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Abstract

We propose new block incomplete factorization preconditioners for a symmetric block-tridiagonal M-matrix which can
be computed in parallel, and then theoretical properties for these block preconditioners are studied. Spectral properties of
the transformed coeflicient matrices with the block incomplete factorization preconditioners are also examined to see the
convergence rate of the preconditioned CG(PCG) method. Lastly, numerical results of the PCG using the block incomplete
factorization preconditioners are compared with those of the PCG using a standard incomplete factorization preconditioner
to see how effective the block incomplete factorization preconditioners are. (© 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The discretization of partial differential equations in 2D or 3D, by finite difference or finite element
approximation, leads often to large sparse block-tridiagonal linear systems. In this paper, we consider
the linear system of equations

Ax =b, x,beR", (1)
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where A4 is a large sparse symmetric block-tridiagonal M-matrix blocked in the form

B -C 0 0
_C1T B, -G 0
A= . : : : (2)
o --- _C,:_z Bu_1 —Cn_i
0o .- 0 —-C' ., B,

It is assumed that the diagonal blocks B; of 4 are symmetric matrices and C;’s are nonnegative
matrices. Since 4 is a large sparse matrix, direct solvers become prohibitively expensive because of
the large amount of work and storage required. As an alternative, the conjugate gradient(CG) iterative
method [13] is widely used for a symmetric M-matrix 4 which guarantees the positive-definiteness
of A. Given an initial guess xy, CG algorithm computes iteratively new approximations x; to the
true solution x* = 4~'b. The iterate x; is accepted as a solution if the residual r, = b — Ax; satisfies
7|l /Il 5] <tol. In some cases, the convergence may be extremely slow. Hence, the original
problem (1) must be transformed into a more tractable form. To do so, we consider a symmetric
positive definite matrix K called the preconditioning matrix or preconditioner and apply the CG
iterative solver to the preconditioned linear system K ~'Ax = K~'b. Here, K should be chosen so
that K='4 is a good approximation to the identity matrix. The CG method applied to the linear
system K ~'Ax = K~'b is called the preconditioned CG(PCG) method with a preconditioner K.

Since the ultimate goal of the PCG method is to reduce the total execution time, the computation
of preconditioner K should be done in parallel. One of the powerful preconditioning methods in
terms of reducing the number of iterations is the incomplete Cholesky(IC) factorization method
studied by Meijerink and van der Vorst [16]. A detailed review for the IC factorization method can
be found in [3, 6, 11, 18]. However, it is very difficult to parallelize the IC factorization algorithm
because of the recursive nature of the computation. On the other hand, polynomial preconditioners
defined by K~' = p(4), where p is a polynomial, are easy to parallelize since they only involve
the computation of matrix-vector operations, but they are not as powerful as the IC factorization
preconditioners. In order to make the IC factorization method more suitable for vector computers and
parallel architectures, incomplete block Cholesky factorizations using matrix blocks as basic entities
were proposed [1, 2, 7, 9, 17].

The purpose of this paper is to propose new block IC factorization preconditioners for a sym-
metric block-tridiagonal M-matrix which can be computed in parallel. The block IC factorization
preconditioners to be proposed in this paper are quite different from the incomplete block Cholesky
factorization preconditioners introduced by Concus, Golub, and Meurant [9] which need the ap-
proximate inverses of pivot blocks. More specifically, let D be the block-diagonal matrix consisting
of the diagonal blocks B, of 4 and L the block strictly-lower triangular matrix consisting of the
sub-diagonal blocks —C of 4. Then, the coefficient matrix 4 can be expressed as

A=L+D+L"
Incomplete block Cholesky factorization preconditioner K presented in [9] is of the form

K==L+ DAL+ 4),
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where 4 is a block-diagonal matrix whose diagonal blocks 4; satisfy the following block recurrence:
Al = Bla
A; =B, — CL A Ciy, 2<i<m,

in which A,_, is some sparse approximation to A;'. Thus, to obtain incomplete block Cholesky
factorization preconditioner K, sparse approximate inverses of the pivot blocks A; must be formed.
Many techniques for finding these approximate inverses were discussed in [4, 5, 9, 10]. In addi-
tion, some techniques designed for finding a sparse approximate inverse preconditioner of a matrix,
which have recently been developed in [8, 12, 14] may be applied to approximate the inverses of
pivot blocks. Most of incomplete block factorization preconditioners introduced up to date in the
literature require sparse approximate inverses for pivot blocks. However, the block IC factorization
preconditioners to be proposed in this paper are obtained by performing the standard IC factorization
on each matrix block independently, so that they have no block recurrence which requires sparse
approximate inverses for pivot blocks and thus they can be computed in parallel based on matrix
blocks.

