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Abstract 

e oo We study the class ~ of (generalized) orthogonal polynomial sequences { .(x)}.= 0 satisfying a recurrence relation of 
the type 

P.(x) = (x - e . )P._x(x ) - .~nPn_2(X), ?1 > 1, 

where 2. ~- 0 and the sequence {2.+ 1/(c.c.+ 1)}.~ 1 constitutes a chain sequence. We obtain a new characterization of Cg in 
terms of the moment sequence associated with an orthogonal polynomial sequence, and contribute to the solution of the 
problem of determining a (signed) orthogonalizing measure for a member of cg. 
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1. Introduction 

Our starting point will be the familiar three-terms recurrence relation for orthogonal poly- 
nomials. Thus consider a sequence of monic polynomials {P.(x)}.%o satisfying 

P.(x)  = (x - c . ) P . - I ( x )  - ~.nPn-2(X), n > 1, 
(1) 

Po(x) --  1, Px(X) = x - -  c1, 

where the coefficients are real. 
It is well known that when 2. > 0 for all n > 1 the zeros of P.(x) are real and distinct, and 

between each pair of consecutive zeros of P .+i (x)  there is precisely one zero of P.(x). Moreover, 
there exists a positive Borel measure ~h on ~ such that 

f~- o0 P . (x )P , . ( x )~(dx)  = k.6.m (2) 
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with k. > 0. When 2, > 0 for all n > 1 we shall refer to {P.(x)} as an orthogonal polynomial 
sequence (OPS). 

In the more general framework 2, # 0 for all n > 1 we shall refer to {P,(x)} as a generalized 
orthogonal polynomial sequence (GOPS). Little can be said in general about the polynomials of 
a G O P S  but for the existence of a finite signed Borel measure ~ on R such that (2) holds with 
k, -¢ 0. However, as shown in [10], there exists a class of GOPSs which, in general, are not OPSs 
but have properties resembling those of OPSs as far as zeros are concerned. This class is denoted by 
cg and defined as follows. 

Definition 1. Let {P,(x)} be a GOPS satisfying (1). Then {P,(x)} ~cg i fc ,  # 0 for all n ~> 1 and the 
sequence {~,}.% 1 defined by 

an =-- 2n+ 1/(CnCn+ 1) (3) 

constitutes a chain sequence. (That is, there exists a parameter sequence {g,}~=0 satisfying go = 0 
and 0 < g, < 1, n ~> 1, such that ~, = (1 - g , -a)g , ,  n/> 1.) 

The elements of a G O P S  in cg will be called chain-sequence polynomials. Of course, if c. > 0 for all 
n/> 1 or c, < 0 for all n/> 1, and hence 2, > 0 for all n > 1, then {P,(x)} ~cg constitutes an OPS 
and we are on familiar grounds. The interesting cases arise when the c,, and hence the 2., differ in 
sign. The following was proved in [10], see also [5]. 

Theorem 2. I f  {P.(x)}ecg then the zeros of P.(x) are real, nonzero and simple, and between 
each pair of consecutive positive (negative) zeros of P.+a(x) there is precisely one zero of 
P.(x). 

The proof in [10] of the reality of the zeros of a chain-sequence polynomial hinges on the result 
that the sequence {P*(x)}.~=o of kernel polynomials associated with {P.(x)} e oK, defined by 

P*(x) - x -  a(p,+ ,(x) - P,+ ,(O)P,(x)/P,(O)), (4) 

constitutes an OPS (see also Section 3). These kernel polynomials play a prominent role again 
in this paper, which is mainly concerned with orthogonalizing measures for chain-sequence 
polynomials. Indeed, it will be shown in Section 3 that a (signed) orthogonalizing measure for 
{P.(x) } ~ (g can be constructed in terms of a (positive) orthogonalizing measure for the associated 
sequence of kernel polynomials {P*(x)} provided the latter measure has a finite moment  of 
order - 1. 

The remainder of this paper is organized as follows. First, in Section 2, we present a new 
characterization of the class (~. Then, in Section 3, we obtain the result mentioned above and 
address related issues such as the status of the Hamburger  moment  problem for a sequence of 
kernel polynomials. Finally, in Section 4, we discuss a separation property of the zeros of 
a sequence of chain-sequence polynomials, in relation to the zeros of the associated kernel 
polynomials. 
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2. Characterizations 

The known  characterizations of c~ are collected in the next theorem, see [10]. 

