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Abstract

A new approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs was introduced in Fokas [A
unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A 53 (1997) 1411-1443]. For
linear elliptic PDEs, an important aspect of this approach is the characterization of a generalized Dirichlet to Neumann map: given
the derivative of the solution along a direction of an arbitrary angle to the boundary, the derivative of the solution perpendicularly
to this direction is computed without solving on the interior of the domain. This is based on the analysis of the so-called global
relation, an equation which couples known and unknown components of the derivative on the boundary and which is valid for all
values of a complex parameter k. A collocation-type numerical method for solving the global relation for the Laplace equation
in an arbitrary bounded convex polygon was introduced in Fulton et al. [An analytical method for linear elliptic PDEs and its
numerical implementation, J. Comput. Appl. Math. 167 (2004) 465-483]. Here, by choosing a different set of the “collocation
points” (values for k), we present a significant improvement of the results in Fulton et al. [An analytical method for linear elliptic
PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465-483]. The new collocation points lead to well-
conditioned collocation methods. Their combination with sine basis functions leads to a collocation matrix whose diagonal blocks
are point diagonal matrices yielding efficient implementation of iterative methods; numerical experimentation suggests quadratic
convergence. The choice of Chebyshev basis functions leads to higher order convergence, which for regular polygons appear to be
exponential.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A new approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs in two dimen-
sions was introduced in [5,6]. This approach was developed by several researchers, and has led to the emergence of a
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new method for solving boundary value problems. This method involves two novel features:

(a) Ityields an analytic representation of the solution in the form of an integral in the complex k-plane.

(b) Itcharacterizes a generalized Dirichlet to Neumann map through the solution of the so-called global relation, which
is an equation valid for all complex values of k, which couples specified and unknown values of the solution and
its derivatives on the boundary.

For a large class of boundary value problems, the global relation can be solved analytically, and hence the generalized
Dirichlet to Neumann map can be constructed in closed form. This includes linear evolution PDEs with spatial derivatives
of arbitrary order on the half-line [7] and on a finite interval [10], the Laplace, the bi-harmonic and the modified
Helmholtz equation in certain simple polygons [ 1-4] and the basic nonlinear integrable evolution PDEs on the half-line
for certain simple boundary conditions [8,9]. However, for general boundary value problems, the global relation must
be solved numerically.

The implementation of the new method to the case of the Laplace equation in an arbitrary bounded convex polygon
was presented in [11], where:

(a) It was shown that the global relation is not only a necessary but also a sufficient condition for existence. This
reduces the problem of solving Laplace’s equation, to the problem of solving the global relation.

(b) A collocation-type numerical method was introduced for solving the global relation. This method is based on
evaluating both the real and imaginary parts of the global relation at the following values of the complex parameter
k (“collocation points™):

k ! h ! 1,2 [=1,2 N
= h,,’ p—2n(zp+1 p), p=12,...,n, =12....5,

where n is the number of the sides of the polygon, {z;}7_, are the corners of the polygon in the complex z-plane
(with z,,41 = z1) and N, which is chosen to be even, is the number of points used for the discrete approximation of
the unknown boundary values. This choice has been motivated by the analytical integral representation in [6] (see
also Remark 2.1).

(1.1

In this paper, aiming to improve and stabilize the order of convergence and the associated conditioning number of the
collocation method in [11], we use a different set of collocation points (the values of the complex parameter k): we use
the values specified by Eq. (1.1) for the imaginary part of the global relation, but we choose the values

L . iy (1.2)

222 2
for the real part of the global relation.

The above choice, for sine basis functions, yields a linear algebraic system whose diagonal blocks of the associated
coefficient matrix are point diagonal matrices. That is, the collocation coefficient matrix is by construction block-
Jacobi preconditioned, pointing directly to the efficient implementation of iterative techniques. Numerical investigation
suggests a quadratically convergent and well-conditioned collocation method. The classical Jacobi and Gauss—Seidel
as well as the BiCGstab iterative techniques converge rapidly, yielding the discrete solution (for fixed N) after only
a few iterations. Furthermore, the rate of convergence to the continuous solution as N — oo can be improved by
choosing a different set of basis functions. In particular, for Chebyshev basis functions, numerical experiments suggest
that, for regular polygons, the convergence is exponential.