In Section 2, we consider some properties of the incomplete LU(or Cholesky) factorization on
M -matrices. In Section 3, we propose new block IC factorization preconditioners for a symmetric
block-tridiagonal M-matrix and their theoretical properties are studied. Spectral properties of the
transformed coefficient matrices with block IC factorization preconditioners are also examined to see
the convergence rate of the PCG method. In Section 4, we describe how to construct the effective
block preconditioners for a special type of matrix which arises from five-point discretization of
the second-order selfadjoint elliptic partial differential equation. In Section 5, we present numerical
results of the PCG with block IC factorization preconditioners developed in this paper, and their
results are compared with those of the PCG with a standard IC factorization preconditioner. Lastly,
some conclusions are drawn.

2. Incomplete Lu factorizations

A general algorithm for building incomplete LU(ILU) factorizations for M -matrices can be de-
rived by performing Gaussian elimination and dropping some elements in predetermined nondiagonal
positions. To better understand the ILU factorization process for an M-matrix, we provide some im-
portant results in this section. Let P, denote the set of all pairs of indices of off-diagonal matrix
entries, that is,

P,={(i,pDli#j,1<i<nl<j<n}

A matrix 4 = (a;;) is called a Z-matrix if a;; < 0 for i # j. For two matrices 4 = (a;) and
B = (b)), A < B denotes a; < b;; for all i and j, and 4 > B denotes a; > b; for all i and j. A
splitting A = K — N is called a regular splitting of A if K is nonsingular, K=' > 0, and N > 0. A
matrix 4 = (a;;) is called an M-matrix if a; < 0 for i # j, A is nonsingular, and 47! > 0.

Lemma 2.1. Let A and B be M-matrices. If A < B, then B~' < 47"
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Proof. A4 can be splitted into
A=4-0=B—(B-4),

where 0 denotes the zero matrix. Since 4 and B are M-matrices and B — 4 > 0, from Theorem 6.22
in[3]B7'<4". O

Theorem 2.2. (Meijerink and van der Vorst [16, p.150]). Let A be an M-matrix. Then, for each
zero pattern set P C P,, there exist a unit lower triangular matrix L = (l;;), an upper triangular
matrix U = (u;;), and a matrix R = (r;), with l; = uy; =0 if (i,j)e P and r; =0 if (i,j) € P,
such that A = LU — R is a regular splitting of A. Moreover, L and U are also M-matrices.

In Theorem 2.2, 4 = LU — R is called an incomplete LU(ILU) factorization of 4 corresponding
to a zero pattern set P C P,. In particular, if P is an empty set, then R = 0 and thus a complete LU
factorization of 4 such that 4 = LU is obtained. The following theorem which is a little variant of
Theorem 2.4 in [16] states the existence of an IC factorization for a symmetric M-matrix.

Theorem 2.3. Let A be a symmetric M-matrix. Then, for each zero pattern set P C P, having
the property that (i,j) € P implies (j,i) € P, there exist an upper triangular matrix U = (u;),
a diagonal matrix D whose ith diagonal element is u;', and a matrix R = (ry), with u;; = 0 if
(i,j)EP and r; = 0 if (i,j) & P, such that A = U'DU —R is a regular splitting of A. Moreover, U
is also an M-matrix.

In Theorem 2.3, UTD is a unit lower triangular matrix and 4 = UTDU —R is called an incomplete
Cholesky(IC) factorization corresponding to a symmetric zero pattern set P C P,. In particular, if P
is an empty set, then a complete Cholesky factorization of 4 such that 4 = UTDU is obtained.

Theorem 2.4. (Meijerink and van der Vorst [16, p.152]). Let A and B be M-matrices, and let AV
and B be matrices obtained from A and B, respectively, by performing the first step of Gaussian
elimination. If A < B, then A" and BV are M-matrices and A" < BV,

Theorem 2.5. Let A and B be n x n M-matrices, and let A = LU, — R, and B = L,U, — R, be
ILU factorizations corresponding to the same zero pattern set PCP,. If A < B, then L;' < L7
and U;' < U7

Proof. The first step of ILU factorization process consists of dropping some off-diagonal elements
in the first row and column of an M-matrix corresponding to a zero pattern set. Let 4©® = 4 and

~(0) ~(0 . i : . .
B® — B. Let A" and B be the matrices that are obtained by setting off-diagonal elements in
the first rows and columns of 4©® and BO corresponding to the same zero pattern set P to zero,

respectively. It follows that 49 < < A and B© < B Since 4 and B are Z-matrices, 2(0) and
B are M-matrices. Since A® and B®® use the same zero pattern set P, A <B© implies A% <5”
Let L and L" be the elementary lower triangular matrices for the first elimination steps on 47
and E(O), respectively. Since A% and B are M-matrices and 4" < E(O), it can be easily shown that
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~(0) ~(0 ,
LYV > " > 0. From Theorem 2.4, A" = L(II)A( and BO) = L' "B are M-matrices and A" < BV,
The second step of ILU factorization process consists of first dropping some off-diagonal elements
in the second rows and columns of 4 and B" and then eliminating the second columns using

~(1) ~(1) . ~(1)  ~(1)
the second rows. Hence, 4% = L'”4 ' and B® = LP'B ' are obtained, where 4 , B ', L\, and

LY are defined in the similar way as was done for the first elimination step. Repeating the above
process until an upper triangular matrix is obtained, one has the following relation:

Ly L (49 4 R) = 4D = U,
L(2n~1)Lgn—2) . 'L(zl) (B(O) +R2) = gin=1) — Us.

