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Abstract

Hinsen, G., Explicit irregular sampling formulas, Journal of Computational and Applied Mathematics 40
(1992) 177--198.

An important new class of irregular sampling sequences is investigated. The sampling formulas can be
expressed in terms of standard functions. For the first time estimates for the most common errors are given.
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1. Introduction

Let Bf denote the class of all L?(R)-functions that are band-limited to [—B, B] (cf. Section
2). The classmal Whittaker—Shannon-Kotel’nikov sampling theorem [6,14,17,19] states that

sin w(z —n)

f(z)= Z f()———+—, z€(, (1.1)
n=—w ( n)
i.e., the function f can be reconstructed from its values at the integers, provided that fER]
for1 <p <o, B <m or p=w, B <. Setting ¢, :=n, G(z) =7~ sin wz, formula (1.1) can be
rewritten as
= G(2)
= t,)—————o, eC. 1.2

The function G can be interpreted as a canonical product with respect to the integers (cf.
Section 3), i.e.,

G(z)=z,ﬁ(1—%)(1—ti). (1.3)

-n

Hence in view of (1.2), (1.3) it is justified to call the sampling series (1.1) a Lagrange
interpolation formula with infinitely many knots (cf. [11]).
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One often speaks of the classical sampling theorem as the uniform sampling theorem
because the underlying sequence of krnots (the sequence of integers) is equidistantly spaced.
Nonuniform, or irregular, sampling theory investigates which not necessarily equidistantly
spaced sequences of sampling knots admit the reconstruction of band-limited functions; in
particular it is asked under which assumptions on f and {t,},., do the formulas (1.2), (1.3)
remain valid. The preseri paper deals with a class of sequences {t,},  ; of sampling points for
which the product G{z) in (1.3) can be expressed in terms of Gamma-, sinc- or other standard
functions, i.e., for which the sampling series can be explicitly given. The sequences in question
are essentially of the form

t,,={"+D’ 7>0, 11 large, (1.4)

n—D, n<o,

for some D € R. The parameter D can simulate the effect of adding or dropping finitely many
sampling knots. Modifications, such as replacing finitely many knots or translating all knots by a
fixed amount or multiplying all knots by a positive factor, are studied.

Section 3 contains the calculations needed to find a simple representation for G(z). In
Section 4 the corresponding sampling formulas are established. Section 5 is devoted to a study
of the most important error types that occur in connection with noauniform sampling series,
namely truncation, amplitude, timc-jitter and aliasing errors. The corresponding results are
valid only for a rather small class of sequences (— 3 < 2 <0 in the sense of (1.4)); however, this
is the first time that error estimates for nonuniform sampling expansions of Lagrange type (1.2),
(1.3) are given (Feichtinger’s paper [8] deals with a different kind of nonuniform sampling
series).

2. Preliminaries

Let N, Z, R, C denote the sets of natural, integer, real and complex numbers, respectively.
For x € R, the floor function | x] is defined to be the largest integer <ux.

Let EcC and let f,, f, be real-valued, nonnegative functions on E. Then f, is equivalent
to f, on E (f,~f, on E) if and only if there exist C,, C, such that 0<C,<C, and
C,f2) <f{2) < C,f(2), z€E. Sometimes, the well-known o, @-notation will be used as
well.

Let 1 <p < ». The number q is called the conjugated index of p, if 1/p+1/q=1 (e.g., if
p=q=2o0r p=1,g=o or p=x, q=1). The spaces L”(R) consist of all Lebesgue measur-
able functions f on R with || f |l ,:== (/.| f(x)|¥ dx)!/? < ®, and L*(R) denotes the space of
all essentially bounded functions.

A sequence {t}={t )}, ., is [* if it is bounded, [[{t}|l~==sup,cIt,|. For 1<p <o, a
sequence (¢} is element of the space [7, iff |[{t}|l;pr:=(T,c,1t,17)/? <. Let [s}, {1} €17,
1 < p < . Then there holds Minkowski’s inequality, i.e., [{s} +{t} |l ;> < I{s}!l;» + I{e} ]l ;». If P,
q are conjugated indices and {s}t €/?, {t} €19, one has ||{st}{l» < l{s}l;» l{t} il 1, Where
{st}, = s,t, (Holder’s inequality).

The spaces Bf, 1 <p <, >0, are made up of all entire functions f which are in L?(R)
when restricted to R and fulfil | f(x +iy)| <sup, .| f(u)|e?!?!. All functions which belong to
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one of the spaces Bf are called band-limited to [-B, B, smce their (distributional) Fourier
transform vanishes outside of [ — B] If 1<p <= and fe B}, then one has firstly
[ Fl DN < FN (141, I\—‘/I’DBIyl ey Ly el (1 13
LJ L)1V iiJlip\r T 1Yi) P4 ATIy UL, (41)
(Korevaar’s inequality; it can be obtamed by simple modifications from the results presented

N2 and cornn Al 0 £ 1 nll £l { Dorrotndin o S22oes - 11N A e e
110y, anG SConGY 1y nwpspij || p { Bernstein s ma[uuluy, cf. [1U, p.115)). A third !Illpurld i

estimate connected with band-limited functions is Nikol’skii’s ir.cquality.

Lemma 2.1. Let 1 <p <o, B> 0 and let {t} = {t,},c , be a sequence with

36, L>0VneZ 6<t,,,—t,<L. (2.2)
Then there exist constants C,, C, > 0 (dependent on 8,L) such that for all f € B,
Y 1/p
Cilifllp<sup| X 1£(,-x)I"] <Glifll,. (2.3)
XER\ p=—x

Proof. See [9, pp. 83-86] and [16, pp. 123-124]. O

In the calculations of this paper some formulas concerning the Gamma function are needed,
namely the functional equation I'(z+1)=zI(z), z€ C\{—n; n € NU{0}}, the reflection
formula 1/(I'(z)I'(1 — z)) ==~ 'sinwz, z € C, and the estimates given in the following lemma.

