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Abstract

In this paper, we consider the usual and generalized order-k Fibonacci and Pell recurrences, then we define a new recurrence, which
we call generalized order-k F–P sequence. Also we present a systematic investigation of the generalized order-k F–P sequence. We
give the generalized Binet formula, some identities and an explicit formula for sums of the generalized order-k F–P sequence by
matrix methods. Further, we give the generating function and combinatorial representations of these numbers. Also we present an
algorithm for computing the sums of the generalized order-k Pell numbers, as well as the Pell numbers themselves.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Fibonacci and Pell sequences can be generalized as follows: let r be a nonnegative integer such that r �0 and
4r−1 + 1 �= 0. Define the generalized Fibonacci sequence as shown

xn+1 = 2rxn + xn−1, (1)

where x0 = 0 and x1 = 1. When r = 0, then xn = Fn (nth Fibonacci number) and when r = 1, then xn = Pn (nth Pell
number).

Miles [19] define the generalized k-Fibonacci numbers as shown for n > k�2

fn = fn−1 + fn−2 + · · · + fn−k ,

where f1 =f2 =· · ·=fk−2 = 0 and fk−1 =fk = 1. Then the author have studied some properties of the sequence {fn}.
Further, in [15], the authors consider the generalized k-Fibonacci numbers, then they give the Binet formula of the

generalized Fibonacci sequence {fn}.
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Er [8] give the definition of the k sequences of the generalized order-k Fibonacci numbers as follows: for n > 0 and
1� i�k

gi
n =

k∑
j=1

gi
n−j , (2)

with initial conditions

gi
n =

{
1 if i = 1 − n

0 otherwise
for 1 − k�n�0,

where gi
n is the nth term of the ith sequence. Also Er give the generating matrix for the generalized order-k Fibonacci

sequence {gi
n}.

Also in [12], the authors give the relationships between the generalized order-k Fibonacci numbers gi
n and the

generalized order-k Lucas numbers (see for more details about the generalized Lucas numbers [23]), and give the some
useful identities and Binet formulas of the generalized order-k Fibonacci sequence {gi

n} and Lucas sequence {lin}.
In [13], the authors define the k sequences of the generalized order- k Pell numbers as follows: for n > 0 and 1� i�k

P i
n = 2P i

n−1 + P i
n−2 + · · · + P i

n−k , (3)

with initial conditions

P i
n =

{
1 if i = 1 − n

0 otherwise
for 1 − k�n�0,

where P i
n is the nth term of the ith generalized order-k Pell sequence. Also authors give the generating matrix, Binet

formula, sums and combinatorial representations of the terms of generalized order-k Pell sequence {P i
n}.

The above sequences are a special case of a sequence which is defined recursively as a linear combination of the
preceding k terms

an+k = c1an+k−1 + c2an+k−2 + · · · + ckan,

where c1, c2, . . . , ck are real constants. In [11], Kalman derived a number of closed-form formulas for the generalized
sequence by companion matrix method as follows:

A =

⎡
⎢⎢⎢⎢⎣

c1 c2 . . . ck−1 ck

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ . (4)

Then by an inductive argument, he obtains

An

⎡
⎢⎢⎣

a0
a1
...

ak−1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

an

an+1
...

an+k−1

⎤
⎥⎥⎦ .

Linear recurrence relations are of great interest and have been a central part of number theory. These recursions
appear almost everywhere in mathematics and computer science (for more details see [17,5,14,20,9]). For example,
many families of orthogonal polynomials, including the Tchebychev polynomials and the Dickson polynomials, satisfy
recurrence relations. Linear recurrence relations are of importance in approximation theory and cryptography and they
have arisen in computer graphics and time series analysis. Furthermore, higher order linear recurrences have leaderships
to the new ideas for the generalization of orthogonal polynomials satisfying second order linear recurrences to the order-
k. In a recently published article [1], the authors define the orthogonal polynomial satisfying a generalized order-k linear
recurrence.
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Also matrix methods are of importance in recurrence relations. For example, the generating matrices are useful tools
for the number sequences satisfying a recurrence relation. Further, the combinatorial matrix theory is very important tool
to obtain results for number theory [2]. In [15,12,13], the authors define certain generalizations of the usual Fibonacci,
Pell and Lucas numbers by matrix methods and then obtain the Binet formulas and combinatorial representations
of the generalizations of these number sequence. Furthermore, using matrix methods for computing of properties of
recurrence relations are very convenient to parallel algorithm in computer science (see [4,6,7,18,21,22,25]).