This paper is organized as follows: Section 2 outlines some of the analytical results of [11]. Section 3 presents the
details of the new numerical solution of the global relation and explains the choice of the new collocation points.
Section 4 presents numerical results for a variety of domains with different boundary conditions, and compares these
results with the analogous results of [11]. Section 5 discusses further these results.

[

2. Overview

For elliptic PDEs in two dimensions x and y, it is convenient to replace the Cartesian coordinates x and y with the
complex coordinates z and z,

z=x 41y, zZ=x—1y. 2.1
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Fig. 1. Part of the bounded convex polygon with vertices z ;, sides §; and interior D.

Using the equations
0, =30, —i0,), ;=3 +id,),

it follows that the Laplace equation in the independent variable ¢ can be rewritten in the form

0%q
i - 22
0207 (22)
This equation is equivalent to the equation
0 —ikz aq
—_ < \)=o0, 2.3
oz (e oz (2.3)

for an arbitrary complex parameter k.
Suppose that the real-valued function g (z, 7) satisfies Laplace’s equation (2.2) in a simply connected bounded domain
D with boundary 0D. Then, Eq. (2.3) together with the complex form of Green’s theorem imply the equation

. O
/ e g—0 kec. (2.4)
oD 0z
Following [6] we shall refer to Eq. (2.4) as the global relation associated with Laplace’s equation.
Suppose that g(z, z) satisfies the Laplace equation in a convex bounded polygon with vertices zj, z2, ..., 2,
(modulo ), which have indexed counterclockwise, see Fig. 1. Then the global relation (2.4) becomes
- ., 0
3 / ek 4.0, kec, (2.5)
= S; aZ

where §; denotes the side from z; to z;¢1 (not including the end points).

Proposition 2.1. Let the real-valued function q(z, 7) satisfy the Laplace equation in the interior D of the polygon with
corners {z;}!_, depicted in Fig. 1. Let g denote the derivative of the solution in the direction making an angle ﬂj,
Ogﬁj <, with the side S, i.e.,

cos(B))a” +sin(B))a’ =g, zeS; 1<j<n, (2.6)
where qij ) and q,gj ) denote the tangential and (outward) normal components of 0q/0z along the side S;. Let f ()
denote the derivative of the solution in the direction normal to the above direction, i.e.,

—sin(B)as” +cos(Bpar’ = f, zes;, 1<j<n, @7

The generalized Dirichlet—Neumann map, i.e., the relation between the sets { fU )}’;:1 and {g/ )};'.: |» Is characterized
by the single equation '

T
—T

Sl [ e s) g sy ds =0, ke 28)
j=1
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where
1 1 .
hj = ﬂ(Zj.{.[ —zj), mj:= E(Zj“ +zj), j=L2,....n, Zpy1=21. (2.9
Evaluating Eq. (2.8) on the following n-rays of the complex k-plane
[
ky=——, leRY, p=1,...,n, (2.10)
hP

and multiplying the resulting equations by exp[—i(B,+Im,/ hp)]/|h |, Eq. (2.8) yields the following set of n equations:

n

ZMe“/f.f*ﬁp)e—(ll/hp)(mv—m-f>/ el i/hs (£D(s) —igW(s))ds =0, [eR", p=1,....n. (2.11)

= 1hy| —

Proof. Leta; denote the angle of the side S; with the horizontal axis, i.e.,
aj =arg(zj11 —z;),  hj=|hjle. (2.12)
Egs. (2.6) and (2.7) can be considered as two equations expressing qs(j ) and q,gj ) in terms of g and ),

g’ =sin(B;)g + cos(;) £,

g, = cos(B ;g —sin(B;) f V).