Lemma 2.2. (a) Let a, B €R and n > 0. Then there holds

I'z+a) «p o .
lm ~1z|*F, on{z=x+iyeC;lzlzn,x+a=n,x+B=n)}.
(b) Leta,, ay, b,, b,€C witha,+a,—b, —b,=0. Then
F(M+a1)F(M+a2)

Mos T(M+b,)[(M+b,)

Proof. A partial proof of (a) and (b) can be found in [15], a detailed one is given in [9, pp.
11-14]. Estimate (a) is often stated as an asymptotic result (cf., e.g., [7]). O

The space UCB(R) consists of all uniformly :ontinuous, bounded functions on R and is
equipped with the norm || fllc:==sup, gl f(x)]. In order to describe the smoothness of
functions in UCB(R) one considers the Lipschitz classes (a >0, L > 0)

sup | f(-) = f(- + k) llc < L&, for all 5>o}.
|hl<d

For the spaces LP(R), 1 <p <, and UCB(R) the means of de la Vallée-Poussin (delayed
means) are defined by

Lip,(a, UCB(R)) = { fe UCB(R);

sin(3pu) sin{§pu)

(sou)’

du, p>0.

2p .=
VP f(x) = = [ f(x—u)
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Lemma 2.3. (a) Let re NU {0}, @ € (0, 1] and L > 0. Then for all f with f*” € Lip,(a, UCB(R))
and all p> 1,
IVP,f—fllc<CLp™""".
(b) Let f€ UCB(R) and assume that 3y < (0,1, M;>0 such that | f(x)| <M;|x|”?,
{x| > 1. Then

IVE,f(x)| <3(M;+ I fllc)lx1 ™" IxI>1.

Proof. See [18] for these and further results on the delayed means. O

3. The sampling sequences {t3} and related sequences

Definition 3.1. (a) A strictly increasing sequence {t} ={t,},., of real numbers is called
equidistant, if there exist constants 7 €R, o> 0 such that t,=7+on, n€ Z.

(b) A sequence {t} of real numbers will be called a perturbed equidistant sequence (with
respect to the equidistant sequence {r + on}, ), if there exists a constant L >0 such that
It,—7r—on|<L,neZ

(c) Let DR and N,:=max{0, [—D}}. The symbol {z}} denotes the sequence defined by

n—D, n< —Ny,—1,
’t
to = >
b.» Ny+1
n+D, n>Ny+1.

The members of each sequence {tg} are in strictly increasing order; in fact, the minimum
distance between two consecutive members is not smaller than 1/(N, + 1). The sequences {¢p}
are symmetrical: t,,=0 and t,_,= —t,,, n €N. The sequence {0} turns out to be the
sequence of integers, i.e., the {¢J} sequences generalize the classical sampling sequence. It will
be our main concern to see whether the sampling theorem extends to values of D different
from zero.

Definition 3.2. (a) Let {t} be a perturbed equidistant sequence. The canonical product with
respect to {t} is defined by

G(z)=G({t}; z) =g(ty; z)klig(tk; z)g(t_y; 2), zeC,

where g(s; z):=1-2z/s, if s€R\{0} and g(0; z) =z.
(b) Let D € R. For abbreviation, set G(z) = G({tJ}; 2).

Since in every bounded subset of C, |g(t,; 2)g(t_,; z) — 1| =&(k~?) for large k, the
product G(z) is well-defined and represents an entire function with zeros at ¢, (if a member of
{t} occurs more than once, the function G has a zero of corresponding multiplicity).

The canonical products G, can be represented in terms of well-known functions and one
can give a fine characterization of their growth behaviour.
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Proposition 3.3. Let D € R and N,, {t}}, G/, be defined as above.

(a) With
No T?(My+ 1+ D)(Ny+ 1)*™
P = _ d = 70 0
28, +1(2) k=l—JN0 z No+1 and Cp (N,)? )
one has
(‘I)N"CDPzN «1(2)
G = 0 _
o{2)= RN, +1+D-2)[(Ny+ 14D 2)’ zet, (3-1)
Gy(z) = CyP (2) 1'(z-—N0—D)_‘sin w(z—D) Sec\A 39
D D 2Nu+] IV(Z+N0+DJ 1) T ’ \ 1’ (')
I'(-z—Ny,—D) sin w(z+D)
Gp(z) =CpPyy,.1(2) z€C\A4,, (3.3)

I'(—z+#,+D+1) -
where A, ={n+D, n <Ny}, A,={n—D, n> —N).

(b) For zeC with |3(2)| <3 «nd |R(2)| >Ny+D+ 3 set N(z)=|R(z)-D+1], if
R(z)>0, and N(z)= —N(-2z), if R(2)<O0. Provided Q is large enough, there holds for
z=x+iyeg(C, |z| >,

1Gp(2)] ~ 121722 o1 321> 2, (34)
lz=3 0. 1S(2)I <3,
in particuicr.
1Gp(x) =@(1x]7%P), x€R, |x!>o. (3.5)
(c) The sequence (Gt W, <7 is strictly alternating for large n and
IGo(15,)| ~(In1+1)7%°, nez. (3.6)

Proof. (a) From the definition of G(z), applying the functional equation of the Gamma
function, one obtains

No N, +1)°z2 i z?
GD(Z)=zkl:[1 (l—— = kz) )k=ll-\l-0[+1(1_ (k + D)’
(=1)M(Ny+1)*" Mo k
N (N,!)? BNO(Z_ N0+1)
- ﬁ (k+D—z)(k-|2-D+z)
M—® k=Ny+1 (k+D)
_ (N +1)"™T*(Ny +1+D) (= 1) Py, 1(2)
B (Np!)? I'(Ny+1+D—=2)[(Ny-+1+D +2z)

i rM+1+D-z)I(M+1+D+2z)
X M Ir'*(M+1+D)
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For each z € C. the quotient '(M+1+D —z)[(M+1+D+2z)/I'*(M+ 1+ D) tends to 1
as M — x in view of Lemma 2.2(b). Thus (3.1) holds. The other two representation formulas of
part (a) can be derived by the reflection formula, e.g., if z € C\ {n + D; n < Ny}, one has

1 1
T(Ng+1+D—-2)[(Ny+1+D+2z) TI{(z—Ny-D)I(1-(z—=N,-D))
I'(z—=N,-D)

X
F(z+N,+D+1)

) N, Sin W(z—D) TI'(z—Ny—D)
=(=1) I(z+N,+D+1)"
Equation (3.3) could also be proved by substituting —z for z in (3.2) and noting that G(z) is
an odd function of z.