Theorem 3. Let  {Pn(x)} be a G O P S  satisfying the recurrence relation (1). Then the fol lowing are 
equivalent: 

(i) {Pn(x)} ec~; 
(ii) there exists a (unique) sequence o f  real numbers {7.}2=2 such that, for  all n>~ 1, 

Cn = Y2n-1  "-[- Y2n (71 =- 0), '~'n+ 1 = 7 2 n 7 2 n + l  a n d  ])2n+1])2n+2 > 0; 
(iii) for  all n >~ 1 one has 2,+1c,c,+1 > 0 and ( - 1)ncle2 ... CnPn(O) > O. 

As an aside we observe from the third characterization that  c~ is a subclass of the class of 
polynomial  sequences studied by Sato [8], whose results may be invoked to obtain an alternative 
proof  of Theorem 2. 

Before establishing a fourth characterization of c£ we introduce some nota t ion and results, see 
[2]. Let {Pn(x)} then be any GOPS.  With 5¢ denot ing the corresponding m o m e n t  functional we let 
P. =- 5¢ [x"], n ~> O, and 

An = - . . . .  , A.(1) =- . . . . . . . . .  , n > ~ 0 .  

/A2n I]An+l " "  ]A2n+l 

Then we have A, ¢ 0 for all n >~ 0, and for the sake of definiteness we assume th roughou t  
/to = Ao = 1, which is no restriction of generality. The m o m e n t  functional £¢* is subsequently 
defined in terms of £,e by 

~ e * [ x " ] - ~ , + l  ( - ~ [ x " + l ] ) ,  n>~0. (5) 

By [2, Theorem 1.7.1] we know that  if Pn(0) ¢ 0 for all n, then L,e* is quasi-definite and the 
polynomial  sequence {P*(x)} defined by (4) constitutes the G O P S  corresponding to L~'*. 

When  {Pn(x)}~cg we do know from Theorem 2 that  Pn (0 )¢  0, while, in addition, {P*(x)} 
constitutes an OPS,  as shown in [10] (see also Section 3). It follows that  L,e* is actually 
positive-definite in this case, provided ~ * [ 1 ]  = #1 > 0. We are now ready to prove the new 
characterization of ~. 

Theorem 4. Let  {Pn(x)} be a GOPS  satisfying (1). Then  

{Pn(x)} Ecg and cl > 0 ¢~ d~, 1) > O for  all n >~ O. 

Proof. First suppose {Pn(x)} ~c# and cl > 0. Since ~¢*[1] = #1 = ~ [ x ]  = cl > 0, and hence 5 °* 
is positive-definite, it follows (with evident notation) that  A(n 1) - An* ~ 0, n ~ 0. 

Next let {Pn(x)} be a G O P S  satisfying (1) and At, l ) >  0, n >~ 0. By [2, Theorem 1.4.2] and 
[2, Example 1.3.1] we have 

2 2.+1 = A . - 2 A n / A . - I ,  n >~ 1, 
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and 

P.(0) = ( - I)"A~.~ 1 / A . -  1 ~ O, n >>. O, 

respectively, where  A_ i = A~)~ - 1. Defining 

72. =- -- Pn(O)/P.-x(O),  72.+1 -= -- )L .+,P. - I (O) /P . (O) ,  

it follows that  

72 = cl =/~1 = A~o 1) > O, 

and, for n > O, 

72n72n+  1 : '~n+ 1 

and 

YE.+I + 72.+2 = -- (2 .+1P. -1(0)  + Pn+I(O))/Pn(O) = cn+x. 

Finally, 

72n + 172n + 2 = A(1-) 2/](nl)/(A(1-) 1) 2 > 0 ,  

and hence { P . ( x ) } e c g  by Th eo rem 3. [ ]  

n > ~ l ,  

n >_- 1, (6) 

Conc lud ing  this sect ion we note  that  a G O P S  {P.(x)} satisfying (1) with cl < 0 can of  course  be 
renormal ized to satisfy cl > 0. In fact, by  consider ing the sequence  { e ? " P . ( c l x ) }  instead of  {P.(x)}, 
one  can get the normal iza t ion  Cl = A~ 1) = 1. 

3. Orthogonalizing measures 

Let {P.(x)} ~c4 and let 5e be the cor respond ing  m o m e n t  functional.  In wha t  fol lows it will be  
convenient  to use the second character iza t ion  in T h e o r e m  3, that  is, there exist real number s  
{7.}.~=2 such that  72 4 :0  and  72.+172.+2 > 0 for all n >i 1, while {P.(x)} satisfies the recurrence 

P . ( x )  = (x - -  7 2 n - 1  - -  7 2 n ) P n - l ( X )  - -  72 . -272 . -xPn-2(x) ,  n > 1, 
(7) 

Po(x)  = 1, PI(X) = x -- 72. 

