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Abstract 

Hinsen, G., Explicit irregular sampling formulas, Journal of Computational and Applied Mathematics 40 
(1992) 177--198. 

An important new class of irregular sampling sequences is investigated. The sampling formulas can be 
expressed in terms of standard functions. For the first time estimates for the most common errors are given. 
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1. Introduction 

Let BSp denote the class of all Y(R)-functions that are band-limited to [-p, p] (cf. Section 
2). The classical Whittaker-Shannon-Kotel’nikov sampling theorem [6,14,17,19] states that 

i.e., the function f can be reconstructed from its values at the integers, provided that f E BJ 
for 1 <p < 00, p d T or p = 00, p < 7~. Setting t, := n, G(z) := ~-l sin ~z, formula (1.1) can be 
rewritten as 

G(z) 
f(z)= 2 f(r.)G’(‘,)(Z_t )’ z E @. 

n= -co n 
(1 2) . 

The function G can be interpreted as a canonical product wi;h respect to the integers (cf. 
Section 3), i.e., 

W=zfi(l-;)(I-f-)* (13) . 

Hence in view of (1.2), (1.3) it is justified to call the sampling series (1.1) a Lagrange 
interpolation formula with infinitely many kncrts (cf. [ll]). 
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One often speaks of the classical sampling theorem as the uniform sampling theorem 
because the underlying sequence of knots (the sequence of integers) is equidistantly spaced. 
Nonuniform, or irregular, sampling theory investigates which not necessarily equidistantly 
spaced sequences of sampling ‘knots admit the reconstruction of band-limited functions; in 
particular it is asked under which assumptions on f and {f,& E p do the formulas (1.2), (1.3) 

ain valid. The present paper deals with a class of sequences {t,},, E z of sampling points for 
which the product G(z) in (1.3) can be expressed in terms of Gamma-, sine- or other standard 
functions, i.e., for which the sampling series can be explicitly given. The sequences in question 
are essentially of the form 

t, = 
iZ+D, n > O’ 
n-D, n<O, 

I n 1 large, (14) . 

for some D E R. The parameter D can simulate the effect of adding or dropping finitely many 
sampling knots. Modifications, such as replacing finitely many knots or translating all knots by a 
fixed amount or multiplying all knots by a positive i’actor, are studied. 

Section 3 contains the calculations needed to find a simple representation for G(z). In 
Section 4 the corresponding sampling formulas are established. Section 5 is devoted to a study 
of the most important error types that occur in connection with nonuniform sampling series, 
namely truncation, amplitude, time-jitter and aliasicg errors. The corresponding results are 
valid only for a rather small class of sequences ( - i . < D < 0 in the sense of (1.4)); however, this 
is the first time that error estimates for ntinuniform sampling expansions of Lagrange type (1.2), 
(1.3) are given (Feichtinger’s paper [8] deals with a different kind of nonuniform sampling 
series). 

2. Preliminaries 

Let Z, R, C denote the sets of natural, integer, real and complex rlumbers, respectively. 
For x E k, the floor function 1x1 is defined to be the largest integer d s. 

Let E c Q= and let fi, fi . be real-valued, nonnegative functions on E. Then f, is equiualent 
to fi on E (f, -fi on E) if and only if there exist C,, C2 such that 0 < C, < C, and 
C,f,W <f,(z) G C&z), z E E. Sometimes, the well-known o, &notation will be used as 
well. 

Let 1 <p < 00. The number q is called the conjugated index of p, if l/p + l/q = 1 (e.g., if 
p=q=2orp=l,q==orp=w,q = 1). The spaces P’(R) consist of all Lebesgue measur- 
able functions f on R with 11 f 11 P := (I”_, I f(x) I p dx) */P < 00, and L”(R) denotes the space of 
all essentially bounded functions. 

A sequence {t} = { t,Jn E p is I” if it is bounded, II { t} 11 I= := sup, E L I t, I. For 1 <p < 00, a 

sequence {t} is element of the space P, iff II(t) II Ip := (C, EL I t, I p)1/p < 00. Let Is}, {t) E lp, 
1 <p < 00. Then there holds Minkowski’s inequality, i.e., II(s) + {t} II p G II(s) II p + II(t) II p. If p, 

q are conjugated indices and (~1 E lp, {t} E 14, one has Il{st} II 11 < II(s) II p II(t) iI p, where 
cst,, = s, t, ( Hiilder ‘s inequality 1. 

The spaces BP, p 1 <p d 00, p 3 0, are made up of all entire functions f which are in Lp(R) 
when restricted to IK! and fulfil I f(x + iy) I < supUER I f(u) le @w. All functions which belong to 
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one of the spaces Q are called band-limited to c-p, p], since their (distributional) Fourier 
transform vanishes outside of [-p, p]. If 1 <:p < 00 and f~ Bp”, then one has firstly 

If(z)] <C]]f]lp(l + Iyl)-“’ epiyi, z=x+iyEa3, (2 1) . 

(Korevaar’s inequality; it can be obtained by simple modifications from the results presented in 
WI), and secondb Ilf’ II p G P Ilf II p (B ernstein’s inequahty, cf. [16, p.1151). A third important 
estimate connected with band-limited functions is Nikol’skir”s i~,cyuafity. 

Lemma 2.1. Let 1 <p c 00, p > 0 and let {t) = {t,), E z be a sequence with 

35, L>OVnEZ &t,+,-t&L. 

Then there exist constants C,, C, > 0 (dependent on 6,L) such that for all f E BP”, 

(2 2) . 

c, II f II p G SUP x~~ 
( 

i lf~r.,-x)l”)l’pac,llf II.. 
n= --x (2 3) . 

Proof. See [9, pp. 83-861 and [ 6, pp. 123-124]. q 

In the calculations of this paper some formulas concerning the Gamma function are needed, 
namely the functional equation T’(z + 1) = zlY z), z E @ \{ -1~; n E N u {O}}, the reflection 
formula l/(f(z)T(l -2)) = n-’ sin TZ, z E C, and the estimates given in the following lemma. 

Lemma 2.2. (a) Let o, p E R and q > 0. T/Zen there holds 

T(z+a) I I qz+P) 
- Izl”? on (z=x+iyEC; Izla:77, x+a>q, X+PZrl). 