Now we define and study properties common to Fibonacci and Pell numbers by investigating a number sequence that
satisfy both Fibonacci and Pell recurrences of second order and kth order in matrix representation. Then extending the
matrix representation, we give sums of the generalized Fibonacci and Pell numbers subscripted from 1 to n could be
derived directly using this representation. Furthermore, using matrix methods, we obtain the generalized Binet formula
and combinatorial representation of the new sequence.

2. A generalization of the Fibonacci and Pell numbers

In this section, we define a new order-k generalization of the Fibonacci and Pell numbers, we call generalized order-k
F–P numbers. Then we obtain the generating matrix of the generalized order-k F–P sequence. Also using the generating
matrix, we derive some interesting identities for the generalized order-k F–P numbers which is the well-known formula
for the usual or generalized order-k Fibonacci and Pell numbers. We start with the definition of the generalized order-k
F–P sequence.

Define k sequences of the generalized order-k F–P numbers as shown: for n > 0, m�0 and 1� i�k

ui
n = 2mui

n−1 + ui
n−2 + · · · + ui

n−k ,

with initial conditions for 1 − k�n�0

ui
n =

{
1 if i = 1 − n,

0 otherwise,

where ui
n is the nth term of the ith generalized F–P sequence. For example, when k = i = 2 and m = 1, the sequence

{ui
n} is reduced to the usual Pell sequence {Pn}. Also when m = 0, the sequence {ui

n} is reduced to the generalized
order-k Fibonacci sequence {gi

n}.
By the definition of generalized F–P numbers, we can write the following vector recurrence relation:⎡

⎢⎢⎢⎢⎢⎣

ui
n+1
ui

n

ui
n−1
...

ui
n−k+2

⎤
⎥⎥⎥⎥⎥⎦= T

⎡
⎢⎢⎢⎢⎢⎣

ui
n

ui
n−1

ui
n−2
...

ui
n−k+1

⎤
⎥⎥⎥⎥⎥⎦ , (5)

where T is the companion matrix of order k as follows:

T =

⎡
⎢⎢⎢⎢⎣

2m 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ . (6)

The matrix T is said to be generalized order-k F–P matrix. To deal with the k sequences of the generalized order-k F–P
numbers, we define an (k × k) matrix Dn = [dij ] as follows:

Dn =

⎡
⎢⎢⎣

u1
n u2

n . . . uk
n

u1
n−1 u2

n−1 . . . uk
n−1

...
...

...

u1
n−k+1 u2

n−k+1 . . . uk
n−k+1

⎤
⎥⎥⎦ . (7)
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If we expand Eq. (5) to the k columns, then we can obtain the following matrix equation:

Dn = T Dn−1. (8)

Then we have the following lemma.

Lemma 1. Let the k × k matrices Dn and T have the forms (7) and (6), respectively. Then for n�1

Dn = T n.

Proof. We know that Dn = T Dn−1. Then, by an inductive argument, we can write Dn = T n−1D1. Since the definition
of generalized order-k F–P numbers, we obtain D1 = T and so Dn = T n which is desired. �

Then we can give the following theorem.

Theorem 2. Let the matrix Dn have the form (7). Then for n�1

det Dn =
{

1 if k is odd,

(−1)n if k is even.

Proof. From Lemma 1, we have Dn = T n. Thus, det Dn = det(T n) = (det T )n where det T = (−1)k. Thus,

det Dn =
{

1 if k is even,

(−1)n if k is odd.

So the proof is complete. �

Now we give some relations involving the generalized order-k F–P numbers.

Theorem 3. Let ui
n be the generalized order-k F–P number, for 1� i�k. Then, for m�0 and n�1

ui
n+m =

k∑
j=1

u
j
mui

n−j+1.

Proof. By Lemma 1, we know that Dn = T n; so we rewrite it as Dn = Dn−1D1 = D1Dn−1. In other words, D1 is
commutative under matrix multiplication. Hence, more generalizing, we can write

Dn+m = DnDm = DmDn. (9)

Consequently, an element of Dn+m is the product of a row Dn and a column of Dm; that is

ui
n+m =

k∑
j=1

u
j
mui

n−j+1.

