T. 
(iii) Let T E F and let T’ be the father of T. The vertex P which was inserted while bisecting 

T’ is called the coarsening node of T. 
(iv) Let K be an edge of the triangulation Y and K’ the “ father"-edge of K with midpoint 

Q. Set M := { T E 7 1 T n K ’ # 0). If Q is the coarsening node for all T E M, then M is called a 
resolvable patch. 

Figure 2.14 shows a resolvable patch in two dimensions. 

Remark. If M is a resolvable patch, all T E M can be coarsened without effecting any T’ E F 

outside M. 

Resolvable patches are the configuration which we allow to be coarsened. This guarantees that 
the coarsening process stays local. But now the question arises whether there are “enough” 
resolvable patches in an arbitrary triangulation. The following can easily been shown. 

Lemma 2.6. (i) Let 7 be a refinement of a standard triangulation. If T E F has locally finest level, 
then T belongs to a resolvable patch. 

(ii) At least local structures in the interior of macrosimplices of an arbitrary triangulation can 
always be totally coarsened. 

Remark. Actually there are situations where a refined triangulation cannot be coarsened into its 
macrotriangulation, see Fig. 2.15. In this example refined triangles at the node where macrosim- 
plices meet cannot be eliminated. 

Fig. 2.15. TO, refined triangulation and final triangulation after coarsening. 
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3. Self-adaptive strategy 

In this section we describe how the tools introduced above are used to adapt the mesh during 
the transient process. Because three-dimensional flow calculation requires a huge amount of 
storage - even for locally refined grids - only the triangulation for the current time step is 
kept in storage. Thus we also develop some special procedures, for instance to interpolate 
between grids of different time levels. 

As already pointed out we want to apply the h-method on each time level. So the problem can 
be stated as follows. Given a certain tolerance c > 0, find the Yk, k the k th time level, with 
fewest degrees of freedom, such that the estimation of the error n fulfils 

77= ( c li,(Ulii)1’2 < C. 
TEYk 

We shall not attempt to solve this optimization problem exactly. It is sufficient to obtain grids 
which are in a certain sense nearly optimal. A reasonable criterion to establish a “good” mesh is 
the equidistribution of the error _. 

with N$+= #&. 

This leads to the following criteria for refining or‘coarsening the mesh. 

3.1. Criteria for modifications of the grids 

Given k and T E 9Jk: 

refine T m times, (3.1) 

coarsen T r times, (3.2) 

where 0 -C 8, < 8, < 1 are constants, m, r E N. We choose m = r = 1. Of course some compatibil- 
ity conditions have to be added to insure that regions where nodes are eliminated do not 
intersect regions where nodes have been inserted. We actually permit a resolvable patch to be 
coarsened iff 

(i) there is no T in the patch which fulfils (3.1), 
(ii) there is at least one T which fulfils (3.2). 

.7 k+l can now be determined by an iterative process. Make a guess &‘+i for the new mesh 

(e.g., yF+i = Fk) and compute ugk+’ on Fko+i. Then Y:+i is obtained by applying (3.1) and 
(3.2) On yk’+, via evaluating q( f&+i ). Repeat this procedure until FL+i is satisfactory and set 
9- -c+1. k+l - 

However, it is very expensive to compute each ~f+l. Provided that the time step At is small 
compared to the velocity of the local error and the corresponding local mesh size, 

At G h(x) I wmorb) I 

(U _Jx) is the velocity of a “local perturbation”), we can choose a less expensive strategy. 
Given Fk and uk we obtain Yk+ 1 by simply applying (3.1) and (3.2) to .7k once. 
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Remark. The choice of 0r and 0, permits to influence the “character” of the triangulation. Small 
values of 0,/e, will yield more uniform grids whereas large values will create steeper gradients of 
the local grid size h(x). 