(b) Leta,,a,,b,,b,E6Zwitha,+a,-b,-b,=O.Then 

lim 
T(M-+a,)T(M+a,) 

M-x T(M+b,)T(M+b,) =” 

Proof. A partial proof of (a) and (b) can be found in [15], a detailed one is given in [9, pp. 
11-141. Estimate (a) is often stated as an asymptotic result (cf., e.g., [7]). 0 

The space UCB(R) consists of all uniformly continuous, bounded functions on IR and is 
equipped with the norm I] f 11 c := sup, E R I f(x) I. I n order to describe the smoothness of 
functions in UCB(R) one considers the Lipschitz classes (a > 0, L >/ 0) 

Lip,$x,UCB(lR)):={fEUCB(R); sup 11 f(s)-f(.+h)I&LS”, forall 6>0}. 
lhl <s 

For the spaces LP(R), 1 <p < 00, and UCB(R) the means of de la Vallee-Poussin (delayed 
means) are defined by 

2P x 
VP,f(x) := --/ f(x -u) 

sin( +pu) sin$pu) 
du, p>O. 

--m ( iPu)2 
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Lemma 2.3. (a) Let r E N U 101, a E (0, 
and all p> 1, 

/ Irregular sampling formlrlas 

I] and L 2 0. Then for all f with f (‘) E Lip& UCB(R)) 

(b) Let f~ UCB(R) and assume that 3y E (0, 11, M’> 0 such that I f(x) I < Mr 1 x I -“, 

x I 2 1. Then 

Ivp,f(x)l6(M,+ II f llc)ld-y, l-d a 1. 

Proof. See [18] for these and further results on the delayed means. q 

3. The sampling sequences {t:} and related sequences 

Definition 3.1. (a) A strictly increasing sequence {t) = {t,>, E z of real numbers is called 
equidistant, if there exist constants T E IR, (+ > 0 such that t, = T + an, n E Z. 

(b) A sequence {t) of real numbers will be called a perturbed equidistant sequence (with 
respect to the equidistant sequence {T + an}nE h , ) if there exists a constant L 2 0 such that 
It,-7 -on] <L, n&Z. 

(c) Let D E R and N, := max{O, [ -01). The symbol {t:} denotes the sequence defined by 

n-D, n< -N,,-I, 
02 

t;,n := 

I 

N,+l’ 
-N,<n <N,, 

n+D, n >-N,+ 1. 

The members of each sequence {t:} are in strictly increasing order; in fact, the minimum 
distance between two consecutive members is not smaller than l/( N, + 1). The sequences {t:} 
are symmetrical: t,, = 0 and t,__, = - tDsn, n E N. The sequence { tz} turns out to be the 
sequence of integers, i.e., the {t:}? sequences generalize the classical sampling sequence. It will 
be our main concern to see whether the sampling theorem extends to values of D different 
from zero. 

II&&ion 3.2. (a) Let {t} be a perturbed equidistant sequence. The canonical product with 
respect to {t} is defined by 

G(z) := G((t); z) :=g(t,; z@g(lt; z)g(t_k; z), 2 EC, 

where g(s; z) := 1 -z/s, if s E R\(O) and g(0; z) =z. 
(b) Let D E IF& For abbreviation, set G,(z) := G({ t:}; z) . 

Since in every bounded subset of C, 1 g(t,; z)g(t_,; z) - 1 I =@‘(k-2) for large k, the 
product G(z) is well-defined and represents an entire function with zeros at t, (if a member of 
{t} occurs more than once, the function G has a zero of corresponding multiplicity). 

The canonical products G, can be represented in terms of well-known functions and one 
can give a fine characterization of their growth behaviour. 



G. Hinsen / irregular sampling formulas 181 

Proposition 3.3. Let D E IF4 and No, {t$, Go be defined as above. 
(a) With 

P 2N,+l * := ( ) 

k r2( &, + 1 + D)( N, + 1)2N” 
_P 

Z No+1 
and Cb == -C 

wcJ)2 

9 

one has 

(3 1) . G,(z) = 
(-i)N"cDp2N,~+l(zj 

r(N,,+l+D-z)T(N,+l+D’z>’ 
z E @, 

G,(z) = cDp2No+l(z) 

l’(z-N,-D) ‘sin ~(z-D) 

l‘(z+N,+DJ li 
9 Z E QAl, (3 2) . 

?r 

G,(z) = cDp2N,,+dz) 

r(-z-&-D) sin ?T(z+D) 

r(-z+STo+D+l) -7r ’ 
z E @\A,, (3 3) . 

where A, = (n + D, n \( N,,}, A, = {n -D, n 2 -No}. 
(b) For z E @ with IS:(z)] <$ nnd l%(z)l >N,+D+i set N(z):=[!R(z)-D+i], if 

S(z) > 0, and N(z):= - N( -z 1, ;f Trt( z I< 0. Provided 0 is large enough, there holds for 
z=x+iyEC, 1~120, 

IG,(z)l - IzI-~~ eTIYl 
1, B(z)1 >+, 

I Z - t:,NI~ I s(Z)1 < +, 
(3 4) . 

in partic&r _ 

IG,(x)l =~‘(IxI-~~), XEIW, Ix! +m. (3 5) . 
(c) The sequence { GA( tz ,,)I,, E H 9 is strictly alternating for large n and 

IGj#J-(lnl+l)-2D, nEZ. (3 6) . 

Proof. (a) From the definition of G,(Z), applying the functional equation of the Gamma 
function, one obtains 

(NO + 1)2z2 

k2 )k=tj+l(l- (k:iD)ii 

( -l)No(NO+ 1)2No k 
= 

(&92 

Z-- 
N, -!- 1 

M (k+D-z)(k+D+z) 
X lim I-I 

M+m k=N,+l (k + D)2 

(N, + 1)2NoT2(N0 + 1 i-D) (- 1)N0p2No+dz) 
= 

(W2 
r(N,+l+D-z)T(N,-tl+D+z) 

X lim 
T(M+l+D-z)T(M+l+D+z) 

rz(M+l+D) 
. 

M+m 
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For each ZEK the quotient r(M+ 1 +D-z)T(M+ 1 +D+z)/T’(M+ 1 +D) tends to 1 
as M + 50 in view of Lemma 2.2(b). Thus (3.1) holds. The other two representation formulas of 
part (a) can be derived by the reflection formula, e.g., if z E @ \{n + D; n < N,), one has 

1 1 

T(N,,+l+D-z)f(N,+l+D+z) = r(z-No--D)r(l-(z-No-D)) 

. . Uz -No--D) 

“r(z+N,,+D+l) 

= (-l)NO 
sin T(Z-D) T(z-No-D) 

Tr T(z+N,,+D+l)’ 

Equation (3.3) could also be proved by substituting -z for z in (3.2) and noting that G,(z) is 
an odd function of z. 