(b) Both sides of (3.4) are even functions of z; so one can assume R(z) > 0 without loss of

generality. Let Ej; ={z€C; R(z)>0and | z| > 2}, and choose 2:=N,+ D + 1. Then (3.2)
is valid on Eg,. Making use of the functional equation of I'(z) again, one obtains

I'(z—N,-D) P2N0+1(Z) I'(z—|-D|-D+1)
Pz“’o*‘(z)r(z +N,+D+1) - ﬁ (z—k—-D) I'(z+Ny+D+1) (3.7)
k=|-D]

Since P,,, . (z) and l"[;:’gl_,,](z — k — D) are polynomials of degree 2N, + 1and N, —|—-D] + 1,
respectively, the zeros of which are real and no larger ttan N;/(N,+1) and N,+ D,
respectively (i.e., outside of Ej), one has | P,y , (2)/TIfe, _p(z—k —D)| ~ |z|™*1=P1 on
E,. The second factor on the right-hand side of 63.7) can be estimated with the help of Lemma
2.2(a). Indeed, noting that x —|-5j—D+1=x+[D]|-D+1>1, x+N,+D+1>1 and
|zl >2>10n E,

IF(z—|-D| —-D+1)/T(z+Ny+D+1)| ~|z| 22N 1=P1 " on E},
and thus, keeping in mind that C,, is a nonvanishing constant,

I'(z—Ny,—D)
C,-P ~1z|7*?, zeE}.
b 2"’"’"(Z)F(z +N,+D+1) lzI7, z€Eg

In order to give an estimate of =~ ! sin w(z — D), the remaining term of (3.2), assume firstly
that |3(z)] > 1 and recall the well-known equation |sinwz|?=sin?wx + sinh®wy. One
clearly has

0 <sin’w(x —D) <1<e®™
and

(1-e"") e*™"! <4 sinh?my = (1 — e~ 271¥1)? e2mivi < e27I¥1
and it readily follows that |w~'sin w(z — D)| ~ e™¥i. Secondly, let | 3(z)| < &. Then for z to
be within Ej; it is necessary that #(z) > Ny + D + 3; hence N =N(z) >N, and ¢}, =N +D.
The definition of N and the restrictions on z imply that R(z—N-D)=R(z)-N-D¢e
[~ 2, 3),and 3(z— N - D) =3(z) €[~ 1, 1]. Since sin wz/(wz) is a continuous and nonvan-
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ishing function on the interval {z=x+iy€eC; |x| <3, |yl <1}, sin m(z—N-D)/w(z~-N
— D) is bounded from above and from below by positive constants which do not depend on N,
and one has
(=1)" sin w(z =N -D)

w(z—N-D)

—tpN)

sin w(z — D) ’ ‘

~lz=td y| ~e™z =15 |, z€ES, 15(2)] < 1.
The estimate (3.5) is obviously correct since one has y = 0 and
|z~ 13| =12=N=-D|= (R -N-D) +3%z-N-D))*< T,

provided z=x+1iy €R and x large.
(c) For nonnegative n (no loss of generality, since G;, is odd and {z2} is symmetric) one
obtains by a suitable application of the product law on (3.1) and (3.2), respectively,

1, n=0,
(=D™Cp Pin +1(1D.0)
) 740 F(N0+1+D—tg,n)1"'(N0+1+D+tg’n) 2Ng+I\tD,n)>
oll5a) = 1<n <N,, (3.8)
C,P N Gt ) )", n>N
D ZN(H'I( Dn)l'v(n+N +2D+1)( ) ’ n 0-

The sequence {G}(t3 )}, < is strictly alternating for n > N, more precisely sign Gp(¢p,) =
(—=1)". In fact, both arguments of the Gamma function are positive (n+N,+2D+1>
2(Ny+ D)+ 12> 1) and the polynomial P,y +1(x) does not change its (positive) sign for x > 1,
since all its zeros lie between —1 and 1.

For n>N, there holds P,y ., (t3,)~(n+D)*"*!~p?N*! and by Lemma 2.2(a),
I'(n—N,)/T(n+Ny+2D+1)~ n~—2MNo~1-2D_This proves |Gpep I ~nl+1)7%P for n>
N, and (3.6) follows readily since all zeros of G, are simple (i.e., GD(t ») #0) and Gp(15,)
= .—GD(tD,—n) a

Example 34. For D=0, 3, 1, — 1, —1 one obtains by direct calculation or application of

Proposition 3.3:
1) D=0,{tY=(..,3210,1,2,3, ...), ie., the sequence of integers,

N()=01 GO(Z)=ZI—[ = G(')(tg,n)=(—1)n’ nelz;

k=1 kZ w ’
(2)D=% {t1/2}—( % —"%7—%’0’%’%’%"")’
COS Tz , n '“'(’1 ' E)
No=0,  Gplz)=27773> Gip(then) = (1) an(n + 1) neN;
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3 D=1{N=(..., -4, -3,-2,0,2,3,4,...),
sin wz (-1)"
= =—. Gi(t)= ————,
No=0. Gy(2) w(1-2z%) () n(n +2)
(4) D=—%,{‘g|/2}=(---,—go_%"%70,1, ;'; %, ---)a
Ny=1, G_,,5(z)=2zcos nz, G’_l,z(t‘.’,,z,,,)‘—‘(—l)"(n—%)'rr, neN;

(5) D= _1; {I(ll}=(---, -29 _ls _%a 09 %’ 1’ 29 --°)’

neN;

sin 7wz

Ny=1, G_(z)=(1-4z%)

tl
G'_l(tgl.n) =(- l)n(4(n - 1)2 - 1)’ nz2.

When a sampling sequence is modified, the corresponding canonical product changes
accordingly. The next two lemmas describe the alterations caused by the most common
modifications.

