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Abstract

In this work the authors present a new numerical algorithm to approximate the solution of compressible Reynolds
equation with additional first-order slip flow terms. This equation appears when modelling read/write processes
in magnetic storage devices such as hard disks. The proposed numerical method is based on characteristics ap-
proximation for convection (dominating) terms and a duality method applied to a maximal monotone opera-
tor which represents the nonlinear diffusive term. Several test examples illustrate the good performance of the
method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In magnetic storage devices, heads are designed so that a thin air film (air bearing) is generated be-
tween the head and the magnetic storage device in the read/write process. In this way, the head–device
contact only takes place at the initial and final moments. Thus, once a velocity value is reached, the
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air film is built up so that the hydrodynamic load balances the external load. As the head–device gap
is so thin (0.1 �m for hard-disk devices), hydrodynamic and elastohydrodynamic lubrication theories
govern this kind of processes. In the case of hard disk devices, the air pressure is governed by a nonlinear
compressible Reynolds equation and the elastic effects are neglected.As in magnetic recording the air gap
is very small, a compressible Reynolds equation which takes into account the molecular slip boundary
conditions at surfaces has to be considered. In tapes and floppy disks (flexible storage media) the proposed
elastohydrodynamic 1D model consists of a coupled system based on the compressible Reynolds equation
for air pressure and a rod model for the tape deflection[6].

More precisely, in the case of flexible media, the coupled problem providing the air pressurep̃, in the
thin film and the tape geometrỹu, is posed in terms of equations[9]:
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wherẽh is the head–media gap,Vdenotes the tape velocity,� the particle mean-free length,pa the ambient
pressure and� the air viscosity. Moreover,T, �,EandI represent the tension, the density,Young modulus
and the inertia moment of the tape, respectively. The ends of the tape are placed aty = 0 andL̃ while
the edges of the head are located aty = L̃1 andL̃2, respectively. The coupled feature results from the
definition of the gap,̃h = ũ − �̃, �̃ being the head geometry, and from the pressure acting as a normal
force on the flexible tape (1.2). The notation�C holds for the characteristic function of the setC. Typical
values of the involved physical parameters are[13]:

V = 2.54 m/s, L̃1 = 0.0347 m, L̃2 = 0.0497 m, L̃ = 0.0843 m,

� = 1.81× 10−5 kg/s m, � = 6.35× 10−8 m, pa = 84100 N/m2,

T = 277 N/m, � = 0.0207 kg/m2, EI = 1.52× 10−5 N m.

Moreover, usual values for the head radius and the maximum penetration are 0.0204 and 0.00635 m,
respectively.

The mathematical analysis for the compressible Reynolds equation has been the subject of sev-
eral papers in the steady state[8] and unsteady cases[12,14]. Moreover, in[11] two-scale techniques
provide asymptotic models to take into account the presence of periodic asperities on the hard-disk
surface. In the case of flexible storage devices, the mathematical analysis for the model (1.1)–(1.5)
is presented in [10]. This analysis starts from the following change of unknowns and
variables:

x = 100y, p = p̃/pa, u = 106 ũ, h = 106 h̃, � = 106 �̃,
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which leads to the system
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where

� = 10−4 �pa

ε�V
, � = 10−10 pa

6ε�V
, � = 104 EI

T − �V 2 , K = 102 pa

T − �V 2 .

Concerning the numerical methods, finite differences schemes are used in[13] for the numerical
simulation of a model very close to (1.1)–(1.5), with not enough justified technical strategies. In the
more recent paper[11], a LPDEM discretization scheme, combined with a Newton–Raphson technique,
is applied to the compressible Reynolds equation and the corresponding two-scale limit models.

In this paper, we mainly focus on a new numerical solution of the hydrodynamic part of the coupled
problem. More precisely, we propose a linearization procedure for the compressible Reynolds equation
based on duality methods for nonlinear maximal monotone operators.

Thus, the outline of the present work is as follows. In Section 2 the hydrodynamic mathematical model
is posed. In Section 3, the numerical algorithm is detailed. Finally, some numerical results are shown in
Section 4; in particular, a first example provided of an analytical solution, and a second test issued from
the literature illustrate the good performance of the numerical method.

2. The hydrodynamic mathematical model

In this work, only the nonlinear boundary value problem associated with Eq. (1.6) has to be solved.
So, for a given gap functionh (we can assume a regularityh ∈ C1(L1, L2)) and given parametersε, �,
�, L1 andL2, we have to compute the scaled pressurep, as the solution of

d

dx
(ph) − ε

d

dx

(
�h2 dp

dx
+ �h3p
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)
= 0, in (L1, L2), (2.11)

p(L1) = p(L2) = 1. (2.12)

Notice that, for the usual physical values involved, diffusion coefficientsε� andε� are of order 10−3 and
10−2, respectively. So, we have a convection dominated problem with, in addition, a nonlinear diffusive
term. In order to overcome these difficulties, we propose in the next section a characteristics method for
the convection dominated aspect and a duality method for the nonlinearity.