(b) Both sides of (3.4) are even functions of z; so one can assume ‘8(z) > 0 without loss of 
generality. Let E;t := {z E C; S(z) 2 0 and 1 z 1 > L!}, and choose J2 := N, + D + 1. Then (3.2) 
is valid on EA. Making use of the functional equation of r(z) again, one obtains 

P 
P 

W -No-D) ( 1 T(z-I-D] -D+l) 
2N,+l z ( 1 

ZN,+l z 

T(z+N,+D+l) = No (3 7) 

n (z-k-D) 
T(z+N,+D+l) l l 

k=l-DJ 

ShCe 4l,i,, ,(z) and n&_,,(Z - k - D) are polynomials of degree 2 N, + 1 and N, - [ -D] + 1, 
respectively, the zeros of which are real and no larger than NJ No + 1) and N, + D, 
respectively (i.e., outside of EA), one has 1 PzN +,(z)/~~!!,_,,(z - k -D) 1 - I z I N”+L-DJ on 
E,‘. The second factor on the right-hand side of (3.7) can be estimated with the help of Lemma 
2.2(a). Indeed, noting that x - 1 -D j - D + 1 = x + [D] - D + la 1, x + N, + D + 12 1 and 
lzl>,J2aloon E& 

Ir(z-l-D] -D+l)/T(z+N,+D+l)j m ~~~~~~~~~~~~~~~ on E;, 

and thus, keeping in mind that C, is a nonvanishing constant, 

cD-p2Nu+dz) 
r(Z -No-D) 

T(z+N,+D+l) 
N Iz~-~~, z~En+. 

In order to give an estimate of W-I sin rr(z - D), the remaining term of (3.21, assume firstly 
that IS(z) 1 > $ and recall the well-known equation jsin ~z I 2 = sin27rx + sinh%ry. One 
clearly has 

and 

0 < sin2v(x - D) \( 1 < e2rY 

(1 _ e-=) e2rIYI ~4 sinhzTy=(l -e-2TIYI)2 e2aIyI <e2nIyI, 

and it readily foll?ws that I rr- * sin ~r( z - D) I m e”lyi. Secondly, let I 3(z) I < & Then for z to 
be within E,+ it is necessary that B(z) > N, + D + 4; hence N = N(z) > N, and t: N = N + D. 
The definition of N and the restrictions on z imply that 171(z - N - D) = ‘S(z)‘- N - D E 
c--i, $),and 3(z-N-D)=~(z)E[-- *, $1. Since sin ~z/(+Kz) is a continuous and nonvan- 
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ishing function on the interval {z =x + i y E C; 1 x 1 < $, 1 y 1 < $}, sin ~(z - N - D)/T( z - N 
- D) is bounded from above and from below by positive constants which do not depend on N, 
and one has 

sin T(Z-D) 

Tr u z - ‘:,N) ( 

(-l)Nsin T(Z-N-D) 

TT(Z-N-D) 

The estimate (3.5) is obviously correct since one has y = 0 and 

I Z - t;,N = z - I 1 N-D1 =(!R*(z -N-D)+~*(z-N-D))‘/*<& 

provided z = x + i y E R and x large. 
(c) For nonnegative n ho loss of generality, since Gh is odd and {t:} is symmetric) one 

obtains by a suitable application of the product law on (3.1) and (3.2), respectively, 

I 
1, n= 0, 

(-l)V, 

r( No + 1 + D - t&)r( No + 1 + D + t&) 
P’ to 

2No+1 ( ) D*n ’ 

Gb(el,n) = laGNo, 
(3 8) . 

cDp2N,,+ 1( &: 

r(n -No) 
T(n+N,+20+1) 

(-l)“, n > No. 

The sequence {GA( tE.,>},l E E is strictly alternating for n > No, more precisely sign Gb(t&) = 
(- 1)“. In fact, both arguments of the Gamma function are positive (n + No + 20 + 1 > 
2( No + D) + 1 2 1) and the polynomial P2N,+1 (x) does not change its (positive) sign for x >/ 1, 
since all its zeros lie between - 1 and 1. 

For n > No there holds &N,,+ i( &) - (n + D)*~I+~ N n2No+1, and by Lemma 2.2(a), 
T(n - N,)/T(n + No + 20 + 1) N n-2N~-1-2D. This proves I G#&I I - ( I n I + l)-*O for n > 
hro and (3.6) follows readily since all zeros of GD are simple (i.e., Gb(tE,,) Z 0) and G#,,) 

= -G#,_,,). 0 

Example 3.4. For D = 0, i, 1, - i, - 1 one obtains by direct calculation or 
Proposition 3.3: 

(1) D = 0, {ti} = ( . . . , 3, 2, 1, 0, 1, 2, 3, . . . ), i.e., the sequence of integers, 

No=O, G;( t,O,,) = ( - I)“, 

(2) D = 4, {t;,*} = (. . . , - 5, - 5, - 3, 0, $, 5, ;, . . .I, 

cos Trz 

N,=O, G1/2(zJ =z 1 - 4z* 9 G;,*( t yi2,,) = (- 1)” ;-;n:;\ 3 

application of 

n E E; 

nEh/; 
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(3) D = 1, {t;} = ( . . . , -4, -3, -2, 0, 2, 3, 4 ,... ), 

sin ~2 
N,=o, we = G;(c) = 

( - l)‘, 

Tr(l-*;,’ . n(n -I- 2) ’ 
n E N; 

(4) D=-$,{t”-,,2}=( . . . . -$, +, +,O,;, I,;, . ..). 

No= 1, G_i&) =z cos TZ, G’_,,,(t!! 1,2,1) = (- l)“(n - t)rr, n 

(5) D = -l,(rO_,}=( . . . . -2, -1, -+,0,;,1,2, . ..). 
. 

N,,= 1, G_,(z) = (l -4z2)=, 

G’_l(t!!l,,) = (- 1)“(4(n - 1)’ - 1): n 22. 

When a sampling sequence is modified, the corresponding canonical product 
accordingly. The next two lemmas describe the alterations caused by the most 
modifications. 