Thus, the proof is complete. �

For example, if we take k = 2 and m= 0 in Theorem 3, the sequence {ui
n} is reduced to the usual Fibonacci sequence

and we have

F 2
n+m =

2∑
j=1

F
j
mF 2

n−j+1

= F 1
mF 2

n + F 2
mF 2

n−1

and, since F 1
n = F 2

n+1 for all positive n and k = 2, we obtain

F 2
n+m = F 2

m+1F
2
n + F 2

mF 2
n−1,
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where F 2
n is the usual Fibonacci number. Indeed, we generalize the following relation involving the usual Fibonacci

numbers [24]

Fn+m = Fm+1Fn + FmFn−1.

For later use, we give the following lemma.

Lemma 4. Let ui
n be the generalized order-k F–P number. Then

ui
n+1 = u1

n + ui+1
n for 2� i�k − 1, (10)

u1
n+1 = 2mu1

n + u2
n, (11)

uk
n+1 = u1

n. (12)

Proof. From (9), we have Dn+1 = DnD1. Then by using a property of matrix multiplication, the proof is readily
seen. �

Generalizing Theorem 3, we can give the following Corollary without proof since Dn=T n and so Dn+t =Dn+rDt−r

for all positive integers t and r such that t > r .

Corollary 5. Let ui
n be the generalized order-k F–P number. Then for n, t �1 such that t > r

ui
n+t =

k∑
j=1

u
j
n+ru

i
t−r−j+1.

3. Generalized Binet formula

In 1843, Binet derived the following formula for the Fibonacci numbers:

Fn = �n − �n

� − �
,

where � and � are given by (1 ∓ √
5)/2. Also in [16], using the generating function, the author give the Binet formula

for generalized Fibonacci numbers.
In this section, we derive the generalized Binet formula for generalized order-k F–P numbers by using matrix methods.

Before this, we give some results.
From the companion matrices, it is well known that the characteristic equation of the matrix T given by (6) is

xk − 2mxk−1 − xk−2 − · · · − x − 1 = 0 which is also the characteristic equation of generalized order-k F–P numbers.

Lemma 6. The equation xk+1 − (2m + 1)xk + (2m − 1)xk−1 + 1 = 0 does not have multiple roots for k�2 and m�0.

Proof. Let f (x)=xk −2mxk−1 −xk−2 −· · ·−x −1 and h(x)=(x −1)f (x)=xk+1 −(2m +1)xk +(2m −1)xk−1 +1.
Thus, 1 is a root but not a multiple root of h(x), since k�2 and f (1) �= 1. Suppose that � is a multiple root of
h(x) for all integers k and m such that k�2 and m�0. Note that � �= 0 and � �= 1. Since � is a multiple root,
h(�) = �k+1 − (2m + 1)�k + (2m − 1)�k−1 + 1 = 0 and

h′(�) = (k + 1)�k − (2m + 1)k�k−1 + (2m − 1)(k − 1)�k−2

= �k−2[(k + 1)�2 − (2m + 1)k� + (2m − 1)(k − 1)] = 0.

Thus, �1,2 = ((2m + 1)k ∓ √
�)/2(k + 1) where � = (2m + 1)2k2 − 4(2m − 1)

(
k2 − 1

)
and hence, for �1

0 = −h(�1) = �k−1
1 (−�2

1 + (2m + 1)�1 − (2m − 1)) − 1.
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Let ak,m = �k−1
1 (−�2

1 + (2m + 1)�1 − (2m − 1)). Then we write the above equation as follows: for k�2 and m�0

0 = ak,m − 1.

However, if we choose k = 2 and m = 2, a2,2 = 39, a2,2 �= 1, a contradiction. Similarly, hence, for �2

0 = −h(�2) = �k−1
2 (−�2

2 + (2m + 1)�2 − (2m − 1)) − 1.

Let bk,m = �k−1
2 (−�2

2 + (2m + 1)�2 − (2m − 1)). Then we write the above equation as follows: for k�2 and m�0

0 = bk,m − 1.