3.2. Interpolation between Fk and Fk+, 

Consider a time step k and the solution z.? on &. The right-hand side ( fi“) ;=i,_ _, Nk of (0.3) 
for the new time step k + 1 is given by 

where for instance (‘pF+r )i is the nodal basis of a discrete subspace vk+ 1 of ( P?1,2( G!))n on the 
grid Fk+r. If 7 k+ 1 > rk, there is a canonical representation of uk on rk+ 1 

( J;k)i can be calculated as usual. 
by prolongation and 

Consider the case where F 
test functions cpf+ ‘. 

k+l <Fk. This means that f( uk) is given on a finer grid than the 
We introduce the notation of the hierarchical basis qi, i = 1,. . . , Nk. Let $, 

l=O,..., r, be the conforming intermediate triangulations between rk and rk+ 1 

and 90 =yk+,. 
with $ = yk 

The discrete function spaces on .$ are denoted by c. Let the enumeration of 
the nodes be such that 

P 1 ,..., PM,arethenodesof<. 

Then 

#i:=+f~ fi, if M,_,<i<M,, 

and @J, j= l,..., M,, is the nodal basis of c. u E rk can be represented in terms of (pk and qi: 

Nk NA 

’ = C ujqf = C Ufl),. 
j=l j=l 

Note that q$+’ = qi. Let S E RNkxN k be the matrix transforming (UP )i into ( ui) ;: 

c sijq = ui. 

Define f;:= (f(uk), Q$), i= l,..., Nk, with test functions cpf on the fine grid, which can be 
computed as usual and J* := ( f( uk), qi). Then we have 

S’f^=f *, 

and particularly, 

(3.3) 

for i < Nk+l. 

Remark. There is a factorization for ST = ST - - e SrT where S,T can easily be computed on each 
intermediate triangulation $ (see [18] for details). 
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3.3. Self-adaptive algorithm 

Solve NVS-equations: find uk, p” 

+ 
Grid Modification: 

Transform i” into fk according to (3.3) 

Fig. 3.1. 

Now we are able to present the algorithm for the time-dependent adaptive strategy, see Fig. 
3.1. 

4. Description of the implementation 

In this section we describe the “black box” of the Navier-Stokes solver and mention some 
details of the actual implementation which are not straightforward. 
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4. I. Time discretization 

We follow a proposal of [6] and use the so-called &scheme. Let u” = ~(0, . ); then 

U 
kfe - Uk ff Auk+e+ vpk+e=fk+e+ A Auk- (uk. V)Uk, -- 

Oat Re in 9, 

v. Uk+e = 0, in s2, uk+’ =gk+e, on Cl&?, 

Uk+l-B _ Uk+e 
P (1 _ 2e) At - Re Auk+‘-’ + (Us+‘-‘. v)u~+‘-~ 

= 
f 

k+l-e I le A,kfe _ vpk+e, in fi, 

24 
k+l-e = 

g 
ktl-e , onaS2, 

(4-l) 

(4.2) 
Uk+l _ Uk+l-8 

-- 
9 At 

(y Auk+1 + vpk+l 
Re 

P =fk+’ + Re Au k+l-e 
-(u 

k+l-e. V)uk+l-8, in 9, 

v*u k+l = 0, in fi, Uk+l _ 
-g 

k+l 
, on ati, (4.3) 

for all k 2 1, with 8 = 1 - :fi and CY = (1 - 28)/(1 - fl), /3 = e/(1 - 0). 
By (4.1)-(4.3) the main problems in solving NVS numerically are uncoupled, namely the 

treatment of the divergence condition and the highly nonlinear structure. Formulas (4.1) and 
(4.3) are Stokes-like problems, whereas (4.2) is a nonlinear system without solenoidal constraint. 
In [6] efficient tools for solving these subproblems are introduced. The Stokes-like equations are 
transformed into operator equations for the pressure with a positive definite, self-adjoint 
operator. These transformed equations can easily be resolved by an abstract version of the 
conjugate gradient method via a cascade of scalar equations of the form u - r Au = f. 