E tw; 

changes 
common 

Lemma 3.5. Let (t) be a perturbed equidistant sequence. Let K E h, cr > 0 and 7 E R. Then the 
sequences ( t _+K}, {a(t)} and {T + it}}, defined by {t~,+,JR := tn+K (index shift), (u(t)& := of,, and 
17 + (t}), == 7 -I- t, (n E 20, are perturbed equidistant sequences and 

G((t+,); z) = G((t); z), ZEC, (3 9) . 

G((u(t)j; z) = u"G z E c, (3.10) 

G((T + (t)); z) = C,G((t); z - T), z E Q=, (3.11) 

where -4 denotes the multiplicity of the number zero as a member of (t) and C, is a suitable 
nonzero constant. 

Proof. It is easy to check that the sequences under consideration are indeed perturbed 
equidistant sequences, hence the corresponding canonical products are well-defined. Equation 
(3.9) follows from a comparison of the respective partial sums, noting that g(t,; z) tends to 1 as 
lkl +a, and (3.10) is obvious since gbt,; z) = 1 -z&J = g(t,; z/d if t, z 0, and 
g(ot,; z) = z = og( t,; z/o) if t, = 0. While C, = 1 in the trivial case T = 0, one finds, for 
T f 0, that g(T + t,; z) = g,( t,,)g( t,; z - T), n E ?2, where 

L 

g(T +s; 7) = (g(S; -T))-l, s E R\(o, -T), 

g,(s) = -T-l = (g(0; -T))-‘, s =o, 

g(o; T) = T, s =- 7. 

Thus, (3.11) holds with 

CT =&(&J) II? g&)gr(t-k), 7 f 0. 
k=l 

(3.12) 

Since each single factor of this product is different from zero and since the product (3.12) itself 
converges in View Of gT(tk)gr(t_k) = ! i- @( km2) for k + 00, C, f 0, as claimed. Cl 
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Lemma 3.6. Let {t} be a perturbed equidistant sequence. Let I,, I, E N and I := I, - I?. Assume 
that the members t ,, . . . , t,, are replaced by t ;, . . . , 
be {t’} (formally: tl, := t, for n < 0, t,l, := t,,+i 

th (all real-valued), and that the new sequeme 
for n > I,). The modified sequence (t ‘) is a 

perturbed equidistant sequence, and 

I;! 
ng(t;; zj 

G((t’); z) = kl;’ G((t); z), (3.13j 

n&k; z, 
k=l 

with removable singularities at tk, k = 1, . . . , I,. Provided 0 is chosen large enough, there holds 

IG((t’); z)l N Izl-‘IG((t’); z)l, ZEC:, lzl >a. (3.14) 

Proof. It is a trivial exercise to show that {t ‘} is perturbed equidistantly; (3.13) may be proved by 
a comparison of the respective partial sums, and (3.14) holds since the modulus of a quotient of 
polynomiqls of degree I, and I, behaves like I z I - ’ provided z stays away from the zeros of 
both polynomials (as can be achieved by choosing, say, L! := max{ I tk I, k = 1,. . . , I,, I t; I, 

k = l,..., I*} + 1). a 

Remark 3.7. Combining (3.12) with (3.9) (index shift), one can describe how the canonical 
product is changed by an arbitrary replacement of a finite number of knots (with arbitrary 
indices); as well as by dropping or adding finitely many numbers. 

Remark 3.8. The sequences {tz}, 2 D E Z, can be interpreted as modifications of {t,“}, the 
sequence of integers (in the sense of the preceding lemmas). Indeed, let J E N. Then (ty} can 
be obtained from { ti} by dropping + 1, . . . , + J; {t&_ 1),2 } may be constructed by dropping 

1 
h $J from { + + {ti}} and adding 0 to it; { tf,} consists of (z$ plus the additional 

&;be;b + l/(J + 1) + J/(J + 1); and It!!f2/_1,,2 } is that modification of the sequence 
{i + { tz}} that results if *the numbers + 3 are discarded and 0, + l/( J + l), . . . , + J/( J + 1) are 
added. 

These observations can be noted as: “If 20 E Z, the sequence {t,$} has 20 members less 
(i.e., - 20 members more) than the sequence of integers”. Thus, the introduction of a 
real-valued parameter D more or less generalizes the notion of dropping or adding points. 
However, one has to be very careful when using this characterization, since of course all the 
sequences {t$ (seen as sets) have the same cardinality. 

4. The sampling formulas 

Theorem 4.1. Let D E R, and { t$ be as defined in Definition 3.1; I,, I, E IV and I.:= I, - I,. By 
( t) denote any strictly increasing sequence that is a modification of ( tL> in the sense that the points 

t&l, to “‘7 D,I, are replaced by t 1, . . . , 
with respect to {t}. Let 1 G p < 00. 

t12 (cf. Lemma 3.61, and by G denote the canonical product 
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k” 2D + I < l/p (i.e., 20 + I < 0, ifp = a)andf~B,P,orif 20+1<1 andfEB[ forsome 
j3 < T, then 

f(z) = 5 
n= -x 

f(t.)G.(t;;;)f ) ’ 
n 

(4 1) . 

uniformly on each bounded subset of C. 

&oaf. Let R, := m + D + i, m E M. By (3.4) and (3.14) one obtains for -r < 0 < rr, provided 
m is large enough, 

C,RF-’ 
e=&,isin@l G 1 c((t); R, ei@) 1 G CZR;2D--I e~&Isin@i, 

(4 2) . 

where C, > C, > 0 are constants that do not depend on m. Indeed, the factor 1 R, eie - tE,N 1, 
= Pi\R, e”), which occurs in formula (3.4) when 3( R, eie) < $, is bounded from above 
m below. To verify this, assume that %( R, eie) > 0 (no loss of generality). Whenever 

8( zl > 0, there holds 1 z - t&,, I \( IfR(z-N-D)I+l3(z-N-D)I ,<l (noting the defini- 
‘on of N and the restrictions imposA on z, cf. the proof of Proposition 3.3(b)). The condition 
XR, eie)( G $ implies that ]sin 8 I < 1/(2R,J, hence cos 8 2 1 - sin28 2 1 - 1/(4Rk) and 

thus 1\32(R,e’“-t~,)l >, IR,--t& 1 -(l - cos B)R, > $ - 1/(4R,J for large m. 
Now Korevaar’s inequality (2.1) gives an estimate of band-limited functions from above. If 

fsBi9 @>O,one hasfor R>O, --<<<n, 

l f(R e”) I G C II f II, $z !nf,sin el) 
-l/P ,/3IRsin8) 

? l<p-, 

SI 
9 P ? =CC 

and in particular 

I f(yi)I Gcllf II, $~Ilyl) 
i 

-l/P ealYl T l<p<q 
y E R. 