For k =2 and m=2, b2,2 =− 13
27 , b2,2 �= 1, a contradiction because we suppose that � is a multiple root for any integers

k and m such that k�2 and m�0. Therefore, the equation h(x) = 0 does not have multiple roots. �

Consequently, by Lemma 6, the equation xk − 2mxk−1 − xk−2 − · · · − x − 1 = 0 does not have multiple roots for
k�2 and m�0.

Let f (�) be the characteristic polynomial of the generalized order-k F–P matrix T . Then f (�) = �k − 2m�k−1 −
�k−2 − · · · − � − 1, which is mentioned above. Let �1, �2, . . . , �k be the eigenvalues of matrix T . Then, by Lemma 6,
�1, �2, . . . , �k are distinct. Let V be a k × k Vandermonde matrix as follows:

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

�k−1
1 �k−2

1 . . . �1 1

�k−1
2 �k−2

2 . . . �2 1

...
...

...
...

�k−1
k �k−2

k . . . �k 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let ei
k be a k × 1 matrix as follows:

ei
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

�n+k−i
1

�n+k−i
2

...

�n+k−i
k

⎤
⎥⎥⎥⎥⎥⎥⎦

and V
(i)
j be a k × k matrix obtained from V by replacing the jth column of V by ei

k . Denote V T by �.
Then we obtain the generalized Binet formula for the generalized order-k F–P numbers with following theorem.

Theorem 7. Let ui
n be the nth term of ith F–P sequence, for 1� i�k. Then

u
j

n−i+1 = det(V (i)
j )

det(V )
.

Proof. Since the eigenvalues of T are distinct, T is diagonalizable. Since � is invertible �−1T � = E where E =
diag(�1, �2, . . . , �k). Hence, T is similar to E. So we obtain T n� = �En. By Lemma 1, T n = Dn. Then we have the
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following linear system of equations:

di1�
k−1
1 + di2�

k−2
1 + · · · + dik = �n+k−i

1 ,

di1�
k−1
2 + di2�

k−2
2 + · · · + dik = �n+k−i

2 ,
...

...

di1�
k−1
k + di2�

k−2
k + · · · + dik = �n+k−i

k ,

where Dn = [dij ]k×k . Thus, for each j = 1, 2, . . . , k, we obtain

dij = det(V (i)
j )

det(V )
.

Note that dij = u
j

n−i+1. So we have the conclusion. �

4. Sums of the generalized F–P numbers

Now we extend the matrix representation of generalized order-k F–P numbers in Section 1 and derive a generating
matrix for the sums of the generalized order-k F–P numbers subscripted from 1 to n.

To calculate the sums Sn of the generalized order-k F–P numbers, defined by

Sn =
n−1∑
i=0

u1
i

since uk
n+1 = u1

n which given in Lemma 4, we rewrite it as

Sn =
n∑

i=1

uk
i .

Let A and Wn be (k + 1) × (k + 1) square matrix, such that

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
1
0 T
...

0

⎤
⎥⎥⎥⎥⎦ (13)

and

Wn =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
Sn

Sn−1 Dn

...

Sn−k+1

⎤
⎥⎥⎥⎥⎦ , (14)

where T and Dn are the k × k matrices as in (6) and (7), respectively.
Using formula (12), we obtain the following equation:

Sn = u1
n−1 + Sn−1

and so we derive the following matrix recurrence equation:

Wn = Wn−1A.

Inductively, we also have

Wn = W1A
n.
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Since S−i = 0, 1� i�k and by the definition of the generalized order-k F–P numbers, we thus infer W1 = A, and in
general, Wn = An. So we obtain the generating matrix for the sums of the generalized order-k F–P numbers Sn.

Since Wn = An, we write

Wn+1 = WnW1 = W1Wn (15)

which shows that W1 is commutative as well under matrix multiplication. By an application of Eq. (15), the sums of
generalized order-k F–P numbers satisfy the recurrence relation:

Sn = 1 + 2mSn−1 +
k∑

i=2

Sn−i . (16)

Substituting Sn = u1
n−1 + Sn−1 into the Eq. (16) and by (12), we express uk

n in terms of the sums of the generalized
order-k F–P numbers

uk
n = 1 + (2m − 1)Sn−1 +

k∑
i=2

Sn−i . (17)

For example, when k = 2 and m = 0, the sequence {ui
n} is reduced to the Fibonacci sequence {Fn} and so the above

equation is reduced to

Fn = 1 + Sn−2.