Since 4"~Y and B~ are M-matrices and A"~ < B"D_ from Lemma 2.1,
(BN < U, e, U < U

Notice that L' = L VL2 ... LV and L7' = Ly VL8P LY. Since 0 < LY < L' for all
1<i<n-—1,L7" <Ly'. This completes the proof. O

For symmetric M-matrices, a result similar to Theorem 2.5 is given in the following theorem.

Theorem 2.6. Let A and B be n x n symmetric M-matrices, and let A = U'D,\U; —~ R, and B =
UID,U, — R, be IC factorizations corresponding to the same symmetric zero pattern set P C P,.
If A< B, then U;' < U" and D, < D,.

Proof. Since UD;’s are unit lower triangular matrices for i = 1, 2, by Theorem 2.5 U;' < U™

Notice that D; is a diagonal matrix whose jth diagonal element is the reciprocal of the element in
the jth row and jth column of U, for each i = 1, 2. Hence, U;”' < U;! implies D, < D,. [

A comparison theorem for regular splittings which will be used for the proof of main results in
Section 3 is presented below.

Theorem 2.7. (Axelsson [3, p. 219]). Let A=K, — N, = K, — N, be regular splittings of A. If
K;' < K[!, then
p(KT'N) < p(K7'N))

where p(K'N;) denotes the spectral radius of K7'N; for each i = 1,2.

3. Block IC factorization preconditioners

We first consider block IC factorization preconditioners for a symmetric block-tridiagonal M-matrix
of the simplest form

a=| B G 3
\-C! B J° )
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Since 4 is a symmetric M-matrix, B, and B, are symmetric M-matrices. From the IC factorization
process, we can find an upper triangular matrix U;, a diagonal matrix D;, and a matrix R; such that
B; = UTD;U; — R; is a regular splitting of B; for each i = 1, 2, see Theorem 2.3. f A=K —~N is a
splitting of 4 and K is a symmetric positive-definite matrix which is easily invertible, then K can
be used as a preconditioner for the PCG method. The effectiveness of the preconditioner K depends
on how well K approximates 4.

Theorem 3.1. Let A be a symmetric M-matrix of the form (3), and let B; = U'D,U, — R, be a
regular splitting of B; which can be obtained by the IC factorization process for each i = 1, 2.

Let
u 0 — U, -G
U= , U= ,
0 Uz 0 UZ

- U, —(U'D)™'C D 0
U — 1 ( 1 1) 1 ’ D= 1 .
0 U2 0 DZ

If we let M = U™DU, M = U DU, and A7[~ = (ZTDU , then the following holds:
(@) R=M —A>0R=M—-A>0,and R=M—4 > 0,

|
1
—_

R unDu 0 B, -G\ (R C
B 0 UIDU, ~Cl B, | \CI'R, )’
- UrD,U, ~-U'D,C, B —-C
—CT'D,U, UTD,U, + CTD\C, —C! B,
3 R, C, - UD\C
S \CT-CIDU, R+ CTDCy )
. U'D,U, —C B, —C
R= T T Tpr—tpy=l77=T N T
Cc! UD,U, + CTUT' DU C Cc! B,
(R 0
T\ 0 R+ Clur'pyiuTTC )
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Since R, > 0 and R, = 0, R > 0. From Theorem 2.2, U, is an M-matrix and so U;' > 0 and
D;' > 0. It follows that R > 0. Since UTD, is a unit lower triangular matrix and its off-diagonal
elements are nonpositive, I — UD, = 0. It follows that (I — U[D,;)C; > 0. Hence, R>0.