As shown in the previous  section one  can a lways  normal ize  {P.(x)} such that  

71 = cl > 0, (8) 

and  we shall tacit ly assume the validity of  (8). Evidently,  the number s  7., n >~ 2, can be ob ta ined  
iteratively f rom the pa ramete r s  in the recurrence relat ion (1) satisfied by  {P.(x)}. 

It is shown in [10] that  the kernel po lynomia l s  (4) associa ted with {P.(x)} satisfy the recurrence 

P*(x )  = (x - 72. - 7 2 . + O P * - l ( x )  - -  72n- lY2nPn-2(X) ,  n > 1, 

P * ( x )  = 1, P * ( x )  = x - - 7 3 .  (9) 
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Since ~2n-l~)2n > 0 for n > 1, it follows immediately that {P*(x)} constitutes an OPS, and hence 
there exists a positive orthogonalizing measure ~* for {P*(x)}. Since the moment  functional 5e* 
corresponding with {P*(x)} can now be represented as 

&~O*[x"]=f_ ~ x " o * ( d x ) ,  n = O ,  1, . . . ,  

the next theorem emerges. 

(10) 

Theorem 5. I f  ~b* is a (positive) orthoyonalizing measure with a finite moment of order - 1 (in the 
sense that ~b*({0})= 0 and the integrals S¢_o~,o)X-l~*(dx) and S¢o, ~o~ x -  l~b*(dx) converge)for the 
kernel polynomials { P* (x) } associated with { P.(x) } ~ c~, then { P. (x) } constitutes a GO PS with respect 
to the (signed) measure ~k defined by 

O(dx) = x -  zO*(dx ), x ¢ O, 
(11) 

O({O})= l - -  f /  x-Z~k*(dx). 

Proof. Defining the moment  functional ~ ,  by 

n = 0 , 1 ,  ... , 

it follows from (5), (10) and (11) that Ae~[x"] = A°*[x "-1] = # ,  = ~ [ x " ]  for n > 0, while 
£~'~,[1] = 1 = #o = L~'1'I]. Hence Ae 0 = ~ ,  as required. []  

Remark 6. S. Belmehdi and P. Maroni  (personal communications) kindly demonstrated that the 
above result may be obtained in a constructive way by employing the theory developed in I-6], see 
also 1,7]. In addition, Maroni  showed that the representation (10) for £~'* leads to a representation 
for Ae which incorporates the present one but is valid under milder conditions. Then, however, we 
go beyond the setting of finite (signed) Borel measures. 

We observe that the measure ~b defined by (11) is positive (negative) on the positive (negative) real 
axis. Evidently, a finite orthogonalizing measure for {P,(x)} with this property can exist only if 
there exists a (positive) orthogonalizing measure for {P* (x)} with a finite moment  of order - 1. It 
may be shown that when ?, > 0 for all n > 1, there always exists a positive measure for {P*(x)} 
with a finite moment  of order - 1. In general, however, this is not the case as the next example 
shows. 

Example 7. Let y2 =½x/~ and, for n>~ 1, ?2.+, = - x / ~  and 72.+2 =½x/~, and {P.(x)} and 
{P*(x)} the polynomial sequences satisfying the recurrences (7) and (9), respectively. Defining 
Q*(x) = ( - 1)np*( -- 2X -- ~X/~), it is easy to see that {Q*(x)} satisfies the recurrence 

= 2 x Q L l ( x )  - Q*_ n > 1, 

Q*(x) = 1, Q'~(x) = 2x + x/~. 
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According to [2, pp. 205-206], {Q*(x)} is orthogonal with respect to a (unique) positive measure 
which has zero mass outside the interval ( - 1, 1) with the exception of a point mass ½ at the point 

- ¼,v/~. It follows that {P,* (x)} is orthogonal with respect to a (unique) positive measure which has 
zero mass outside the interval ( - 2 - a2v/2, 2 - ~2V/2) with the exception of a point mass ½ at 0. So 
we cannot use (11) to obtain an orthogonalizing measure for {P,(x)}. 