So we derive the well-known result [24]

n−2∑
i=1

Fi = Fn − 1.

5. An explicit formula for the sums of generalized F–P numbers

In this section, we derive an explicit formula for the sums of generalized order-k F–P numbers subscripted from 1 to
n by matrix methods. Recall that the (k + 1) × (k + 1) matrix A be as in (13). We consider the characteristic equation
of matrix A, then the characteristic polynomial of A is

KA(�) =

∣∣∣∣∣∣∣∣∣∣

1 − � 0 0 . . . 0
1
0 T − �I
...

0

∣∣∣∣∣∣∣∣∣∣
,

where the k × k matrix T given by (6) and I is the identity matrix of order k. Computing the above determinant by the
Laplace expansion of determinant with respect to the first row gives as

KA(�) = (1 − �)|T − �I |. (18)

From Section 2, we have the characteristic polynomial of matrix T , then we obtain the characteristic equation of matrix
A as follows:

xk+1 − (2m + 1)xk + (2m − 1)xk−1 + 1 = 0.

From Lemma 6, we know that the above equation does not have multiple roots. Thus, we can diagonalize the matrix A.
Recall that the eigenvalues of the matrix T are �1, �2, . . . , �k . By (18) and previous results, we have that the eigenvalues
of matrix A are 1, �1, �2, . . . , �k and all of them are distinct.
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We define an (k + 1) × (k + 1) matrix G as follows:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
−1

(2m + k − 2)
�k−1

1 �k−1
2 . . . �k−1

k

−1

(2m + k − 2)
�k−2

1 �k−2
2 . . . �k−2

k

...
...

...
...

−1

(2m + k − 2)
�1 �2 . . . �k

−1

(2m + k − 2)
1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where 1, �1, �2, . . . , �k are the eigenvalues of A.
Then we give an explicit formula for the sums of generalized order-k F–P numbers with the following theorem.

Theorem 8. Let Sn denote the sums of the terms of the sequence {uk
n} subscripted from 1 to n. Then

Sn =
(

k∑
i=1

ui
n

)/
(2m + k − 2),

where ui
n is the nth term of ith generalized order-k F–P sequence.

Proof. It is easily verified that

AG = GM, (20)

where M = diag(1, �1, �2, . . . , �k) and the matrices A and G given by (13) and (19), respectively. If we compute the
det G by the Laplace expansion according to the first row, then, by the definition of k × k Vandermonde matrix V , we
easily obtain det G= det V . We know that det V �= 0 since the all �i’s are distinct for 1� i�k. Thus, det G �= 0 and so
the matrix G is invertible. Therefore, we write (20) as G−1AG = M . Then the matrix A is similar to the matrix M and
so we obtain the matrix equation G−1AnG = Mn or AnG = GMn. Since An = Wn and Sn = (Wn)2,1, WnG = GMn.
Thus, by a matrix multiplication, the conclusion is easily obtained. �

Taking by k = 2 and m = 1, then the sequence {ui
n} is reduced to the usual Pell sequence and by Theorem 8,

we obtain

n∑
1

Pi = P 1
n + P 2

n − 1

2

and since P 1
n = P 2

n+1,

n∑
1

Pi = P 2
n+1 + P 2

n − 1

2

which is well-known fact from [10].

6. Generating function and combinatorial representation

In this section we give the generating function and combinatorial representation of generalized order-k F–P sequence
{uk

n}. We start with the generating function of the sequence {uk
n}.
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Let

Gk(x) = uk
1 + uk

2x + uk
3x

2 + · · · uk
kx

k−1 + uk
k+1x

k + · · · + uk
n+1x

n + · · · .

Then

Gk(x) − 2mxGk(x) − x2Gk(x) − · · · − xkGk(x)

= (1 − 2mx − x2 − · · · − xk)Gk(x)

= uk
1 + x(uk

2 − 2muk
1) + x2(uk

3 − 2muk
2 − uk

1)

+ · · · + xk(uk
k+1 − 2muk

k − uk
k−1 − · · · − uk

2 − uk
1)

+ · · · + xn(uk
n+1 − 2muk

n − uk
n−1 − · · · − uk

n−k+2 − uk
n−k+1) + · · · .