In order to develop a finite element spatial discretization, we first pose an adequate variational formu-
lation. For this, we introduce the following functional spaces and sets:

V = H 1(L1, L2), V0 = H 1
0 (L1, L2), V1 = {	 ∈ V /	(L1) = 	(L2) = 1}.
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So, the variational formulation of the hydrodynamic problem can be written as:
Findp ∈ V1 such that∫ L2
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d(ph)

dx
	 dx + ε�

∫ L2

L1

h2 dp

dx

d	

dx
dx + ε�

∫ L2
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d	

dx
dx = 0, ∀	 ∈ V0. (2.13)

In the next section, we describe the proposed numerical methods to approximate the solution of (2.13).

3. Numerical algorithm

3.1. The characteristics method

Although characteristics method has been introduced for parabolic and hyperbolic problems in[2],
the convergence of the steady version of the method has been stated in[1] for a particular lubrication
problem. For a steady problem, this method introduces an artificial dependence on a time variablet,
so that

p̄(x, t) = p(x), h̄(x, t) = h(x).

If we assume an artificial velocity fieldv(x) = 1, we have the following identities for the total derivative:

D(p̄h̄)

Dt
(x, t) = �(p̄h̄)

�t
(x, t) + v(x)

�(p̄h̄)

�x
(x, t) = �(ph)

�x
(x, t),

where D/Dt represents the material derivative along the characteristic line


 → �(x, t; 
),

which is the unique solution of the final value problem

d�

d

(x, t; 
) = v(�(x, t; 
)) = 1,

�(x, t; t) = x.

In order to discretize the total derivative, for an artificial time stepkwe denote�k(x) = �(x, t; t − k) the
position of a material particle in the instantt − k. Notice that, taking into account the value of artificial
velocity,�(
) = x + 
 − t is straightforwardly obtained.

So, we approximate the material derivative by a first-order quotient

D(p̄h̄)

Dt
(x, t) ≈(p̄h̄)(x, t) − (p̄h̄)(�k(x), t − k)

k

= (ph)(x) − (ph)(�k(x))

k
= (ph)(x) − (ph)(x − k)

k

and, after substitution in (2.13), we propose to obtain the steady pressurep, as the limit of the sequence
{pm}, which is defined by the following algorithm:
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Forpm given, findpm+1 ∈ V1 such that:∫ L2
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Notice that, for each indexm, (3.14) is a nonlinear diffusion problem depending on the time stepk.

3.2. The duality algorithm

Next, in order to overcome the difficulty due to the nonlinear diffusive term in (3.14), we make use
of Bermúdez–Moreno algorithm[3,5]. This duality algorithm is based on the introduction of Lagrange
multipliers and the approximation of a nonlinear maximal monotone operator by means of its Yosida
regularization. In our case, we consider the maximal monotone operatorf defined by

f (p) =
{

0 if p < 0,

p2 if p�0,

so that the hydrodynamic equation (3.14) can be written in the form:∫ L2
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(
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=
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Next, we introduce a parameter� > 0 and the new unknown



 = f (p) − �p = (f − �I )(p),

so that

f (p) = 
 + �p and
df (p)

dx
= d


dx
+ �

dp

dx
.

Now, we apply Bermúdez–Moreno lemma[5]


 = f (p) − �p ⇔ 
 = f �
� (p + �
),

wheref �
� is the Yosida approximation of the operatorA� = f − �I , which is given by

f �
� (s) = I − J�(s)

�
,

J� = (I + �A�)−1 being the resolvent operator[7]. For convergence purposes, we will take 2�� = 1.
So, in order to build up the method, we first get the resolvent operator. Thus, fors ∈ R, let t = J�(s),

that is

t = J�(s) = (I + �(f − �I ))−1(s)
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or equivalently

s = t + �(f − �I )t =
{

t − ��t if t < 0,

t + �t2 − ��t if t �0.

Therefore, from easy computations, we get for 2�� = 1

J1/2�(s) =
{

2s if s < 0,

−�

2
+ 1

2

√
�2 + 8�s if s�0.

Next, we deduce the following expression of the Yosida approximation:

f �
1/2�

(
p + 


2�

)
=

−
 − 2�p if p + 


2�
�0,


 + 2�p + �2 − �
√

4
 + 8�p + �2 if p + 


2�
�0.

At this stage, we have to remark that the experimentally observed convergence of Bermúdez–Moreno
algorithm strongly depends on the choice of the parameter� which, in turn, depends on the exact solution.
In [15], some strategies for the optimal choice of the parameters are proposed.