Lemma 3.5. Let {t} be a perturbed equidistant sequence. Let k € Z, o >0 and v € R. Then the
sequences {t_, ), {o{t}} and {r +{1}}, defined by {t_,},=1,., . (index shift), {o{t}}, = ot, and
{r +{t)), =7 +1, (n € 2), are perturbed equidistant sequences and

G({r...}; 2) =G({t}; 2), zeC, (3.9)
G({olt}}; 2) = a-"G({t}; 2), z€C, (3.10)
G(fr+1{1)); 2)=C.G({1}; z—7), zeC, (3.11)

where A denotes the multiplicity of the number zero as a member of {t} and C._ is a suitable
nonzero constant.

Proof. It is easy to check that the sequences under consideration are indeed perturbed
equidistant sequences, hence the corresponding canonical products are well-defined. Equation
(3.9) follows from a comparison of the respective partial sums, noting that g(t,; z) tends to 1 as
k| >, and (3.10) is obvious since g(ot,; z)=1-z/(0,,)=g(t,; z/o) if t,+0, and
glot,; z2)=z=0g(t,; z/0) if t,=0. While C,=1 in the trivial case 7 =0, one finds, for
7#0, that g(7+1,; z2)=g.(¢,)g(t,; z—17), n € Z, where

g(r+s;7)=(g(s; =7))™", seR\{0, -7},

g(s)= - =(g(0; —=7))7", s=0,

g(0;7)=r1, §=—7.

Thus, (3.11) holds with

C.=g.(t) ﬂ 2.(t)8.(t_y), 7#0. (3.12)

Since each single factor of this product is different from zero and since the product (3.12) itself
converges in view of g (¢,)g.(t_,)=1+&(k?) for k >, C,#0, as claimed. [
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Lemma 3.6. Let {t} be a perturbed equidistant sequence. Let I, I, €N and I =1, — I,. Assume
that the members t,,...,t, are replaced by t|,...,t; (all real-valued), and that the new sequen:e
be {t'} (formally: t):=t, for n<0, t,:=t,,, for n>1,). The modified sequence {t'} is a
perturbed equidistant sequence, and

I
[1s(t; 2)
G({t'ys 2) = S——G({1}; 2), (3.13)
kl;llg(tk; z)
with removable singularities at t,, k = 1,...,1,. Provided 2 is chosen large enough, there holds
IG({t'}; 2)I ~ 1zl ' 1G({t'); 2)1, zeC, |z|>Q. (3.14)

Proof. It is a trivial exercise to show that {¢'} is perturbed equidistantly; (3.13) may be proved by
a comparison of the respective partial sums, and (3.14) holds since the modulus of a quotient of
polynomi-ls of degree I, and I, behaves like |z|~' provided z stays away from the zeros of
both polynomials (as can be achieved by choosing, say, 2:=max{|t,|, k=1,....1, ||,
k=1,...,L}+1. O

Remark 3.7. Combining (3.12) with (3.9) (index shift), one can describe how the canonical
product is changed by an arbitrary replacement of a finite number of knots (with arbitrary
indices), as well as by dropping or adding finitely many numbers.

Remark 3.8. The sequences {tp}, 2D € Z, can be interpreted as modifications of {tJ}, the
sequence of integers (in the sense of the preceding lemmas). Indeed, let J € N. Then {¢]} can
be obtained from {¢)} by dropping +1,..., +J; {t3,_,,,,} may be constructed by dropping
+3,...,+ 3J from {3 +{z3}} and adding 0 to it; {¢t°,} consists of {tJ} plus the additional
numbers +1/(J+1),..., +J/(J+1); and {t‘lm_,)/z} is that modification of the sequence
{1 +{t3}} that results if the numbers + 5 are discarded and 0, +1/(J +1),..., +J/(J + 1) are
added.

These observations can be noted as: “If 2D € Z, the sequence {t7} has 2D members less
(i.e., —2D members more) than the sequence of integers”. Thus, the introduction of a
real-valued parameter D more or less generalizes the notion of dropping or adding points.
However, one has to be very careful when using this characterization, since of course all the
sequences {t2} (seen as sets) have the same cardinality.

4. The sampling formulas

Theorem 4.1. Let D € R, and {t}} be as defined in Definition 3.1; I, I, €N and 1:=1, —I,. By
{t} denote any strictly increasing sequence that is a modification of {t}} in the sense that the points
tgvl,. ey tg, 5, are replaced by t,, ..., 1, (c¢f. Lemma 3.6), and by G denote the canonical product
with respect to {t}. Let 1 <p < .
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IF2D+i<l/plie,2D+1<0,ifp=x)and fEB?, orif 2D +1<1 and f € B? for some
J P4y & 20N I l/" \Eoh oy dw &7 LI 3 Uy 5’ Y r “'.“l Tr, J J ‘j J
B < =, then
Y f(t) @)
flz)= f(t,) 41
neew Gtz 1)

uniformly on each bounded subset of C.

Proof. Let R,,-=m+D + 3. m € N. By (3.4) and (3.14) one obtains for —m < 0 <, provided
m is large enough,

C,R;2P~! e™Rnisin®l < | G({1}; R,, €¥)| < C,R;20~! g™Rnlsin0l, (4.2)

[ S

where C, > C, > 0 are constants that do not depend on m. Indeed, the factor | R, €'’ — tD wls

with N= P'\R e'?), which occurs in formula (3.4) when J(R,, €') < 3, is bounded from above
and from below. To verify this, assume that R(R,, €!%) >0 (no loss of generality). Whenever
R(z) >0, there holds |z —1) | < |R(z —N—D)I +13(z — N —-D)| <1 (noting the defini-
tion of N and the restrictions imposcd on z, cf. the proof of Proposition 3.3(b)). The condition
| 3(R,, )| <1 implies that |sin@]| <1/(2R,,), hence cos®>1—sin’0 >1—1/(4R2) and

thu&lm(R P'G—to )l)lR —tG |—(l—(‘n§9\R >—-1/(4R ) for large m.