For the proof of part (b), if we compute inverse matrices of U, U, and U, then

U-' = U]‘l 0_1 ,U_]: Ul—l Ul—lc_lle‘l i
0 U; 0 U,

0—1 _ Ux_l Ul_l(UlTDl)_lCIUz—l
0 U;! ‘

Since (U'D,)~! is a unit lower triangular nonnegative matrix and C, > 0, it is clear that (UD;)~!C,
> C,. Hence, part (b) is proved. Since M~' = U-'D-'U-", M ' =T 'D-'U ", and =
U_ID"(U)_T, part (b) implies part (c). From (a) and (c), part (d) is proved. Since 4 is an M-
matrix and 4 = M — R is a regular splitting of 4, it is easy to show that p(M~'R) < 1. Hence, from
Theorem 2.7 part (e) is proved. O

Theorem 3.2. Let A be a symmetric M-matrix of the form (3), and let U,,D;,D,U, U,M,M,R,
and R be defined as in Theorem 3.1. For a matrix E, such that E, = C,, let

UO=|"" """ and M = U"DU.
0 U

If U'D 1 < C,, then the following holds:
(a) R=M - 420,

®o<T '<0'<U ),

©0<M ' '<sM' <M’

(d) 4= M Risa reqular splzttmg of A,
() p(M~ R) <pM'R) < pM 'R) < 1.

—1

Proof. By simple calculation, one obtains
~ R C, — U/'DE,
R= T T T (4)
C, —E,D)U, R, +E D\E,

fo U U E Uy
o u )
Since UTD\E, <Cy, from Eq. (4) R0 which shows part (a). Since (UTD,)~' >0, UTD,E, <C, <E,

implies C; < E; < (U'D))™'C,. From this fact and Eq. (4), part (b) is proved. Proofs for the
remaining parts can be done as in Theorem 3.1. O

The assumption U] D{E; < C, in Theorem 3.2 implies E; < (U[D,)™!C,. Since C, is usually a
sparse matrix, (U D,;)™'C, becomes less sparse than C; because of fill-in elements. If we drop some
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of fill-in elements of (UD,)~'C,, then we have a matrix E, such that C, < E, < (U[D,)~!C;. It is
easy to show that 0 < C; < E, < (U[D,)~'C, does not imply UTD,E; < C,. Next example shows
that there exist nonnegative matrices C, and E,; such that UTD,E, < C, < E|, where E, is obtained
by dropping some of fill-in elements of (U[D,)~'C,.

Example 3.3. Let

1 00 110
UD=|-1 10| andC,=|123
—2-31 013

Since U[D, is a unit lower triangular Z-matrix, U'D, is clearly an M-matrix. From simple calcu-
lation,

100 110
(U'D)'=1110| and (U'D)'C,=]2 3 3
531 812 12

Let E, be a matrix obtained by dropping the entry 8 of (U!D,)"'C,. That is,

110
E,=12 33
01212

Then, 0 < C, < E; < (UID,)"'C,. On the other hand,

110
UlTDlEl—_— 123 <C1
-813

Next, we consider block IC factorization preconditioners for a symmetric block-tridiagonal M-
matrix of the general form (2). Generalization of Theorems 3.1 and 3.2 to an M-matrix of the form
(2) is complicated but easy, so that the following theorem is described without proof.

Theorem 3.4. Let A be a symmetric block-tridiagonal M-matrix of the form (2) and let B; =
UID;U; — R; be a regular splitting of B; which can be obtained by the IC factorization process
for each i = 1,2,...,m. Suppose that for each i = 1,2,...,m — 1 E; is a matrix which satisfies
UTD,E; < C; < E;. Let

D 0 -0 U 0 --- 0

0D, - 0 0U,--- 0
D: . . . . > U= . . . . ’

0 0 -.-D, 00 - U,
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u-¢ o - 0
o U -G --- 0
U = 5
0 O * Um—l Cm—l
0 O 0 U,
U -E 0 0
0 U, —-E, 0
Uv=|: + -~ -+ |
0 0 - Uy —Ep,
6o 0 --- 0 Un
U, —(U'D)™ ', 0 co 0
0 U, —(UzTDz)—ICZ 0
U - : ’ « . . ’
0 0 Un-t —(Up_Dy—1)™' Cpy
0 0 0 Un
M =U'DUM =T DU.M = U'D :’ and | M =0'DU. Then, the following holds:
(a) R=M-4 >0 R=M-A20R=M—-A4>0,and R=M —4 >0,
G o<U'<T ' <0 ' <07,
©o0<M ' <M 'sM' <M,
(d) A=M —R=M —R=M — R =M — R are regular splittings of A,
() p(1 'Ry < p(M~'R) < p(M 'B) < p(M~'R) < 1.

If B; = UTD,U; — R, is an IC factorization of B, then

Bi+R —C\ _ A 0\ (D; 0
¢l 0 ) \-(u'py'c) 1)\ o1

U —U'D)'C
0 —Cl(U'pU)'Ci )

141

This equation shows that (U!D;)~!C; required for the construction of the upper triangular matrix U
in Theorem 3.4 can be computed at the time when the IC factorization of B; is executed. In other
words, since (UTD;)™! is a product of elementary lower triangular matrices which are generated
during the IC factorization process of B;, (U'D;)~'C; is not computed explicitly using matrix-solve

operations, but computed implicitly using elementary lower triangular matrices.
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Since U;’s can be computed independently of one another, four types of the block IC factorization
preconditioners M, M, M, and M presented in Theorem 3.4 can be computed in parallel. This
inherent parallelism is a big advantage of four types of the block IC factorization preconditioners.
The PCG method is used to test the effectiveness of the block preconditioners in Theorem 3.4, so the
PCG algorithm with a preconditioner K is described below. Here, K is assumed to be a symmetric
positive-definite matrix.