, P 7 =oO 

(4 3) . 

(4 4) . 

Let Sl.m denote the positively oriented contour that consists of the two semicircles {R, eie; 
- t-ir < 8 < $} and {R, eie; $ T < 8 < ST} as well as the parts of the imaginary axis that 
connect the endpoints of these semicircles, i.e., [ R,i, R,i] and [-R/i, -R,i]. Let B be an 
arbitrary bounded subset of the complex plane, and let C, be a constant such that B c {z E 
c; I z I < CJJ. 

Now one can define 

( ) 
G(z) 

/ 
f(l) 

%n z 
:= - s,.,G(l)(j--z) d5 2+ 

G(z) 
= - / T/2 f (R, eie)i R, eie 

27ri -TlzG(R, eie)(R,,, eie-z) de+ / 
RI f(Y0i dy 

R,G(yi)(yi-z) 

3-/z 
+ 

/ 

f (R, eie)i R, eie 

G( R, eie)( R, e” -z) 
de + /-“” 

f(YW dy 
T/2 -R, G(yi)(yi-z) - 

The inequalities (3.4), (3.14), (4.2H4.4) can be used to estimate 1 E,,Jz) 1 from above (for m, I 
large enough). Setting I- := l/p for 1 \<p < 00 and r := 0 for p = 00, and noting that, e.g., 
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RI -zl aR,- 

p0r, l<PP~, 

C, 2 CR,,, on B provided m is large enough, one obtains for all f~ BP”, 

e(p-~)Rtt,Isin@l 

I Q,,(Z) I G C II f II, RLD+l I rr’2 
--T/2 (1 + R, lsin 0 l)r 

de 

If p=r and2D+Z<r, the last estimate implies that 

RiD+I-r + RfD+I-r, 

I E/J f ) I G c II f II, 
1 R2D+‘-1 log R, + R;D+f-r log R,, 111 p = 1, 

+ C II f Il&nin(R,, Rm))2D+‘-‘9 
and EJ z) vanishes uniformly on B as m, I --)m. Now let O</?<v. If R>‘O, then 

e(p - ~)f? sin 0 
r/* 

e(P-~PR@/~ 

(l+Rsin8)r de’ 0 I (1+2Re/~)‘de=& 
Since /F e(P-r)lVi/l y 1 1+r-2D-’ dy =e(e(P-“)R), R --) 00, I el,J z) 1 vanishes uniformly on B 
whenever 2 D + Z < 1. 

The value of the contour integral Ed,,& z) can be explicitly calculated. Indeed, it is easy to see 
that f(O/(G(5)(5 - 2)) is a meromorphic function with simple poles at z and at the knots 

ctrJ?l E 8; applying the residue theorem one obtains, provided z f t,*, n E Z and I, m are so large 
that z = t,,, n E Z, 

%n(Z) = G(z) R [ “( G(.;;:!z)’ ‘) + n;th Res( G(.;;:!$ ‘j (4-5) 
-R-/ct,,cR,, 

=ftz)- f f(t.)Gt(t~~~!t ). 
n= -1 n 

Since E~,Jz) tends to zero uniformly on B, the series Cr= J( t,)/( G’( t,)( z - t,)) tends to 
f(z) uniformly on B \{t,,; n E Z). This completes the proof since for z = t,, n E Z, the result is 
obvious in view of the interpolatory property of the reconstruction functions, i.e., 

lim 
G(z) 

z+t, G’(tk)(z - t,J = 
6 

nk’ 
n,kEZ, n+k. ~1 

Remark 4.2. The assumption that {t} is strictly increasing can be weakened. Equation (4.5) 
remains valid if finitely many of the knots coincide; then one only has to calculate the new 
values of the residues in order to find the appropriate sampling theorem. For a demonstration, 
see Example 4.4. 
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Coroltary 4.3. Let CT > 0 and T E R. Assume that (t} is giuen as in Theorem 4.1 and that 
G(z) := G({t); z). Let 1 bp < *. 

If 20 + i < l/p and f E B&, or$ 2D+I<1 andfEBi forsomep<n, then 

Pi4 = ii fir + 4 G,it~~~~ T:j:“,’ t 
n= -x n I1 

) 

Hi4 

= ’ fiT+crrn’H’(f+crt,)(z-(7+ct )j’ 
z’ E @, 

n= -x 11 

(4 6) . 

(4 7) . 

where H( z 1 is the canonical product corresponding to the sequence (T + u t,), E *. 

proof. Let f E B&, p < ‘in. Setting g(t) := fb + az), the function g fulfils g 1 R E LP(R) and 
1 g(z)1 d c ew((p/a) 1 ay 1) for z =X + iy E @, i.e., g E BP”. Hence Theorem 4.1 can be 
applied and one obtains 

X 

g(z)= c gitfl) 
G(Z) 

G’(t,)(Z - fn) ’ 
z E c. 

n= -32 

Substituting (z - T)/O for z yields (4.61, and the representation formula (4.7) holds since, by 
Lemma 3.5, H(Z) = Cp-‘G((z - T)/o) and H’IT *at,) = C&‘-‘G’(t,). 0 

Example 4.4. Let (tY} be the sequence obtained by adding a second occurrence of 0 to {ti}, i.e., 
(tV)=( . . . . -3, -2, -1,0,0,1,2,3, . . . ). An alternative construction of {t ‘} is to modify 
{ - 4 + (t “_ 1,7}} by replacing - i by 0. According to which construction is chosen, (t ‘} 
co&esponds -to the parameter set D = 0, I = - 1 or D = - i, I = 0 (cf. Remark 3.8). Assume 
that f E BG. Theorem 4.1 may then be applied since 2 D + I = - 1 < 0; however, since {t “} is 
not strictly increasing, the residues in (4.5) have to be recalculated. Noting that G(z) := 
G({t% z) = (Z/P) sin ~z, one has (provided z z 0) 