Substituting these expressions in the identity

o0 L :
% = e (g +igi").
Z
we find
gD . : .
% — %e—l(ﬂj_l))_/)(g(,l) + if(J)). (2.13)
Z

In order to evaluate the integral of the expression exp[—ikz]dg(/) /0z along the side S j» we introduce the following
local coordinates: For z € S, we let

1 s
7= E(Zj +zj41) + E(Zj-;-] —zj), —m<sS<T.
Note that for s = —m and 7, z = z; and z;11, respectively. Writing the above expression in terms of /2; and m ;, we find
z=mj+shj. (2.14)

Substituting the expressions for z and g /) /0z from Eqgs. (2.14) and (2.13) into the global relation (2.5), and multiplying
the resulting equation by —i we find Eq. (2.8). [

Remark 2.1. Suppose that the set {g(/) }’]1.:1 is known. Then, Eq. (2.8) is a single equation for the » unknown functions

{fO (s)}’}zl. However, this equation is valid for all complex values of k. Thus, it is possible to generate a multitude of
equations from the single equation (2.8), by prescribing a multitude of values for . It is shown in [11] that a convenient
choice for these values is the one defined in Eq. (2.10). This choice can be motivated as follows: suppose we only

had one unknown f (P): then we would choose k in such a way that kh, is real, i.e., kh, = —I or kh, = 1. The latter
choice coincides with the values of k appearing in the analytical integral representation (see [6]). However, the integral
representation involves e*¢ whereas the global relation involves e “¥2, thus we now choose kh p=—L

Remark 2.2. In what follows we assume that g(/) are compatible in the corners and we seek a solution in the function
class specified in [11].
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Remark 2.3. The end values of the unknown functions f ) can be calculated by the continuity requirements qgj ) (zj)=

qéj_l)(zj). Namely, using expression (2.13) and setting 6; =a; — ﬁj we obtain (see also [11])

cos(dj 41 — 5j)g(j)(77:) — gUtD(m)
Sin(5j+1 — 5])

fOm =

b}

gV V(@ —cos(d; — 3;-1g"¥ (=)

D (_m) —
f ( T[)_ Sil‘l(&j—éj_l)

3. The numerical method

Proposition 3.1. The gen.emlized Dirichlet-Neumann map is defined by Proposition 2.1. Suppose that the set {g/) };'.:1
is given. Suppose that 9 (s) is approximated by

N
]i,])(S) = f*(])(s) + Z U,]q)r(s), j=1,...,n, N even integer, 3.1)

r=1

where ¢,.(s) are appropriate basis functions and
: 1 . .
Lo =6+ 0w~ - o),

Then, the real coefficients U; satisfy the Nn algebraic set of equations

n

N
> Wil i~ i/ npyomp=my) Y U/F, i 2 G,(), p=1,2,....n, (3.2)
j=1 Ihpl r=1 hp

where G ,(I) denotes the known function

n
G,,(l):iZ' f|el</f_,~—/fp>e—1<l/hp)<m,,—m_,->/ i/ 103 () (5) 1 £ (5)) ds. (33)

Z Ih,| -

F,-(I) denotes the integral
T .
F,(l):/ e, (s)ds, r=1,2,...,N, (3.4)
—T

and L is chosen as follows: For the imaginary part of Eq. (3.2),1=1,2, ..., N /2, whereas for the real part of Eq. (3.2),
I=%3,....,N—1)2.
In the particular case that ¢, (s) are the sine basis functions, that is,

(p,(s)zsin[r<”?)] r=1,2,....N, (3.5)

the term j = p in the summation of the left-hand side of Eq. (3.2) is given by the following:

l=3:n0{, 1=1:-nU},
l:%:—nUp, l=2:nUf,
IZ%ZT[USP, l:3:—7rU6p,

(3.6)

Proof. Substituting the representation (3.1) in Egs. (2.11) we find Egs. (3.2).