Algorithm : PCG

Choose x; and compute ry = b — Axg
Solve Kwy = ry and set py = wy
fori=0,1,...

o = (r, w)/(pi A Pi)

Xiv1 = X; T 0 p;

Fiv1 =1 — A p;

if || 741 2 < tol, stop

Solve Kw;y1 = riq

Bi = (rig1, win1)/(ri,wi)

Pivr = Wir1 + Bipi

If x* is the exact solution of Ax = b, then the well-known convergence property [15, p.187] of
the PCG is

—1 '
b= e <2 (Y2 ) 1o I ©

where & = Apmax (K ™'4)/Amin(K~'4), and Ap. (K ~'4) and A,,(K~'4) denote the largest and smallest
eigenvalues of K~'4, respectively. From Eq. (5), we can see that k needs to be close to 1 to ensure
fast convergence of the PCG. In other words, we need to choose a preconditioner K such that
eigenvalues of K~'4 are clustered about 1. If 4 = K — N is a splitting of 4, then K~'4 =] —-K~'N.
Hence, we want to make p(K~'N) as small as possible in order to make eigenvalues of K~'4
clustered about 1. From this point of view, the PCG with the block preconditioner of type M will
converge faster than the PCG with any other type of the block preconditioner. When the block
preconditioner of type M is used for the PCG, the preconditioner solve step for finding the vector
w; can also be computed in parallel. However, numerical experiments in Section 5 show that the
effectiveness of the block preconditioner of type M is much worse than that of any other type of the
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block preconditioner. Notice that in this paper the effectiveness of the preconditioners is measured
as the number of iterations of the PCG satisfying a termination criterion. That is, the smaller the
number of iterations is, the more effective the preconditioner is.

4. Applications of block IC factorization preconditioners

The construction of four types of the block IC factorization preconditioners presented in Theorem
3.4 will be considered in this section for a special type of matrix described below. The matrix arises
from five-point discretization of the second-order self-adjoint elliptic partial differential equation:

— (a(x, YYuc(x, »)), — (bCx, yIuy(x, ), + c(x, yYulx, y) = f(x,y) (6)

with a(x,y) > 0, b(x,y) > 0, ¢(x,y) = 0, and (x, y) € 2, where  is a square region, and with
suitable boundary conditions on 02 which denotes the boundary of Q. The resulting matrix 4 is a
symmetric M-matrix and thus positive definite, and the structure of 4 is of the form (2) with B;’s
symmetric tridiagonal matrices and C;’s nonnegative diagonal matrices.

Since B, is a tridiagonal matrix, the complete Cholesky factorization of B; has no fill-in elements.
More specifically, if B; = UTD,U; is the complete Cholesky factorization of B;, then U, is an upper
bidiagonal matrix. Hence, four types of block IC factorization preconditioners are constructed using
the complete Cholesky factorizations of B;’s rather than using the IC factorizations of B;’s. The block
preconditioners defined in Theorem 3.4 which are constructed based on the Cholesky factorizations
of 1 x 1 block matrices B; are from now on called I-block preconditioners. In particular, for the
construction of 1-block preconditioner of type M E; should be chosen so that U'DEE;<C/ <E(1<
i < m—1). We now describe how to choose such a matrix E;. Suppose that B; = U'D,U; is the
complete Cholesky factorization of B;. Then, (UD;)~'C; becomes a lower triangular matrix which
is much less sparse than C;. For each fixed i, let E;;’s be matrices obtained by dropping some of
fill-in elements of (UTD;)~!C;, where 0 < j <d—1 and d is the order of matrix C;, and the nonzero
structures of E;;’s for d =9 are illustrated in Fig. 1. Let Q; be a zero pattern set corresponding to
the matrix E;;. Then, foreach 0 < j <d -1

Qi={rs)r—s#0,1,....5,1 <r<d1 <s<d}

0 0 0 0
. . . .
. o0 1) X}

. oo see ses

° os eoe ssse
5 . [ oe 5 XY 5| eees

. ee ese ssse
. ee seoe eseoe
. ' ees sees
. e eee Ty
10 10 10 10
5 10 5 10 5 10 5 10
EtO Etl Ei'2 E;S

Fig. 1. Nonzero structures of Ej;’s.
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For j = d — 1, no dropping of fill-in elements is used, so it can be easily seen that E;;_, =
(U'D))™'C..