. u u2 
Res 

fi ’ 
G( -)(. -z) ’ ’ 

fi ) 
(u/=)(sin nu)(u -z) 

fib) -f(O) 

+ (h -z)(l/m) sin nh 

f(0) rrh - sin rrh 
+- 

h-z hsinrrh 

f(O) f’(O) =- - P 
z2+ z ’ 

and one obtains for z E 43 \Z, uniformly on bounded subsets, 

fi ) Z = - c G(z)R 
nEz 

sin rz 
= (f(0) +zf ‘(O))- -l- c 

z sin n(z-n) 
- 

TZ rlEB\{O) n 7F(z-n) a 
(4 8) . 
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The last formula, which obviously holds for z E Z as well, is usually attributed to Valiron 16, 
p.121. While the classical sampling series does not reconstruct all functions in B,” (e.g., it fails to 
reproduce sin nz E B,“), Valiron’s interpolation series holds for all band-limited functions that 
are bounded on the real line, although only one additional term (f’(O)) is needed. According to 
Theorem 4.1 and Remark 4.2, all sequences with 2 D + Z < 0 give rise to a sampling formula 
valid throughout &‘. Since 2 D + Z = - 1 for (t “} and 2 D + Z = 0 for { fz}, Theorem 4.1 is a 
stronger result than Valiron’s formula. By the way, it also allows one to calculate sampling 
series “of Valiron type” with derivative values, e.g., if one knot a, a 4 Z, is added, one has for 
all fEB$ 

sin nz -a sin 7r(z-n) 
f(z) =f(a)sin + c f(& 

neB 
7F(z_n) ’ 

or if the knot 0 is replaced by the two knots - i and 3, the corresponding reconstruction 
formula, again valid for all f E B,“, reads 

A E f(n) 
l-9z2 n sin 7F(z-n) 

n E E\(O) 1 -9n2t T(z-n) ’ 

Theorem 4.5, As in Theorem 4.1, let {t} be a sequence characterized by the parameters D, I,, Z2 
and I. Let G(z) := G({t}; z) and 1 <p d 00. 

(a) Let 14 = {u,),~ z be a sequence with (2.2). Zf f E BP” for some p 3 0 and if 

20-1-Z 
< 1, P= 1, 

< l/P, l<pC% 

then the series 

’ G(z) 

n= -w if@.) G(t,)(z - t,,) 
(4 9) . 

converges uniformly on each +ounded subset of Q=. 
(b) Zf f E BP” for some p < T and 2 D + Z < l/p, the sampling series (4.1) converges absolutely 

and uniformly, and its sum is f. 

Proof. (a) Let B denote an arbitrary bounded subset of @. The product G is bounded on B 
since it is an entire function. From the definition of {t} it is clear that t, - n and 1 z - t, 1 3 C l n, 
provided 1 n 1 is large enough, say I n I 2 no E F% By (3.13) and the product law, one obtains for 
n GO or n >Z2, 

12 

G’(t,,) = G&J I-I g(t,c; t,), ii g(t:,,; fn)* 

k=l k=l 

Since t, = tD,n, n < 0, and t, = tD,n+I, n > I,, Proposition 3.3 implies that I GYt,) I 2 C * 
( l n I + 1)-20-‘, and even I G’( t,) I 2 C l I n I, n E Z, as all zeros of G are simple. 
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Let m > I >, n,. By Hiilder’s inequality (with 4 as the conjugate index of p), the estimates 
just discussed and Nikol’ski‘i’s inequality (2.31, one finds 

P= 1, 

I sup I fkt)’ c G(z) 
f<l?Zl<m /<InI <m 

Gt(t,)(Z _ t ) ’ 

n 
P 7 

=OO 

’ C= Ilfllp( C I 
C= z If( sup (ln12D+‘-L), p=l, 

1,cInlsm InIan 

In)(2~+ll)p)1’9, l<p<ak 
fGlnl<m 

(4.10) 

The expressions thus obtained vanish under the assumptions of the theorem. Indeed, if I, = 1 
and 20 + Z < 1, then the upper line of (4.10) tends to zero as I + 00 since {f(~,)),~~ E 1’ 
(Nikol’skS’s inequality?; and if 1 <p < 00 and 2D + Z < l/p, or if p = 00 and 2 D + Z c 0, the 
exponent (20 + Z - 1)q in the second line of (4.10) is less than - 1, i.e., this expression 
vanishes as I + 0;. Now Cauchy’s convergence criterion implies the uniform convergence of 
(4.9). 

(b) The sequence {t} fulfils (2.2). Thus the assertion follows from part (a) and Theorem 4.1. 
cl 

Remark 4.6. The sampling formula (4.1) does not hold for all values of the parameter D. There 
are two main reasons for this fact. Firstly, for some sequences the sampled values at these knots 
may not uniquely determine f, e.g., sin vz and the null function both have f(n) = 0 for all 
n E Z, thus there cannot be a sampling formula that reproduces all functions in B_rr” from their 
values at the integers. 

Secondly, the series (4.5) may fail to converge. The following two examples illustrate this 
case. Let {t) = (t:} and G = G,. 

6) Assume that D > $, D E N. If f(z) = (sin rz)/(~z) E Bz and 2 = 1 ( # t:,, for all 
n E 23, one has in view of Proposition 3.3(c) 

f kl) sin rr(n + D) 

G’( fn)( z - r,,) = ++D)(1-n-D)C,,,(Inj+1)-2D 

-(lnl+l)‘D siniD 
= 

(n+D)(n+D-1) TcD,, ’ r1pNo9 . 
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where 0 < C, < C 
D - 1) m n20e2, 

D,n < C,, n E Z, for suitable constants C,, C>. Since ( 1 n I+ 1)2D/(n + D)(n + 

n > A$,, the series (4.5) does not converge at z = 1. 
(ii) Assume that D > 1, D 6C N, and let j$z) :=z-‘(sin(n/L)z)‘-‘, L E IN, L > 1. It is easy 

to show that f E B&_ 1j,L. Noting that for n = 2kL (k E N large) 

fL( tE,n) = (sin; (2kL +D))L-l = (sin$)LB1 

and estimating as in (i), one sees that the sequence 

contains a nonvanishing subsequence and thus cannot converge. 