Finally, the variational formulation of the hydrodynamic problem is:
Find (pm+1, 
m+1) ∈ V1 × V1 such that∫ L2
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(
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dx
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(
pm+1 + 1

2�
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)
,

where the nonlinear aspect still remains.
In order to approximate the solution of the previous problem, we propose the following fixed point

algorithm:

• For
m+1,� known, computepm+1,�+1 as the solution of the linear problem∫ L2

L1

pm+1,�+1 h	 dx + kε

∫ L2

L1

(
�h2 dpm+1,�+1

dx
+ ��

2
h3 dpm+1,�+1

dx

)
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dx
dx

=
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2
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L1
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dx

d	

dx
dx, ∀	 ∈ V0. (3.16)

• Update the multiplier
m+1,�+1 by means of


m+1,�+1 = f �
1/2�

(
pm+1,�+1 + 1

2�

m+1,�

)
.

For the spatial discretization of the linear problem (3.16), piecewise linear Lagrange finite elements have
been employed on a uniform mesh. Moreover, adequate Gauss formulae for numerical quadrature in the
different terms have been used.
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Fig. 1. Quadratic error for Test 1 with different uniform meshes.

4. Numerical results

In order to validate the previous algorithm, we have performed two numerical tests that illustrate its
good behaviour. In the first one, we solve a problem provided with an analytical solution; the second one,
more realistic, is proposed in Jai[11].

Test 1. For the given parameters� and�, let us consider the problem

�
d

dx
(hp) − d

dx

(
�h2 dp

dx
+ h3p

dp

dx

)
= f, x ∈ (0, 1),

p(0) = p(1) = 1

which corresponds to the choice

� = �

ε�
, � = 1

ε�
, L1 = 0, L2 = 1

in Eq. (2.11). The gap is given byh(x) = 2 − x andf is a function so that the solution of the boundary
value problem (2.11)–(2.12) is the polynomialp(x) = 1 + x − x2. In the present test example, a time
stepk = 0.5�x and the duality method parameter� = 2 have been considered. For� = 300 and� = 0 or
1, the computed quadratic error between the numerical and the analytical solutions for different uniform
meshes, is shown inFig. 1.

Notice that a quadratic errorO(�x) is gained, which agrees for the choicek = 0.5�x with the order
O(�x + �x2/k + k) stated in[4] for the stationary linear advection–diffusion equation.

Test 2. In order to validate the numerical algorithm by a more realistic test concerning the compressible
Reynolds equation, we have considered the one proposed in Jai[11]. More precisely, the boundary value
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Fig. 2. Gap function in the rough case withe = 0.6 and� = 0.02.

problem is

�
d

dx
(hp) − d

dx

(
�h2 dp

dx
+ h3p

dp

dx

)
= 0, x ∈ (0, 1),

p(0) = p(1) = 1,

where the author has taken

h(x) = 2 − x + e sin
(
2�

x

�

)
as the function that describes the gap (seeFig. 2). The oscillatory term is included in order to simulate the
periodic roughness of a hard disk device; this artificial roughness is designed for a better control of the
interfacial static force condition that exists between recording head and disk surface during the rotational
start-up. Following the author, we have takene = 0.6 and� = 0.02 for the roughness amplitude and the
period, respectively. Moreover, the parameters� = 300 and� = 0 are also considered.

For the numerical solution, the algorithm parameters�x = 10−3, k = 0.5�x and� = 2 have been
chosen. The computed solution is shown inFig. 3and presents a qualitative and quantitative agreement
with the one in[11]. To be noticed is the increasing of pressure for decreasing gap.

We also present inFig. 4 the pressure distribution in the roughless case (corresponding toe = 0) for
� = 300 and� = 0. The numerical parameters are�x = 10−2, k = 0.5�x and� = 2.

5. Conclusions and future work

In this paper, the authors propose a new method for the numerical solution of the compressible Reynolds
equation with first-order slip flow terms which models the air pressure in hard-disk devices. A character-
istics method to deal with the convection dominated feature and the presence of sharp pressure gradients
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Fig. 3. Approximation of the pressure distribution in Test 2 in the rough case withe = 0.6 and� = 0.02.
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Fig. 4. Approximation of the pressure distribution in Test 2 in the roughless case.

has been applied. Moreover, an original duality method is proposed for the nonlinear diffusive term,
which is written by means of a suitable maximal monotone operator.

The numerical algorithm is validated with two test examples: one with analytical solution and a second
one issued from the literature.

On one hand, the numerical technique can be extended to a higher spatial dimension, as the model
proposed in[9]. On the other hand, the proposed method for the hydrodynamic problem is now being
coupled with a numerical method for solving the elastic rod model (1.2), (1.5), which governs the magnetic
tape or another flexible storage media.The steady state solution for the model (1.1)–(1.5) could be obtained
as the limit of a fixed point iteration between the elastic and the hydrodynamic problems.

Finally, the theoretical convergence analysis of the algorithm (3.16) to(pm+1, 
m+1) in this particular
nonlinear diffusion problem is now being studied by the authors.
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