Since (UD;)~" is a unit lower triangular matrix and C; is a diagonal matrix, diagonal entries of
(UTD;)™'C; are equal to those of C; and thus E;y = C. For these matrices C; and E;, the following
theorem is obtained.

Theorem 4.1. Let U/s Dis, and E;;’s be defined as above. Then, for each 0 < j <d — 1

U'DE; < C; < Ej.

Proof. Since (U'D;)~! is a unit lower triangular nonnegative matrix and C; > 0,
0 < C < (UTD)'C.

Since Ej; is obtained by dropping all fill-in elements except j + 1 diagonals of (UTD;)™'C; (see Fig.
1),

C: < E; <(U'D)™'C.

Observe that UTD; is a unit lower triangular matrix and its off-diagonal elements are nonpositive.
At the places (r,s) not belonging to the zero pattern set (J; corresponding to Ej;, E; has the same
elements as (UD;)~'C; and hence UTD,E; has the same elments as C;. Whereas, at the places
(r,s) belonging to Q;, UTD,E; has the nonpositive elements. Since C; > 0, U'D,E; < C;. Hence,
the proof is complete. O

Theorem 4.1 showed that the matrices E;; satisfy the assumption in Theorem 3.4. So, if we let
foreach 0 <j<d—-1

Uy —-E; 0 - 0
0 Uy —Ey -+ 0

U = 5 :
0 0 Up1 —Ep_1,
0 0 0 U,

then A/Z, = (’]].TD(AIJ is a 1-block IC factorization preconditioner of type M which is more effective
than both M and M (see Theorem 3.4), where D, M, and M are defined the same as in Theorem
3.4. Since E;;_; = (U'D;)~'C; for each i, U;_; = U and thus M,;_, = M. It was already mentioned
in Section 3 that (U'D;)™' = Liy_---LpLy, where Ly(1 < k < d — 1) is an elementary lower
triangular matrix which is equal to an identity matrix with some additional nonzero elements in the
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k-th column below the diagonal. Then, efficient computation of E;; can be done as follows:
Eilj - Ci

for k=1,2,....d -1

Ef = LyE%
Ekr' = Ef — Rk
E;=E!

Here IAif‘] has the same elements as E’,’j at the places (r,s) belonging to Q;, and IAif‘j has zero
elements at the places (r,s) not belonging to Q;.

For the purpose of getting more effective block IC factorization preconditioners than 1-block pre-
conditioners mentioned in the above, we now consider 2-block preconditioners which are constructed
based on the IC factorizations of 2 x 2 block matrices rather than 1 x 1 block matrices B;. For sim-
plicity of exposition, suppose that 4 is a 4 x 4 symmetric block-tridiagonal M-matrix of the form
(2), i.e.,, m =4 is assumed in the form (2). First, 4 is partitioned into

A= " ,
—-¢7 @,

where

2 — B, —-C, B, — B, —C i ¢ = 00
S G T S NG - 7 A WA
are 2 x 2 block submatrices of 4. Since 4 is assumed to be a symmetric M-matrix, %; (i = 1,2)
is also a symmetric M-matrix. It follows that the IC factorization of %, exists, see Theorem 2.3. If
#B; = UTD,U; is the complete Cholesky factorization of %;, then the nonzero structure of #; and U,
for d = 7 are illustrated in Fig. 2.

As can be seen in Fig. 2, the complete Cholesky factorization of %; now has a lot of fill-
in elements, so that the IC factorization of %; with some fill-ins needs to be considered for the
construction of 2-block IC factorization preconditioners. For each fixed i, let &; = U;DUUU- - Ry
be the IC factorization of %;, where 0 < j < d — 1, and the nonzero structures of Uy’s ford =7
are illustrated in Fig. 3. Notice that if 4, = U'D,U; is the complete Cholesky factorization of %;,
then (]i,d—l = (j, and Ri,d—l =0.

If welet foreach0<j<d—1

D; 0 U, 0
9‘12 = ! s %12 = ! 5
0 Dzj 0 U2j

7 _ [V =% e Uiy —(UDy) ™', ’
/ 0 Uy J 0 Uy,
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Fig. 3. Nonzero structures of Uj’s.
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Fig. 4. Nonzero structures of &;’s.

then M} = (%f)T@f%f,M—j = (@j)T@f@j, and sz = (@j)T@fﬂflj are 2-block IC factorization
preconditioners, where the superscript 2 is used to represent 2-block preconditioners.

We now consider the construction of 2-block preconditioner of type M. For each 0 < j <d — 1,
let &,; be a matrix obtained by dropping some of fill-in elements of (UlTle ;)"'%,, and the nonzero
structures of &,;’s for d = 7 are illustrated in Fig. 4.