Formula (4.2) is treated by a nonlinear conjugate gradient method with an appropriate 
preconditioning. Again the actual numerical work is done by solving a cascade of scalar 
equations of the above type (see [6] for details). 

One of the most fundamental requirements on the scheme in connection with an adaptive 
approach is the unconditional stability. A stability condition of the form 

At < shy, 

with some (Y 2 1, would lead to inacceptable time step lengths. 
Stability and convergence for a slightly modified version of (4.1)-(4.3) are shown in [8]. 

However, only conditional stability is proved there. Nevertheless, numerical experiments show 
that the scheme behaves well. We gained the experience that for given ho > 0 there is a At, such 
that (4.1)-(4.3) is stable for all h(x) < ho and At G At, at least for moderate Reynolds numbers. 

Remark. With the time discretization (4.1)-(4.3) the right-hand side of (0.2) becomes (without 
external forces) 

(f(At, uk-l), ‘p) = &(uk-‘, ‘p) + &(vuk-‘, vq) - (uk-l. vuk-l, cp). 
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4.2. Space discretization 

We use the so-called Taylor-Hood element with piecewise quadratic, globally continuous 
velocities and piecewise linear, globally continuous pressures. This combination is stable with 
regard to the BabuSka-Brezzi condition [ll]. 

4.3. The implementation 

Although nowadays there are powerful software tools for handling complicated data struc- 
tures, we use FORTRAN as programming language. This guarantees the portability of the code and 
permits the profitable use of vector and parallel hardware. 

Furthermore, multi-level data structures, which could be implemented even in FORTRAN, might 
make life much easier. The drawback of those techniques consists of higher storage requirements. 
For three-dimensional problems, storage becomes very expensive. We therefore use a data 
structure based on arrays (that has a high vectorization potential) and keep only information 
about the triangulation of the current time step. As already mentioned in Section 3 this requires 
some additional techniques, for instance the coarsening procedure and the interpolation formula. 

In this section we sketch some details how the adaptive strategy introduced in Section 3.3 was 
actually implemented. The following code may be the body of a FORTRAN main program 
representing the algorithm: 

DO 1 K= 1 ,N_TIME_LEVELS 

CALL REFINE(U,P,REF_FLAG) 
CALL CONNEC 

CALL RIGHT_HAND_SIDE(U,F) 
CALL DEREF(F,REF_FLAG) 
CALL COMPR 
CALL CONNEC 
CALL MATRIX 
CALL THETA-SCHEME 

CALL ERROR_ESTIMATOR(U,P,REF_FLAG) 
1 CONTINUE 

where NT is the number of tetrahedra, NV is the number of vertices, NK is the number of nodes, 
U( 3,NK) is the velocity field, F ( 3,NK 1 is the right-hand side, PC NV 1 is the pressure and 
RE F_ FLAG ( NT > is the flag, whether a tetrahedron has to be divided, coarsened or unchanged. 

In the sequel we explain the various subroutines. 

REFINE 
RE F INE executes the refinement step. The basic tool in this routine is the procedure which 

bisects a single tetrahedron. This is done in the following way. 
l Let T be a tetrahedron with number K represented in standard position as shown in Fig. 4.1. 
(The representation in standard position simplifies many manipulations on the simplex.) 
l Set NT := NT + 1, bisect T and pass all information from T to its “children”. The new 
tetrahedra get the numbers K (left one) and NT (right one). 
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p4 

p4 p3 p3 

p4 p4 FP ;::;:. 
p4 

PI new nr 2 

p4 p4 

Fig. 4.1. A tetrahedron T in standard position and its “children”. 

l Due to the local design of the algorithm, exchange of information with adjacent tetrahedra is 
needed only in three cases (for notation see Fig. 4.1). 