S U a2 Qigw 7

Now Korevaar s mcquallty (2 1) gwes an estimate o; band-llmlted functions from above. If
f€BE, B >0, one has for R>0, —w<6<m,

(1+ | Rsin 9])™'/7 eBIRsn0l ] <p<oo,

eB]RsinBl, (43)

|f(Re®)I<CIf II,,{
p=w,
and in particular

LfrI<Clfll,

-l/p em!¥l
{(1f|yl) 1<p<®  _p )

p =,

Let S,,, denote the positively oriented contour that consists of the two semicircles {R,, €';
— 3w <0<iw} and {R, e iw <0< 3w} as well as the parts of the lmagmary axis that

connect the endpoints of these semicircles, i.e., [R,i, R,i] and [-R,i, —R,,i]. Let B be an
arbitrary bounded subset of the complex plane, and let C; be a constant such that Bc{ze
G lzl <Cgh
Now one can define
G(z
=SB _TO
2wi Js,,, G({NE-2)

_G(2) [ =2 f(R, €“)iR, € R, f(yi)i
27 [_ﬁ/ZG(Rm e’)(R,, e —z2) do + me G(yi)(yi—z) dy
3=z f(R, e°)iR, e* R, f(yn)l
L/v G(R, ¢”)(R, e -z) dé + f g, G(yi)(yi—z)

The inequalities (3.4), (3.14), (4.2)—(4.4) can be used to estimate |¢,,(z)| from above (for m, [
large enough). Setting r==1/p for 1<p< and r:=0 for p=o, and noting that, e.g.,
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|IR,—z|>R,,—Cg=>CR,, on B provided m is large enough, one obtains for all feB?,
B<m 1<p<,

w2 e(B )R, |sin@|

leLm(2) | < ClF (R [

-=/2(1+R,|sin 0|)

apag (3772 e®~™R, |sin 0|
+R; - F
ws2 (1+R,|sin 61)

R: R, e(B-w)lyl(l_,. Iyl)—'
(I f )Iyl 2D~ l(lyl CB) d}’n

If B =1 and 2D + I <r, the last estimate implies that

R20+1_’+RIZD+I_', 1 <p <o,

RiP*'~'log R, +R?°*'~"log R;, p=1,
+CIl f ll,(min{R,, R,})""""™"

and ¢, ,,(z) vanishes uniformly on B as m, [ — . Now let 0 <8 <. If R >0, then
/2 e(B—-rr)RsinB

lem(2)] < Cllfllp{

bl

w/2 elB-m2RO/m w gelB ™™ C

———df < ———df=— | —— du<—.
fo (1+R sin 6) fo (1+2R6/x) 2R)y 1+uy "SR
Since [F eB™I¥I /||l gy = g(eB-™R) R - o, |€,,,(z)| vanishes uniformly on B
whenever 2D + 1< 1.

The value of the contour integral ¢, ,,(z) can be explicitly calculated. Indeed, it is easy to see
that f(£)/(G({)¢ —2)) is a meromorphic function with simple poles at z and at the knots

{t,}, < 25 applying the residue theorem one obtains, provided z #¢,, n € Z and I, m are so large
that z=t,neZ,

el,m(z) = G(Z)

) )
RGS(W'Z—), Z) + Z Res(m, In)) (45)

n with
- t"< m
m G(z)
=f(z)- X ) erag =
n=-| G (t )( - )
Since ¢, ,(z) tends to zero uniformly on B, the series 7 _,f(t,)/(G'(t, Xz —t,)) tends to
f(z) uniformly on B\{t,; n € Z}. This completes the proof since for z =t,_, n € Z, the result is
obvious in view of the interpolatory property of the reconstruction functions, i.e.,
G(z)

lim ————————=35,,, n,k€Z, n+k. O
o1, G )z —1) ™

Remark 4.2. The assumption that {¢} is strictly increasing can be weakened. Equation (4.5)
remains valid if finitely many of the knots coincide; then one only has to calculate the new

values of the residues in order to find the appropriate sampling theorem. For a demonstration,
see Example 4.4.



188 G. Hinsen / Irregular sampling formulas

Corollary 4.3. Let >0 and € R. Assume that {t} is given as in Theorem 4.1 and that
G(z)=G({t}; z). Let 1 <p <.
If2D+I1<1l/pand f€B?,, , orif 2D +1<1 and f € B for some B <, then

£l G —_
(2= T je+ou) g )((((i_iiﬁ‘;)_, (46)
- H(z)
- RS e e ey £S5 &)

where H(z) is the canonical product corresponding to the sequence {7 + o't }, < ;.

Proof. Let f€BS,,, B <. Setting g(z) :=f(r + 0z), the function g fulfils g |z € L”(R) and
lg(z)] <C exp((B/0)loyl|) for z=x+iy€C, ie, g€ B} Hence Theorem 4.1 can be
applied and one obtains
- G(z)
= t)—m——, eC.
= 2 G

Supstituting (z — 7) /o for z yields (4.6), and the representation formula (4.7) holds since, by
Lemma 3.5, H(z)=C.¢*G((z —7) /o) and H'(r +0at,)=C,c*"'G'(¢,). O

Example 4.4. Let {t*} be the sequence obtained by adding a second occurrence of 0 to {¢J}, i.e.,
{(t"}=(..., =3, -2, -1,0,0, 1,2, 3, ...). An alternative construction of {¢t"} is to modify
{—3+{°, .} by replacing —} by 0. According to which construction is chosen, {¢"}
corresponds to the parameter set D=0, I= —1 or D= — 1, I =0 (cf. Remark 3.8). Assume
that f < B=. Theorem 4.1 may then be applied since 2D + I = —1 < 0; however, since {t"} is
not strictly increasing, the residues in (4.5) have to be recalculated. Noting that G(z):=
G({t*}: z) =(z/w) sin wz, one has (provided z # 0)

O flu)u? '
Res( G()(--z2) O) ‘( (u/w)(sin wu)(u -z)) LO
O ORI O ()
“a-o\(h—2z)z  (h—z)(1/7) sin wh
f(0) wh —sin wh )

h—z hsinwh
0 (0
=_(f(2) A )),
z z
and one obtains for z € C\ Z, uniformly on bounded subsets,
[ f()
z)=-— G(z)R —;
f&) == L GERs Gry "