Notice that &;; has nonzero elements on j + 1 diagonals, see Fig. 4. Since (U]Tle ;)7!is a unit
dense lower triangular matrix for each 0 < j < d — 1, &y = %, and the nonzero structure of
&,4_1 1s the same as that of (UlTle j)‘l% for each 0 < j < d — 1. Moreover, it is easy to see that
€14-1 = (Ul,_D14_,)""€,. For these matrices ¥, and &,;, UlTjD]jé"lj < %, < &, can be shown as
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Fig. 5. Nonzero structures of @f’s.

in the proof of Theorem 4.1, where 0 < j < d — 1. If we let for each 0 < j < d — 1

U = Uij =6y
/ 0 U, J°
then A/Z;" = (@f)T@f@f is a 2-block IC factorization preconditioner which is more effective than
both M} and A_/Ii, where %7 is defined the same as above. Since &1,y = (U}, Dig-1)"'4),
U_, = @}3_1 and so M2_, :AMj,_l. Since &19 = €1, %2 = W, and so M? = M.. From Figs. 3 and
4, the nonzero structures of ”Zlﬁ’s for d = 7 are illustrated in Fig. 5.

In the similar way as was done for 2-block preconditioners, k-block preconditioners M;‘ , Hf, A//f}‘,

and Mf which are based on the IC factorizations of & x k block matrices can be easily constructed.
That is, the m x m block matrix 4 of the form (2) is first partitioned so that each submatrix of 4
is a £ x k block matrix (it is assumed that m is divisible by k), and then the IC factorizations of
k x k block matrices are carried out to construct k-block preconditioners. Then, it can be seen that

M| = A;[f,_l and Mé‘ = A_Jl(; for all k. Since the complete Cholesky factorizations of tridiagonal
matrices B; are used for construction of 1-block preconditioners, for each 0 < j < d — 1 Mj1 =M,

A_lj] =M, ]\711I = M, and A//le = 1\7/ Notice that the construction of (k + 1)-block preconditioners
requires more storage and arithmetic than that of k-block preconditioners.

5. Numerical results

In this section, we provide numerical results of the PCG method using three different types of

the k-block IC factorization preconditioners M, }_\/I—f, and A/Z}‘ for linear systems Ax = b with
the special type of matrix 4 described in Section 4. For each type of preconditioner, numerical

experiments are carried out for 0 < j < 3 and 1 < &k < 4. However, numerical experiments for the

k-block IC factorization preconditioner Mf are not provided here since it requires a lot of fill-in
elements causing too much storage and arithmetic. To evaluate the effectiveness of the k-block IC
factorization preconditioners,we also provide numerical results of the PCG method using the standard
IC factorization preconditioner with 0 extra diagonals which is called the ICCG(0) method in [16].
In all cases, the CG and PCG methods were started with xo = 0, and they were stopped when
| 7211/l &1 <107®. All numerical experiments have been carried out in double precision floating
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Table 1 .
Number of iterations for Example 5.1 using M} and M;
PCG
n j M M M M M, M, M, M, ICCGO) CG
48 x48 0 81 71 64 61 47 45 45 45 42 92
1 69 59 53 41 38 36
2 69 58 52 40 36 33
3 69 58 51 40 35 33
60 x60 O 101 86 79 74 57 55 54 54 50 115
1 85 71 64 50 46 43
2 85 70 63 49 44 4]
3 85 70 61 48 43 40
Table 2 N
Number of iterations for Example 5.1 using Mf
PCG
n j M} M} M} M} ICCG(0) CG
48 x 48 0 47 45 45 45 42 92
1 40 36 34 33
2 38 34 31 30
3 38 33 30 29
60 x 60 0 57 55 54 54 50 115
1 49 44 42 40
2 47 41 38 36
3 46 40 37 35

point arithmetic, and all data presented in Tables 1 — 6 represent the number of iterations satisfying
the stopping criterion mentioned above.

Example 5.1. We consider Eq. (6) over the square region £ = (0,1)x(0,1) with a(x, y) = b(x, y) =
1, ¢(x,y) = 0, and Dirichlet condition ¥ = 0 on 0RQ. That is, the following PDE problem is
considered:

—Au=f in £,
u=20 on 0Q.
We have used two uniform meshes of 4x = Ay = ;5 and 4x = Ay = £, which leads to two

matrices of order n = 48 x 48 and n = 60 x 60, where Ax and Ay refer to the mesh sizes in
the x-direction and y-direction, respectively. Once the matrix 4 is constructed from five-point finite
difference discretization of the PDE, the right-hand side vector b is chosen so that b = 4[1,1,...,1]".
Numerical results for this problem are listed in Tables 1 and 2.
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Table 3 .
Number of iterations for Example 5.2 using Mf and A_/Ij
PCG
n i M M M M M, M, M, M, ICCGO0) CG
48 x 48 0 98 84 76 72 56 54 54 53 51 153
1 82 70 63 48 44 41
2 82 69 61 46 41 38
3 82 69 61 46 40 37
60 x60 0O 122 103 93 89 69 67 66 65 62 192
1 102 86 78 59 54 51
2 102 85 75 57 51 47
3 102 85 75 56 50 46
Table 4 R
Number of iterations for Example 5.2 using M}‘
PCG
n j M} M? M} M} ICCG(0) CG
48 x 48 0 56 54 54 53 51 153
1 46 41 39 38
2 43 38 35 34
3 42 37 34 32
60 x 60 0 69 67 66 65 62 192
1 57 51 48 47
2 53 46 43 41
3 52 45 41 39

Example 5.2. We consider Eq. (6) over the square region 2 = (0, 1)x(0, 1) with a(x, y) = b(x, y) =
cos x,c(x,y) = 0, and Dirichlet condition # = 0 on 0. That is, the following PDE problem is
considered:

—V - (cos xVu) = f in Q,
u=20 on 0€2.

We have used the same uniform meshes as Example 5.1. Once the matrix 4 is constructed from
five-point discretization of the PDE, the right-hand side vector b is chosen so that the exact solution
is the discretization of 10xy(1 —x)(1 — y)exp(x**). Numerical results for this problem are listed in
Tables 3 and 4.

Example 5.3. We consider Eq. (6) over the square region 2 = (0,1) x (0, 1) with a(x, y) = b(x, y),
¢(x,y) = 0, and the boundary conditions # = 0 for y = 0,u, =0 for x = 0 and x = 1,u, = 0 for
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Table 5 i
Number of iterations for Example 5.3 using M f and Mj
PCG
" j M M M M M, M, ™M, M, 1CCGO) CG
49 x48 0 168 120 108 102 83 80 78 78 75 NC
1 118 101 89 69 63 59
2 120 98 88 66 58 55
3 119 98 87 66 58 54
61 x60 0 213 152 136 127 104 99 97 97 94 NC
1 151 125 112 86 78 73
2 151 124 108 84 73 67
3 150 123 106 83 73 66
Table 6 ~
Number of iterations for Example 5.3 using M,"
PCG
n j M M? M} M} 1ICCG(0) CG
49 x 48 0 83 80 78 78 75 NC
1 68 60 56 54
2 65 55 51 48
3 64 54 49 46
61 x 60 0 104 99 97 97 94 NC
1 86 74 70 67
2 81 69 63 59
3 80 67 61 57

y =1, where

1000, 0.1 <x,y <009,
a(x,y) =

1 otherwise.

We have used two uniform meshes of Ax = Ay = 1/48 and Ax = 4y = 1/60, which leads to two
matrices of order n = 49 x 48 and n = 61 x 60. Once the matrix 4 is constructed from five-point
discretization of the PDE, the right-hand side vector b is chosen so that the exact solution is the
discretization of 10x*y(1 — x)*(1 — y)* exp(x**). Numerical results for this problem are listed in
Tables 5 and 6. NC in Tables 5 and 6 indicates that the CG method does not converge within 1000
iterations

As can be seen in Tables 1-6, the numerical results presented are in good agreement with the
theoretical results presented in Theorem 3.4. That is, the block preconditioner of type M is more
effective than the block preconditioners of types M and M. It can be also seen that the PCG
with (k + 1)-block preconditioners converges faster than the PCG with k-block preconditioners. As
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compared with the standard IC factorization preconditioner, A//f}‘ is relatively effective when j > 1
and £ > 1, and Mf is relatively effective when j > 1 and k& > 2.

6. Conclusions

We presented in this paper four types of block IC factorization preconditioners which can be
computed in parallel. Block IC factorization preconditioner of type M may not be used in practical
situations since it requires a lot of fill-in elements causing too much storage and arithmetic. Block
preconditioner of type M has rich parallelism since both the computation of preconditioner and
preconditioner solve step of the PCG can be done in parallel, but its effectiveness is much worse
than other types of block preconditioners.

When using 1-block preconditioners, Mj1 with j > 1 is strongly recommended as a preconditioner

of the PCG. When using k-block preconditioners with £ > 2, both Hf and AA/[}‘ with j > 1 are
recommended as a preconditioner of the PCG. Notice that the construction of A/Z;‘ requires more

storage and arithmetic than that of Mf and the number of arithmetic operations grows as j becomes
large. From our experiments, it is not recommended to use large value of j and the optimal value
of j usually ranges from 1 to 5. Future work will include applications of the block IC factorization
preconditioners to more general type of problems and will include block incomplete LU factorization
preconditioners for a nonsymmetric block-tridiagonal M-matrix.
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