(iii) 

The-neighbour of T .at face I has to be told that the number of its neighbour is now NT. 
We need to check whether P,,, already exists. This might be the case if a tetrahedron 
which lies at edge PI Pz has been bisected before. To trace that, we store some information 
about edges. 
There might be “conflicts” with the neighbours at face III and IV which arise from 
nonconforming nodes. The vectors keeping this information have to be updated. 

l Finally the new tetrahedra K and NT are transformed into standard position. 

Remark. Because we use quadratic elements for the velocity, not only vertices but also the 
midpoints of edges have to be taken into account during the grid modification. They carry 
information (of the old time step) which is needed, e.g., while evaluating the right-hand side. It 
turns out that we cannot enumerate the nodes for the velocity space in such a way that 
P l,“‘, P,, are the vertices of the triangulation. On the other hand, the nodes for the pressure 
space, say P,?, . . . , PNVf, are just the vertices of the triangulation. Two permutation vectors are 
needed to provide the mapping between the two enumerations. 

CONNEC, MA TRIX 
CONNEC generates the connectivity for the nodes of the pressure and velocity space. In 

MATRIX the stiffness matrices are assembled. The connectivity and matrix for the pressure space 
are stored in arrays as: 

NEIGHBOUR_P(NKP,IBAND) 

A_P(NKP,IBAND), 
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where IBAND is the maximal number of neighbours of a vertex. 

Storing the information for the velocity space in the same way would require an inacceptable 
amount of memory. Because we use quadratic elements, the bandwidth is quite high. Further- 
more, the hull of the matrix is irregular. Even for the standard triangulation the maximal number 
of nonzero elements is 124 whereas the average is 26. Therefore we want to store the elements of 
the matrix in a linear order. That means we have vectors of the form 

NEIGHBOUR(NK*IBAND_AVERAGE) 

A( NK* IBAND_AVERAGE 1. 

In order to get vectorizable code, we store the elements of a row consecutively. For that purpose 
we use the vector 

IPOINT( 

The elements ai,j are represented by 

A(IPOINT(I)),..., A(IPOINT(I+l >-I 1. 

To assign values to the vector IPOINT we a priori have to know the number of nonzero elements 
for each node. If we have this information for the pressure space (note that the nodes for the 
pressure space are just the vertices), we are able to calculate this number by means of the Euler 
formula 

#vertices - # edges + # triangles = 2 - #holes, (4.4) 

for a triangulation of a closed 2-d manifold in R3. Let P, be a node of our triangulation and 
NT,,, := # { T E Y ) Pi E T }. Note that NT,,, can easily be calculated. Denote by q the number of 
neighbours of the node Pi. With the help of (4.4) it is obvious that: 

if P, is a vertex, then 

q = 3NV,,, + NT,, - 2, if P, E 8, 

q = 3NV,,, + NT,, - 1, if P, E 30; 

if P, is a midpoint of an edge, then 

q=4NV,,,+2, if P,E~, 

q = 4NT,,, + 5, if P, E ail?. 

Here NV,,, denotes the number of neighbouring vertices in the pressure space. 

RIGHT_ HAND_ SIDE 

Assembles the right-hand side of the system (4.1). 

DE_REF 

Eliminates those refined tetrahedra which were marked in RE F-FLAG and transforms the 
right-hand side F according to (3.3). 

To coarsen a tetrahedron T we have to check whether T belongs to a resolvable patch. One of 
the problems that occur is to identify the coarsening node of the “father” after having melted its 
“children”. 
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COMPR 
After eliminating degrees of freedom there are “holes” left in arrays. COMPR compresses these 

arrays. 

THETA _ SCHEME 

This routine represents the solver of NVS as described in Section 4.1. As mentioned above, the 
inner loop of the algorithm consists of several solvers for scalar equations of the type 

u-TAu=f. 

These problems can efficiently be solved by a preconditioned conjugate gradient method. 

ERROR _ ESTIMATOR 
Computes the estimation TV, TE&, and fills the array REF_FLAG according to (1.9). 