GOy ZTTERD

(4.8)
neZ\{0} n TI'(Z—n)
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The last formula, which obviously holds for z € Z as well, is usually attributed to Valiron [6,
p.12]. While the classical sampling series does not reconstruct all functions in BZ (e.g., it fails to
reproduce sin wz € BZ), Valiron’s interpolation series holds for all band-limited functions that
are bounded on the real line, although only one additional term ( f'(0)) is needed. According to
Theorem 4.1 and Remark 4.2, all sequences with 2D + I <0 give rise to a sampling formula
valid throughout B2. Since 2D + 1= —1 for {tV} and 2D + I =0 for {t3}, Theorem 4.1 is a
stronger result than Valiron’s formula. By the way, it also allows one to calculate sampling
series “of Valiron type” with derivative values, e.g., if one knot a, a & Z, is added, one has for
all feB:,

z—a sin w(z —n)

+ X f(n)~

sinwa oz —a w(z—n)

f(2) f(a)

b

or if the knot 0 is replaced by the two knots — 3 and %, the corresponding reconstruction
formula, again valid for all f€ B, reads

(z+3) sin w2z (z—3) sin w2z

1(2) = S — (- )
1-9z2 n sin w(z —n)
+ Y
"e‘;z'(m}f(n)l——9n z w(z—n)

Theorem 4.5. As in Theorem 4.1, let {t} be a sequence characterized by the parameters D, I,, I,
and I. Let G(z):=G({t}; z) and 1 <p < o».
(a) Let {u} ={u,),; be a sequence with (2.2). If f € Bf for some B >0 and if
<1, r=1,
/‘DH{ <1l/p, 1<p<w,

then the series

3

n=-—w

G(z )
converges uniformly on each bounded subset of C.

(b) If f€ B for some B <w and 2D + 1 <1/p, the sampling series (4.1) converges absolutely
and uniformly, and its sum is f.

(4.9)

Proof. (a) Let B denote an arbitrary bounded subset of C. The product G is bounded on B
since it is an entire function. From the definition of {¢} it is clear that t, ~n and |z —¢,| > C-n,
provided | n| is large enough, say |n| > n, € N. By (3.13) and the product law, one obtains for
n<0orn>I,,

I I
G'(t2) = Gilt) L 8(tes 1)/ TL8(thucs n):

Since ¢, = an, n<0, and t,=ty,,,,, n>1I,, Proposition 3.3 implies that |IG'(t,)| =C
(In|+1)"%2P~! and even |G’ (t )| =C-|nl, n €7, as all zeros of G are simple.
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Let m > > n,. By Holder’s inequaiity (with g as the conjugate index of p), the estimates
just discussed and Nikol'skii’s inequality (2.3), one finds

G(z) )
lslgl:sm fu )G (' Nz -
’ G(2)
| f(u,)| sup |mrrs— 1 p=1,
lslnzlsm fua) t<iniem| G'(t )z —1,)
1/q
1/p G(z) 5
< FiUMIM —————-———) , 1<p<om,
(lsl§sm ( ) lslgl:sm G'(t,)(z—1t,)
G(z)
sup | f(u,)l ] p =00,
Li<ini<m (t4) lglnzlsm G'(t,)(z—1t,)
C- ¥ If(u)l sup {Inl*"*'"""), p=1,
I<|nlsm Inl=ng
< 1/q (4.10)
c-nfn,,( Y |n|<“’+'-“q) . 1<p<w
I<inl<m

The expressions thus obtained vanish under the assumptions of the theorem. Indeed, if p=1
and 2D +1<1, then the upper line of (4.10) tends to zero as [ — o since {f(u,)),c, <!
(Nikol’skii’s inequality); and if 1 <p <o and 2D+1<1/p, or if p=ow and 2D +1 <0, the
exponent (2D + 11— 1)q in the second line of (4.10) is less than —1, i.e., this expression
vanishes as [ — . Now Cauchy’s convergence criterion implies the uniform convergence of
(4.9).
(b) The sequence {t} fulfils (2.2). Thus the assertion follows from part (a) and Theorem 4.1.
O

Remark 4.6. The sampling formula (4.1) does not hold for all values of the parameter D. There
are two main reasons for this fact. Firstly, for some sequences the sampled values at these knots
may not uniquely determine f, e.g., sinwz and the null function both have f(n) =0 for all
n € Z, thus there cannot be a sampling formula that reproduces all functions in B> from their
values at the integers.

Secondly, the series (4.5) may fail to converge. The following two examples illustrate this
case. Let {1} = ()} and G = G,,.

(i) Assume that D> 3, D&N. If f(z)=(sin wz)/(wz) €B2? and z=1 (#1t3, for all
n € Z), one has in view of Proposition 3.3{c)

f(t,) B sin w(n + D)
G'(t)(z=1,) w(n+D)1~n—-D)Cp (Inl+1)"?°

—(lnl+1)w sin wD
T (M+D)n+D-1) =

il>N0,
‘Dn
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where 0 < C, < Cp, < C,, n € Z, for suitable constants C,, C,. Since (|n|+1)?2/(n + D)(n +
D —1) ~n*P=2, n > N,, the series (4.5) does not converge at z = 1.

(i) Assume that D>1, D &N, and let f,(z) ==z '(sin(w/L)z)-~', LeN, L > 1. It is easy
to show that fe B2, _,, . Noting that for n =2kL (k € N large)

fu(tp.n) = (sin{-(sz +D))L_l _ (Sin%)L_l

and estimating as in (i), one sees that the sequence

{ fL(tg,n)GD(l) }
1{4+0 0

G (tD.n)(l - tD-':) neN

contains a nonvanishing subsequence and thus cannot converge.

In [20,21] Yao and Thomas state that (4.1) holds whenever {t} is a perturbed equidistant
sequence with (2.2) (L arbitrary) and fe B; with B <. The calculations in (ii) imply that this
statement cannot be true. However, it can be shown that under the assumptions made by Yao
and Thomas the function f is determined by the values f(¢,), n € Z (cf. [9, p.81).

Remark 4.7. The first author to study nonuniform sampling was Yen [22]. His paper contains a
couple of very good ideas and several of his examples are particular cases of Theorem 4.1.
Unfortunately his investigations lack some rigour, because he does not check whether his
irregular sampling series converge or not.