In [20,21] Yao and Thomas state that (4.1) holds whenever {t} is a perturbed equidistant 
sequence with (2.2) (L arbitrary) and f E Bg with p < r. The calculations in (ii) imply that this 
statement cannot be true. However, it can be shown that under the assumptions made by Yao 
and Thomas the function f is determined by the values f( t,), n E Z (cf. [9, p.811). 

Remark 4.7. The first author to study nonuniform sampling was Yen [22]. His paper contains a 
couple of very good ideas and several of his examples are particular cases of Theorem 4.1. 
Unfortunately his investigations lack some rigour, because he does not check whether his 
irregular sampling series converge or not. 

5. Error estimates 

The errors that may occur in uniform sampling have been intensively studied (see [6, pp. 
15-231, [12, pp. 1583-15891, [l, pp. 82-891 and the references cited there). However, there are 
almost no papers on error estimates if the underlying sampling sequence 3s nonuniform. Only 
very recently Feichtinger presented a paper [8] which deals with error analysis in irregular 
sampling theory, but he generalizes the uniform sampling theorem in another direction than 
that used here (roughly speaking, he interprets the sampling series as a sum of translates, while 
we regard it as a generalized Lagrange interpolation formula). In this sense, the results of this 
section on error estimates of irregular samplings expansions are the first of their kind. 

Assume that {t} is a perturbed equidistant sequence with separated members (i.e., 3S > 0 
VnEZt,+l- t, > F), and let G(z) := G({t}; z). The four most common error types are the 
following. 

(1) The truncation error 

TNf(z) :=fcz) - 2 f(b) G’(I;;;)_ t 
n= -N n 

) ’ 

(2) The amplitude (or round-off 1 error 

AEf(z) ‘=fcz) - i !(‘?I) Gt(t~~:‘~ t 
n= --oo n 

) l 

(5 1) . 

(5 2) . 
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This error oc~~urs when the actual samples fct,) are rounded; more precisely, when f<t,J is 
replaced by fct,J, the nearest member of the sequence {2~n),, EH, E > 0. 

(3) The time-jitter error 

J*f(d :=fW - f f(C) G’(t(g_ t 
I#= --3o n 

) 9 

due to sampling f not at the right knots t, but at in where 1 fn - t, 1 < 6, all n E Z. 
(4) The aliasing error 

R,f(zb=f(z) - 

(5 3) . 

(5 4) . 

which is of particular importance if f is not band-limited and hence cannot be exactly 
reconstructed by a single sampling sum. 

We only deal with the case that {t} = {t:} for some D E [ - i, 01. Our results are generaliza- 
tions of the results obtained for the regular case (D = 0). The most important element of proof 
will be the next result. 

Proposition 5.1. Let 1 < p < 00 and l/p + l/q = 1. 
(a) There holds (D = 0) 

(b) Let -~<D<O.Then 

P 

i 1 
q l/q 

c GD(x) 
Gh( ‘i,n)( x - tE,n) II <cp, XdR, 

n= -x 

(5 6) . 

for a suitable constant C (independent of ph 

Proof. (a) See [6, p.181 and [18, p.501. 
(b) For abbreviation set 

G,(x) 
‘D*n(x) := G;( t;,,,)( x - t;,,) ’ 

Th9: symmetry properties of GD and {t:) imply that (XI= _-m I &(x) l ‘Yq = 
(E:= _-l, l $D ,( -x) I ‘)liq. Hence it suffices to verify (5.6) for x & 0. Let No := mak{O, r-D]} = 1, 
and choose’ 0 = N,, + D + 1 = 2 + D as in Proposition 3.3(b). On the bounded set [0, a] one 
can proceed as in the proof of Theorem 4.5; one obtains (n, suitably chosen) 

i I#D.n(X)i’ Inl(2Dw1)q)1’q~~<C.p 
9 x E [O, 01. 

n= --r; 
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Now let x > 0. Defining N as in Proposition 3.3(b), one has N = N(X) = LX - D + 41, i.e., 
XE[N+D-f, N+D+i)and 

/G,(x)1 ,<C*IX~-*~)X-((N+D)I 

,<c* 1x1-*” GC=(N+D+~)-*~, x>0. 

Recall that by Proposition 3.3(c) 

IGb(t~,~)l>C.(lnl+l)-2D, n&Z. 

An application of these estimates yields (noting that N 2 2, - 20 > 0, 1 + 20 3 0) 

(5 7) . 

2 I #D,,(x) 1’ < cq 
n= -00 

(i 

‘;_;D&$D ’ 

(N+D+~)-*~ 
4 

+s 
n= -m (-n+l)-Z”(N+D-~-(n-D)) 

i 

( 

N+D++ 
-20 9 

<Pi 
tn + 1) 

20 

n=l N+n+2D-i (N+n+2D_i)1+2D 

00 
<C4 T n-4 

/,‘b 7 

n=l 

b’/*J 

c 
n=O 

(N+D+~)-*~ ’ 

I I 

(N+D+ +)-‘” ’ 

N+D-; + 2-2D(N+D- 1) 

9 
[N/*1 

+c (N+LI+ $“” 
n=2 (n+l)-2D(N+D-&(n+D)) I , 

00 

GCc4 C nmq, 
n=l 

N-l N-l 

n=[N/2]+1 n=lN/2]+1 

N-l 

n=lN/2J+ 1 
oc) 

(N+D+ +)-‘” ’ 

(n+l)-2D(N+D-~-(n+D)) 

4 

< Cq C riq, 
n=l 



194 G. Hirtsen / Irregular sampling formulas 

x 

c ~~~,n(-~)kC“ i 
(N+D+ ;)-‘” 

n=N+ 1 n=~+l (n + l)-2D (n+D-(N+D+$)) 

1 q 
<C9 -N.+ 

n= 1 

and, in view of inequality (5.7), 

Hence by Minkowski’s inequality, 

N-l l/q 

+ c I@Drix)Iq + 
n=(N/21+ 1 ’ 

+ 
i 

2 i&&)iq *” 
n=N+l ’ 1 

/ x \ l/q I _a 

l/q 

*DJz(') 1’ 

1 +D,Ntx) 1 

\ l/q 

=c*p “q < c ‘p. 

The constant C does not depend on p. 0 

Remark 5.2. The analogue of Proposition 5.1 for p = 1 holds, too. Indeed, one has 

sup, E L 1 &Jx) I G C, x E R, provided - $ G D d 0 (cf. 191). 