By the definition of generalized order-k F–P numbers, we obtain

Gk(x) − 2mxGk(x) − x2Gk(x) − · · · − xkGk(x) = uk
1

and since uk
1 = 1,

Gk(x) = (1 − 2mx − x2 − · · · − xk)−1

for 0�2mx + x2 + · · · + xk < 1.
Let fk(x)=2mx +x2 +· · ·+xk . Then 0�fk(x) < 1 and we give exponential representation for generalized order-k

F–P numbers

ln Gk(x) = ln[1 − (2mx + x2 + · · · + xk)]−1

= − ln[1 − (2mx + x2 + · · · + xk)]
= − [−(2mx + x2 + · · · + xk) − 1

2 (2mx + x2 + · · · + xk)2

− · · · − 1
n
(2mx + x2 + · · · + xk)n − · · ·]

= x[(2m + x + x2 + · · · + xk−1) + 1
2 (2m + x + x2 + · · · + xk−1)2

+ · · · + 1
n
(2m + x + x2 + · · · + xk−1)n + · · ·]

= x

∞∑
n=0

1

n
(2m + x + x2 + · · · + xk−1)n.

Thus,

Gk(x) = exp

(
x

∞∑
n=0

1

n
(2m + x + x2 + · · · + xk−1)n

)
.

Now we give combinatorial representation of the generalized order-k F–P numbers. In [3], the authors obtained an
explicit formula for the elements in the nth power of the companion matrix and gave some interesting applications.
The companion matrix A be as in (4), then we find the following theorem in [3].

Theorem 9. The (i, j) entry a
(n)
ij (c1, c2, . . . , ck) in the matrix An(c1, c2, . . . , ck) is given by the following formula:

a
(n)
ij (c1, c2, . . . , ck) =

∑
(t1,t2,...,tk)

tj + tj+1 + · · · + tk

t1 + t2 + · · · + tk
×
(

t1 + t2 + · · · + tk
t1, t2, . . . , tk

)
c
t1
1 . . . c

tk
k , (21)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + ktk = n − i + j , and the coefficients in
(21) is defined to be 1 if n = i − j .

Then we have the following Corollary.
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Fig. 1. Illustrates the MATLAB code concerning the algorithm.
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Corollary 10. Let ui
n be the generalized order-k F–P number for 1� i�k. Then

ui
n =

∑
(r1,r2,...,rk)

rk

r1 + r2 + · · · + rk
×
(

r1 + r2 + · · · + rk
r1, r2, . . . , rk

)
2mr1 ,

where the summation is over nonnegative integers satisfying r1 + 2r2 + · · · + krk = n − i + k.

Proof. In Theorem 9, if j = k and c1 = 2m, then the proof is immediately seen from (6). �

7. An algorithm for the sum

In this section, we are going to give a computational algorithm for the sums of the generalized order-k F–P numbers.
The sums of generalized order-k F–P numbers may be estimated via the equation Sn = u1

n + Sn−1 mentioned above.
But this estimation based on the matrix multiplication is not useful for the large values of n, m and k. Consequently,
to obtain the matrix Wn generating sums of the generalized order-k F–P numbers, we give an algorithm that is entirely
based on the sums of the series rather than the one based on matrix multiplication. The following considerations have
played important results in forming such an algorithm. First, whatever values n, m and k take, the first line of the
resulting matrix is fixed as follows: for all i and j , Wi (1, j) = 1 for j = i and Wi (1, j) = 0 for j > i. Thus, there is
no need for further processes for the first line. Second, when i = k, the elements of the (i − k + 1)th line of Di can
be obtained by using the identity matrix I of order k. Following the second step, when i > k, the operation to do is to
erase the kth line of I and for j = 2, 3, . . . , k − 1 to move the jth row into (j + 1)th line and the (i − k + 1)th line of
Di−1 into the first line of I. This operation is repeated by using the second step until i = n. Finally, after obtaining the
(n − k + 1)th line of the matrix Dn, it is easy to compute the other element of Wn by using the equation Sn =u1

n +Sn−1
and the Eq. (12) (Fig. 1).
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