The problem thus arises of finding a criterion in terms of {7,} for the existence of a positive 
measure with a finite moment  of order - 1 for {P*(x)}. Before discussing this problem, however, 
we address the problem of finding a criterion for the existence of a unique positive measure for 
{P* (x)}, that is, we will look into the status of the Hamburger  moment  problem (Hmp) for {P* (x)}. 

A criterion due to Hamburger,  see [9, Theorem 2.17], tells us that the Hmp for {P*(x)} is 
determined if and only if 

((pn*(0)) 2 - t - (pn*(1)(0))  2) ---- O0,  (12) 
n=O 

where {p*(x)} are the orthonormal polynomials and {p*")(x)} the orthonormal numerator poly- 
nomials associated with {P*(x)}. We recall that the monic numerator polynomials {P*")(x)} 
associated with {P*(x)} satisfy the recurrence (9) with 7, replaced by 7,+2, see [2]. Obviously, 
whether (12) holds true or not does not depend on the normalization one chooses for the moment  
functionals 5¢* and ~e *(1) associated with {P*(x)} and {P*(1)(x)}, respectively. But for the sake of 
definiteness (and in concurrence with (5)) we let 

Lf*[1] - 72 and ~*(1)[1]  - 7274.  (13) 

We also define 
J 

Hn -~ I-~ (72i+ 1/72i+ 2), Kn ~- ~ I-I (~)2i/72i+ 1), n ~> O, (14) 
i=1 j = O i = l  

where an empty product denotes unity. With these conventions we are ready to compute the terms 
in ( 1 2 ) .  

We first observe with induction from (9) that 

P*(O) = ( - 1)"Kn (]  72,+1. (15) 
i=1 

Exploiting the relation between monic orthogonal and or thonormal  polynomials, see e.g. [2, Eq. 
(I.4.10)], it subsequently follows after some algebra that 

( p * ( 0 ) )  2 = Y21H,K 2, n >>. O. (16) 

Next proceeding in the same manner  with respect to the numerator  polynomials, we readily obtain 
n+l  

P*(1)(0) = ( -- 1)"7~ -x (K,+I  - 1) l-[ Yai+l, n >~ 0, (17) 
i=1 

and 

(pn*(1)(0))  2 ---- 7 2 2 H n + l ( K . + l  -- 1) 2, n 1> 0,  

so that we get the following theorem. 

(18) 
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Theorem 8. The Hmp for {P*(x)} is determined if and only if 

Hn(KZn + (Kn - 1) z) = oo. 
n=O 

Remark 9. When 7n > 0 for all n >~ 2 (and hence {P.(x)} is an OPS), {K,} is increasing so that one 
has Kn >~ K0 = 1 for all n. It follows from the above theorem that in this case the Hmp for {P*(x)} 
is determined if and only if YHnK 2 = ~ ,  which is in accordance with [3, Theorem 3]. 

When the Hmp for {P*(x)} is indeterminate then, see [9, Theorem 2.13], there are infinitely 
many positive Borel measures ~k* with discrete support and zero mass at 0 with respect to 
which {P*(x)} constitutes an OPS. Hence, in this case there are infinitely many finite signed 
Borel measures ~ of the type (11) with respect to which {P.(x)} is orthogonal. An interesting 
question is whether there exists a "best" measure for {P*(x)}, that is, an (extremal) measure 
whose (discrete) support coincides with the set of accumulation points of the zeros of all P*(x). 
Defining 

L,(z) = - yzP*~_l~(z)/P*(z), (19) 

Chihara [4] shows (recall the normalization (13)) that the answer to this question is positive if and 
only if either {L.(0)}n converges or {[Ln(0) I }n tends to oo. (Actually, the present statement involves 
a minor correction of Chihara's formulation.) From (15) and (17) we note that 

Ln(O) = 1 - 1/K,,  (20) 

so that the condition is met if and only if either {K,} converges or {[K. l} tends to ~ .  Obviously, 
this "best" measure for {P*(x)}, if it exists, may have a point mass at 0, in which case it does not 
lead to a measure for {Pn(X)} via (11). From [9, Theorem 2.13] we readily observe that this happens 
if and only if Kn ---' 0 as n ---, oo. We summarize the preceding results in the next theorem. 

Theorem 10. I f  the Hmp for {P*(x)} is indeterminate and either K ,  ~ K ~ 0 or I K ,  [ ~ oo as 
n ~ oo then there exists a unique (extremal) measure ~b*for {P*(x)} whose support is discrete and 
coincides with the set of  accumulation points of  the zeros of  all P*(x), while {P,(x)} is orthogonal with 
respect to the measure d/ which is well defined in terms of  ~* by (11). 