Proposition 5.3 (Truncation error). Let - 4 < D < 0, {t} = {t:} and G = GD. 
(a) Let l<p<m and fEB,. p Then the series (4.1) is uniformly convergent on 08, i.e., 

TNf II c = o(l), N + 00. 
(b) lff E BE and 

If(x)! afIxl-y, 1x1 3 1, forsome y>O, (5 8) . 

one has 

IIT,f Ilc< C’MfNSy log N, N Zarge. (5 9) . 

f. A function f E Bz that satisfies 6.8) belongs to B.f: for p > max{ 1, l/y}. Thus under the 
assumptions of (a) and (b) the sampling theorem (Theorem 4.1) holds, and by Holder’s 
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inequality and Proposition 5.1 one has for 1 < p < 00 (case p = 1 is similar), 

f( 
0 

fD.11 dP c 1 
Inl>N 

Assertion (a) follows since by Nikol’skiYs inequality { f<tE,,)>, E E E Zp. As to (b), assume that 
(5.8) is fulfilled, p > l/y and N large. Then 

Illl>N n=N+l 

n-yp < 
2CPM7 

NM” 
9 

n=N+l YP-1 

11 TNf II c Q CMf(yp _ I)- l/PN(l-YP)/P < CMfN_Y e(l/P)b N+lofS P_ 

Choosing p = log N the right-hand side of thz last inequality becomes minimal and one 
obtains (5.9). q 

Proposition 5.4 (Aliasing error). Let - $ < D < 0, {t} := (tz} and G := G,. For all f E UCB(R) 
with 

0 i If(x)1 ,<M,IxI-y, l x l > 1, for some y E (0, 11, (5.10) 

(ii) ftr) E Lip,@; UCB(R)), for some a! ~(0, 11, Y E N,, 

there holds 

II R, II c G C(f) r, a, y)W-‘-” log W, 

Proof. This assertion for D = 0 is proved in [6, 
262-2641 and [3, pp. 190-1921). The estimates for 
with some modifications due to the special form 
below. 

W large. 

Theorem 3.9, pp. H-191; (see also [2, pp. 
-- : < D < 0 can be derived in a similar way 
of the sampling points as will be sketched 

For all f E UCB(R) with (5.10) one has VPnW,2 f E B$, for all p > l/r; hence by Theorem 
4.1 and Corollary 4.3, 

to 
VpnUf,2 f(x) = 2 VP++/,,f -EL! 

n= -m ( ) 

GD(Wx) 

W G#i,,)( kfi - CL j l 

Thus the aliasing error can be estimated as follows: 

11 R,f 11 c G 11 f - VP,,,,f II c 
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One has II f - VP,,,/? f 11 c < CW-‘-*. By Holder’s inequality and Proposition 5.1(b) one 
obtains, provided l/y < p c OQ, 

where 

s, 2 := 1 n= -IV 

w,,,,,f( +) -f( g)[)*‘p<c(2N+ lypw-r-a, 

vPTW,,r( g) -f( g)[]l’p 

(5.11) 

(5.12) 

1 ,o 1-y “P 
’ D,n 

I-1 I W 
< CWYN” -PY)/P 9 (5.13j 

\ lni>N 

noting Lemma 2.3. The desired result follows now by choosing N = [W *w+a)/y + 11 and 
p = (1 + (r + arJ/y)log W in (5.11)-(5.13). 0 

Proposition 5.5 (Round-off error, time-jitter error). Let - 3 < D < 0, {t} := {t:} and G := GD. 
For all f E Bz with (5.10) there holds 

11 A,f II c < C(f, y, 0)~ log 

provided E > 0 or 6 > 0 are suficiently small. 

I%&‘. The case D = 0 is already known (see [2, 
[6, pp. 20-22D. In view of (S.lO), f E B: for all 
has (cf. (5.21, (5.3)) 

II&f Itcd(f, Y, D)a log 

pp. 265-2691, [3, pp. 198-2021, [5, pp. 104-1061, 
p > l/y, Theorem 4.1 Imay be applied and one 

n= -_p 

V,f )(x) =: P2’f Nx) = e 
n= --r) 

Let l = f(tE ,) -fit: J. By definition of the round-off error, 1 E:‘) 1 G E := c(l), and (5.10) 
implies that ie!!)l G I&&J <ClnlvY, wzE\{O}. Let i3n:=t~n-f~n, ~~2):=f(t~nb- 

f<iE ,I. Since f E B,“, one may apply the mean value theorem and Bernstein’s inequky, 
obtaining I eL2) I = I an f ‘<s,> I < ST II f II a0 =: d2) for a suitable point 5, between t:,, and ?&. 
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By condition (5.10), I eL2’ I < C( I t:,, I -’ + I fz,,, I -‘) < C I n I -‘, n E Z \{O}. Using Holder’s 
inequality, Proposition 5.1 and the estimates just discussed, one finds for j = 1, 2, 

< Cp (2N + l)“‘&)+ 
( 

(, ~NIP)~‘p) 
n 

< Cp((2N + 1) 1/PE(i) + N” -YPvP). 

If one sets N = (~~j))-‘/~ and p = (4/y) log( l/8)), the inequality reads 

1 
II E”‘f II c < C&j log ,ci, , ( 1 j = 1, 2. 

This completes the proof. q 

Remark 5.6. The estimates of I EJ z) I given in the proof of Theorem 4.1 can be readily 
restated as results concerning the truncation error on bounded subsets of a3. Indeed, if the 
assumptions of Theorem 4.1 are fulfilled, Z3 is a bounded subset of c and N is large, one has 

maC&J+)l= maxIq&z)l 
ZEB XEB ’ 

I 
~2D+t-l/p l<p<w and p=~, 

<Clifll, N2D+‘-1 log N, p=l and /3=~, 
NzD+I-l 

9 ldP<W and /3<1~, 

(note that ,rZ, = N + D + 4 w N). 

(5.14) 

The classical samplir?g series is often considered inadequate for numerical purposes since its 
trunratisn error is c nly slowly decreasing (cf., e.g., [6, p. 231); indeed, in that case ( p = 2, p = 
?r, D = Z = 0) the estimate (5.14) reads max, E B I T,f(z) I G C II f I] 2fl. However, as can also 
be seen fror,i (5.14), there is always one very simple way to speed up the reconstruction process: 
adding J sampling knots to the given sampling sequence decreases the truncation error by a 
factor c’ . N-‘. 
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