5. Error estimates

The errors that may occur in uniform sampling have been intensively studied (see [6, pp.
15-23], [12, pp. 1583-1589], [1, pp. 82-89] and the references cited there). However, there are
almost no papers on error estimates if the underlying sampling sequence is nonuniform. Only
very recently Feichtinger presented a paper [8] which deals with error analysis in irregular
sampling theory, but he generalizes the uniform sampling theorem in another direction than
that used here (roughly speaking, he interprets the sampling series as a sum of translates, while
we regard it as a generalized Lagrange interpolation formula). In this sense, the results of this
section on error estimates of irregular samplings expansions are the first of their kind.

Assume that {¢} is a perturbed equidistant sequence with separated members (i.e., 36 > 0
VneZt,, ,—t,>8), and let G(z):=G({t}; z). The four most common error types are the
following.

(1) The truncation error

Al G(z)
Tyf(z)=f(z) - nzz_Nf(tn)m- (5.1)
(2) The amplitude (or round-off) error
AFE) =1 - B flt) o (5.2)

RS rEra s
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This error occurs when the actual samples f(z,) are rounded; more precisely, when f(z,) is
replaced by f(t,), the nearest member of the sequence {2en}, .z, € > 0.
(3) The time-jitter error

Wi =) - T f(E) 53)
Z)=J\z)— tu Y EYEEREY .
° n=-x G (t,,)(z-—t,,)
due to sampling f not at the right knots ¢, but at 7, where |7,—t,| <8, all n € Z.
(4) The aliasing error
d t, G(Wz)
Ry f(2) =f(2) - ngmf(w) O (5.4)

which is of particular importance if f is not band-limited and hence cannot be exactly
reconstructed by a single sampling sum.
We only deal with the case that (¢} = {9} for some D €[— 1, 0]. Our results are generaliza-

tions of the results obtained for the regular case (D = 0). The most important element of proof
will be the next result.

Propesition 5.1. Let 1 <p<xand 1/p+1/q=1.
(a) There holds (D = 0)

= |sin w(x—n)|" v
_Z W ) <p, x€R. (5.5)
(b) Let — <D <0. Then
l/q
ad Gp(x) 3
(2 G )x-| | <P *<® R

for a suitable constant C (independent of p).

Proof. (a) See [6, p.18] and [18, p.50].
(b) For abbreviation set

Gp(x)
Gp(tpa)(x—1p,)"
The symmetry properties of G, and (r)} imply that (Z5__, |4, (%) |9V =
(5 _=l¥p,(—x)|)"/9. Hence it suffices to verify (5.6) for x > 0. Let N,:= max{0, [-DJ} =1,

and choose 2=N,+D+1=2+D as in Proposition 3.3(b). On the bounded set [0, £2] one
can proceed as in the proof of Theorem 4.5; one obtains (n, suitably chosen)

lpD,n(x) =

x

1

1/q /9
r Iwo.,,(x)i") sC( Y 1+ Y [nl®P™™M) <cC<C-p, xe€]0,0].

n=-= fnl<ng Inl=nq
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Now let x > (2. Defining N as in Proposition 3.3(b), one has N=N(x)=|x—-D + il ie.,
x€[N+D-3, N+D+3)and

|Gp(x)l <C-|x|7*P|x = (N+D)|
<C-lxI"P<C-(N+D+1)7*", x>a0. (5.7)
Recall that by Proposition 3.3(c)
1G(18,)]>C-(Inl+1)™°, nez.
An application of these estimates yields (noting that N>2, —2D>0,1+2D >0)

-1 o o (N+D+%)_ZD

ngmlwp,n(x)l <c{ >N+ D)
*ZZ (N+D+§)_2D ’
new|(—n+1)*’(N+D -1~ (n-D))

- N+D+1 7% (n+1)*°
< Z 1+2D
noi[\N+n+2D—; (N+n+2D-1)
<C Z
q q
Lv/21 N+D+1)7% N+D+3)7*°
Z |¢D,n(x)|q<Cq ( N 2)l + (-20 -
= +D-1 2-2(N+D-1)
LN/2] (N+D+1)7° ’
+ -
Ez (n+1)"**(N+D-1%-(n+D))
Wal(N+D+ 1\ ne1 "2 1 |
<¢ Z ( IN-1) %(N—l)) ntl
\<C"Zn“’,
n=1
N-1 S (N+D+1)72° ’
Y g l(x)?<C? =
n=IN,2l+1 o n=IN/2+1| (n+1) 2D(N"'D'“%—(" + D))
3 q
N-1 [[N+D+1\7 1
scq Z 1 N 1
n=|N/2l+1 lENJ‘*'Z —h—3
<C?Y n9,

n=1
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. x (N+D+%)7"" "
lopa(x)<C? ¥ - .
n=§l:+l > wens1|(n+ 1) (n+D—(N+D+3))

x 1 a o

<C* Y <C1Yy n?,
n=N+1 n—N_% n=1

and, in view of inequality (5.7),
-2D
Gp(x) | 1 {N+D+%\

i'i'D-N(x)i=|x-—(N+D)“Gt')(‘g.N)|<\ N+1 ’

ES 1/q
sCsC( En“") .

n=1
Hence by Minkowski’s inequality,

-1

S i/a
Z |.IlD.n('x)lq) S( Z I(IID"(X)I"

n=-x n=—-x

1/q
( .I’D.n(x) |ll)
=0

q

1/
(x !q} + 1 n(x)]

N-1
- .

Il

N
\

n=[{N/2}+1

+( _N+lw,,n(x)|")

<C- ( a ) <C- (1 x 1 dx)l/q

=C'p1/"<C-p.
The constant C does not depend on p. 0O

Remark 5.2. The analogue of Proposition 5.1 for p=1 holds, too. Indeed, one has
sup, ez | ¥p ()] <C, x €R, provided — 5 <D <0 (cf. [9].