When the Hmp for {P*(x)} is determined, so that there is a unique positive measure ~O* for 
{P*(x)}, the problem of finding conditions on {y.} for the measure qJ* to have a finite moment  of 
order - 1 is unsolved, but we conjecture the following. 

Conjecture 11. Let the Hmp for {P*(x)} be determined. The orthogonalizing measure ~O* for 
{P*(x)} has a finite moment  of order - 1 if and only if either K,  ~ K ¢ 0 or ]K, ] ~ oo as n ~ ~ ,  
in which case 

f ~o~ x -  l~,*(dx) = 1 - K -  1, 

which should be interpreted as 1 if ]Kn ] ~ oo as n ~ o o ,  

(21) 
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Circumstant ia l  evidence for the conjecture is provided by Theorem 10, and  by (20) together  with 
a general izat ion of Markov's Theorem to the effect that  

limL.(z)=ffo(x-z)-l p*(dx), z 6 C k A ,  (22) 
n'-'* oo 

where 

supp(0*) -- A - (~ A, 
N=I  n=N 

and A,  denotes the set of  zeros of P*,  see Berg [1] and  Wall  [11]. Also recall tha t  in Example  7, in 
which 0* has no finite m o m e n t  of order  - 1, we have K ,  = (½)" ~ 0 as n ~ oo. 

Finally,  one might  wonder  whether  the O P S  associated with a positive measure  0* with a finite 
m o m e n t  of order  - 1 const i tutes  a sequence of  kernel polynomials  associated with a sequence of 
chain-sequence polynomials .  It can readily be verified tha t  the answer to this quest ion is positive if 
and  only if the m o m e n t  funct ional  associated with the measure  ~ defined by (11) is quasi-definite, 
which is certainly not  always the case. 

4. A separation property 

Let {P,(x)} ~ cg and  {P*(x)} the associated sequence of kernel polynomials .  We let x.k and  x'k, 
k = 1, 2, ... , n denote  the (real) zeros of P,(x) and P*(x), respectively, and  assume that  they are 
numbered  in increasing order  of magni tude.  F r o m  [10] we recall the following refinement of 
Theorem 2, where X,o - - ~ and  x . , .+  ~ - ~ .  

Theorem 12. The number of  positive (negative) zeros of  P.(x) equals the number of  positive (negative) 
elements in the set {ca, c2 . . . . .  c,}; moreover one has, for  k = 1,2 . . . . .  n + 1, 

Xn + l, k ~ Xnk ~ Xn + l ,k  + 1 

and 

i f  Xn+ l, k > 0 

Xn+ l , k -  1 ~ Xnk ~ Xn+ l, k ~ Xn+l ,  k ~ O. 

N o w  using the second representat ion of  Theorem 3, we see from (4) and  (6) that  

xP*(x) = P.+ l(X) + ?2.+2P.(x),  (23) 

from which it follows tha t  

P. + l(X,,k) = X.kP* (X,,k), k = 1.2 . . . . .  n, (24) 

and  

~)2n+2Pn(Xn+l ,k )  = X n + l , k P n * ( X n + l , k )  , k = 1,2 . . . . .  n + 1. (25) 

In view of Theorem 12 and  recalling tha t  e. + 1 = Y2n + 1 + Y2n + 2 while Y2. + lY2n + 2 > 0 we conclude 
f rom (24) tha t  

Cn+ 1 > 0 ~ Xnk < Xn~k < Xn, k+ 1, k = 1,2, ... , n, 
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and 

Cn+ 1 < 0 =:> Xn, k -  1 < Xn~k < Xnk, k = 1 , 2 ,  . . .  , n ,  

and from (25) that 

X , + l , k < X * k < X , + l , k + l ,  k = l , 2 ,  ... , n + l .  

Letting [a, b] + = max{a, b} and [a, b ] -  - rain{a, b}, we can summarize the preceding results as 
follows. 

Theorem 13. F o r  all  n = 1, 2 ,  . . .  a n d  k -- 1, 2, 

[Xnk,Xn+l,k] + < X~nk < [Xn ,k+l ,Xn+l ,k+l  I -  

and  

[Xn ,k - l ,Xn+l , k ]  + < X ~  < [Xnk , X n + l , k + l ] -  

. . .  , n one  has  

i f  c .  + l > 0 

/ f c n + l  < O. 

We finally remark that the maxima and minima in Theorem 13 depend on the signs of the zeros 
involved and can be determined from Theorem 12. 
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