5. Numerical results 

As a test example consider a local perturbation moving with approximately constant speed in 
a uniform flow. For that define 

@(xl := uxl(l +0.5$, 4(x) := -A(x; + x;)(Lz’ - r2), 

with Y := 7 x1 + x2 + x3 and a, U, A > 0. $ describes the potential of a flow around a ball with 

radius a and velocity Ue, at infinity. + is the so-called Hill’s spherical vortex with strength A. 
Now define 

i 

rot 4(x), 1x1 <a, 
%b) := v$(x), 

1x1 >a. 

In the sequel we assume U = & * 0.2 a2A. This implies that u,, is globally continuous and that it 
is a stationary solution of the Euler equations. 

We solved NVS numerically with the following data: 

1(2 =] - 1, 2[ x10.5, o.5[2, 

uO(x) = OS( Q(X) + e,), for x E 0, 

g(x) = el, for x E iK?, 

Re = 1000, At = 0.04, a = 0.27, u= 1. 

Note that the initial and boundary data are almost compatible for a -=z 1. In Fig. 5.1 u, is 
sketched. 

The following figures show the numerical results computed on a CONVEX C-210 obtained by 
using a uniform grid respectively the adaptive strategy. 

As expected the vortex moves to the right with a velocity of about 0.5 and is damped by the 
influence of the viscosity (see Figs. 5.4, 5.6-5.11). The adaptive strategy is able to track the 
vortex through the computational domain. The error estimator recognizes the region occupied by 
the vortex as an area where a locally finer mesh is needed (see Figs. 5.5-5.8). Especially the 
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Fig. 5.1. Streamlines of v,, on the plane x2 = 0. 

time steps 

Fig. 5.2. History of the error. 

time steps 

Fig. 5.3. History of the number of unknowns. 

Table 5.1 

Strategy 

Uniform 

Total CPU-time 

81,780 set 

Overhead a 

Adaptive 20,920 set 1,820 set 

a “Overhead” includes all additionally computational 
work for the adaptive strategy such as calls of RE- 

FINE, MATRIX, CONNEC etc. 
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Fig. 5.4. Solution at time tI = 0.0, t2 = 0.64, t3 = 1.28; 
intersections with planes x2 = 0 and x, = -0.04, x1 = 

0.32, x1 = 0.68. 

Fig. 5.5. Grids at time t - 0.0, 
k- 

t, = 0.64, t, = 1.28; 
mtersectlons with planes 2 = 0 and x1 = 0.08, x1 = 

0.44, x1 = 0.8, 

Fig. 5.6. Solution and grid at time t, = 0; intersection with plane x2 = 0. 
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Fig. 5.7. Solution and grid at time t2 = 0.64; intersection with plane x2 = 0. 

Fig. 5.8. Solution and grid at time t, = 1.28; intersection with plane x2 = 0. 
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Fig. 5.9. Solution and uniform grid at time t, = 0; intersection with plane x2 = 0. 

Fig. 5.10. Solution and uniform grid at time t2 = 0.64; intersection with plane x2 = 0. 
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Fig. 5.11. Solution and uniform grid at time t 3 = 1.28; intersection with plane x2 = 0. 

boundary of the vortex - where there are jumps in derivatives of the solutions at time t = 0 - 

has to be refined. 
When using a uniform grid, the error decreases due to the damping of the solution as time t 

increases. The adaptive strategy is able to reduce the amount of unknowns to keep a given 
tolerance in the error. Actually the error is nearly constant for each time step thus indicating the 
(quasi-)optimality of the grids (see Figs. 5.2 and 5.3). 

Table 5.1 shows the benefit in CPU-time when using the adaptive strategy. 
Figures 5.4-5.8 show the solutions and grids obtained by the adaptive strategy. The solution 

resulting from the computation with a uniform grid is presented in Figs. 5.9-5.11 for compari- 
son. The flow is visualized by projecting arrows representing the velocity onto a clipping-plane. 
Different grey-values are used to indicate the mesh width. Dark means fine grid size whereas 
light colour indicates a locally coarse mesh. 
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