Proposition 5.3 (Truncation error). Let — 3 <D <0, {t} ={t2} and G = G,,.
(@) Let 1<p< and fe€B?. Then the series (4.1) is uniformly convergent on R, i.e.,
ITyfllc=0(D), N>
(b) If feBZ and
L f(x)l <M Ax17Y, |x|>1, forsomey>0, (5.8)
one has

NTyfllc<CM;N~* log N, N large. 5.9
f

Proof. A function f€ BZ that satisfies (5.8) belongs to B2 for p > max{1, 1/y}. Thus under the
assumptions of (a) and (b) the sampling theorem (Theorem 4.1) holds, and by Holder’s
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inequality and Proposition 5.1 one has for 1 <p < o (case p =1 is similar),

”TNf "C Z f(tDn

|nl>N

(.2 If(’g'"”p)vps“"( L lp(0)1)

In|>N XeR Y p|>N

st( tDn)l )
InI>N

Assertion (a) follows since by Nikol’skii’s inequality {f(tp )}, €1°. As to (b), assume that
(5.8) is fulfilled, p > 1/y and N large. Then

|F(e3.) <2mp % |13.,]

-rr

In{>N n=N+1
= 2CPM?
<2CPMP Z nYg N,
n=N+1 p—-1

I TNf ” c< CMf(yp _ 1)- l/PN(l—vp)/P < CMfN—Y ell/mlogN+log p

Choosing p =log N the right-hand side of the last inequality becomes minimal and one
obtains (5.9). 0O

Proposition 5.4 (Aliasing error). Let — <D <0, {t} ={t3} and G = G,,. For all f € UCB(R)
with

(i) | f(x)l <M lx|7?, |x|I>1, forsomeye(0,1], (5.10)
(i) feLip,(a; UCB(R)), forsome a€(0,1], reN,,
there holds

IRy lc<C(f,r,a, y)W % logW, W large.

Proof. This assertion for D =0 is proved in [6, Theorem 3.9, pp. 18-19]; (see also [2, pp.
262-264] and [3, pp. 190-192]). The estimates for — 3 <D < 0 can be derived in a similar way
with some modifications due to the special form of the sampling points as will be sketched
below.

For all f & UCB(R) with (5.10) one has VP, ,, f € BZ,, for all p > 1/y; hence by Theorem
4.1 and Corollary 4.3,

VP'rrW/Zf(x)= Z VP-rrW/Zf

n=—ow

tg,n Gp(Wx)
%
Thus the aliasing error can be estimated as follows:
IRy fllc<lf=VPy ofllc

d [ tlg,n tg.n GD(Wx)
. \VP“W’Zf(W) _f( w )) Gp(15.)(Wx = 15,4)

n C
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One has || f— VP, »fllc <CW™""% By Holder’s inequality and Proposition 5.1(b) one
obtains, provided 1/y <p <=,

£ {1 e,

n=—x
0 0 |\
d tD.n tD.n
<Cp( 2 VPRW/Zf(W)—f( W) ) <Cp(S,+5,), (5.11)
where
N t p\ 1/p
Si=| X -:rW/Zf( ) f( W" ) <C@N+1)Pw-r-e, (5.12)
n=-N
( t“ oy 1/p
D.n
S,=| X VP-:W/Zf( ) f( W) )
\ In|>N
0 -ypP i/p
<Cl ¥ |2 ) < CWYNU-PV/P (5.13)
Ini>N w

noting Lemma 2.3. The desired result follows now by choosing N =|W!*(+o/7 4 1| and
p=Q+(r+a)/y)logW in (5.11)-(5.13). O

Proposition 5.5 (Round-off error, time-jitter error). Let — <D <0, {t} :=={(t3} and G =G,
For all f € B, with (5.10) there holds

1 1
1 Afllc <C(f. v, D)e log(;), 11, e <C(f, v, D)3 log(g),

provided € >0 or 8 > 0 are sufficiently small.

Proof. The case D =0 is already known (see {2, pp. 265-269], [3, pp. 198-202], [5, pp. 104-106],
[6, pp. 20-22)). In view of (5.10), f€ B? for all p > 1/y, Theorem 4.1 may be applied and one
has (cf. (5.2), (5.3))

£ ~ GD

(A f)(x) = (EVf)(x) = _Z_ (£(25.0) = F(15.0)) Go(e3 )((;)_ t3,)’
® . GD

(J.;f)(x) =:(E(2)f)(x)= E (f(tg") _f(tg,n)) G’D(tg )((j)—tg ) ’

Let € :=f(t],) — f(¢3,). By definition of the round-off error, Ie“’l <e=€Y, and (5.10)
implies that [e’| <|f(t] ) <Clnl™", nezZ\{0). Let §,=t},—13, €P:=f1t3)—
f(tg »)- Since f€BZ, one may apply the mean value theorem and Bernstems mequallty,
obtaining || = |5,f'(¢,)| <8l f ll. =:€® for a suitable point &, between ¢, and 7.
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By condition (5.10), |e?|<C(ltp, 17"+ |£3,17")<Cln|™?, neZ\{0). Using Holder’s
inequality, Proposition 5.1 and the estimates just discussed, one finds for j=1,2,

j - ; Gp(x) " x o\
”E(J)f" = Z eV - <Cp( e )
N RN r e IR YL
N 1/p o 1/p
<ol £ Jeor] "+ [ £ Jevr] )
n=-N ln|>N
) . 1/p
<Cp (2N+l)/pe“)+( Z Inl_"”) )
In|>N

< Cp((2N + 1) eth + NO-ww)/p),
If one sets N=(e”)"!/7 and p =(4/y)log(1/€"), the inequality reads

A _ 1
IEYf Il c < Ce” log(ﬁ), ji=12.
€

This completes the proof. 0O

Remark 5.6. The estimates of |¢,;,(z)| given in the proof of Theorem 4.1 can be readily
restated as results concerning the truncation error on bounded subsets of C. Indeed, if the
assumptions of Theorem 4.1 are fulfilled, B is a bounded subset of C and N is large, one has

max | Ty, f(z)| = max|ey y(2)I
ZEB xE€EB

N?2D+I=1/p l1<p<o and B=m,
<Clfll,{N?P* -V log N, p=1 and B=m, (5.14)
N?2D+I=1 1<p<» and B<m,

(note that Ry=N+D + % ~N).

The classical samplir:g series is often considered inadequate for numerical purposes since its
truncaticn error is Caly slowly decreasing (cf., e.g., [6, p. 23]); indeed, in that case (p=2, B =
w, D =1=0) tie estimate (5.14) reads max, 5| Ty f(2)| < C|l f |l VN . However, as can also
be seen froru (5.14), there is always one very simple way to speed up the reconstruction process:
adding 7 sampling knots to the given sampling sequence decreases the truncation error by a
factor C-N~/.
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