14 A.G. Sifalakis et al. / Journal of Computational and Applied Mathematics 219 (2008) 9—34
The term j = p in the summation of the left-hand side of Egs. (3.2) is given by
N N N
D UEWD =) UIR (D +iy UL, (3.7)
r=1 r=1 r=1
where R, (I) and I, (/) denote the real and imaginary parts of the integral F, (/) defined by Eq. (3.4). Let J,5 denote the
Kronecker function. Using
Rr(%) = 1d,1, Rr(%) = _77551’37 Rr(%) =77-'5r5,
I,(1) = —ndy2, 1,(2) =ndrs, [,(4) = —mnd,s,
Eq. (3.7) yields the expressions (3.6). [

Remark 3.1. To explain the choice of the new collocation points let us isolate one of the unknown integrals in the
global relation (2.11) and denote by H), (k) the remaining terms,

n . .
/ elklitpls (P () ds = H,(k), k= [kl ™) p=1,...,n. (3.8)
—T

Here we assume that the known linear function f*(p ) has been subtracted from £ asin (3.1) so that fP) vanishes at
s = £n. The complex conjugate, now, of Eq. (3.8) yields

n . - .
/ e Ml f D (5)ds = Hy(k), k=Kl ™), p=1,... n. (3.9)

—T

The left-hand sides of Eqgs. (3.8)—(3.9) involve both sines and cosines. However, since fP)(s) vanishes at the end
points we seek integral representations involving only sines. Thus, we let s =2¢ — 7 in Eqgs. (3.8)—(3.9) and we find the
following equations:

T

Zfo[cos(2|k||hp|t) + i sinQ|kl|R 1)1 f P (2t — 1) dt = elkIhe T 7, (— |k |e1%0)),
s

2/ [cos Ikl p|t) — i sin(2lkllh |01 f P (2t — 1) dt = e kWP Im T, (—|k|e@0)).
0

Subtracting these equations and letting
2lk(lhpl =1, 1=1,2,...
we find

T . l . _ [
4i/ sin(lt) fP (2t — m)dt = e'™?H (——) —e 2 [—— ], (3.10)
0 P\ 2n, "\ on,

forl=1,2,...,and p=1,...,n. Taking el!™/2 a5 a common factor and using the fact that eiln

and 1 if  is even, whereas e/™/2 equals (—=D?if I is even Eq. (3.10) becomes

! - [
vl g (L H,|—— |, [odd,
=D P\, ) T\, °
(=12 H, (_L>_Hp _; , [ even.
2h, 2h,

equals —1 if /is odd

4 / sin(lr) f P21 — m)dr =
0



A.G. Sifalakis et al. / Journal of Computational and Applied Mathematics 219 (2008) 9—34 15
4. Numerical results

Following directly Proposition 3.1, we construct the Nn x Nn linear system of equations, defined by relations
(3.2)—(3.6), needed to determine the Nn unknown coefficients U, ,] in (3.1). Relation (3.2), which is the discrete analogue
of the global relation (2.11), is a complex system of n equations. By choosing % values of [ for the real part of these
equations and % values of / for the imaginary part, we obtain a system of Nn real equations.

4.1. Comparison of SFFS and FFX methods for sine basis functions

The choice for the values of / specified in Proposition 3.1, in the case of sine basis functions, leads to a system whose
coefficient matrix has the structure shown schematically in Fig. 2a, that is the N x N block diagonal submatrices are
diagonal matrices. This should be compared to the block structure of the matrix obtained in [11] for the physical space
case which is shown in Fig. 2b.

To illustrate the numerical implementation of the method, as well as to compare with the one presented in [11], we
apply it to the Laplace equation for a variety of regular and irregular polygon domains with Dirichlet, Neumann and
mixed (7/3) boundary conditions. In all cases the exact solution of the Laplace equation is given by

q(x,y) =sinh(3x) sin(3y), 4.1)
and the corresponding boundary conditions as well as the corresponding functions { /) (s)};?:1 and {gV )(s)};f= | can
be generated analytically. The relative error E, used to demonstrate the performance of the methods, is given by

I = vl

00 = s 4.2
1 lloo *2)

Fig. 2. The structures of the coefficient matrices produced (a) by Proposition 3.1 (SFFS method) and (b) in [11] (FFX method), forn =6 and N =32.
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Dirichlet Boundary Conditions (SFFS)

oo
&

Relative Error E
)
T

10' N N “““11 N N “Huxz N N PR |
10 10 10’
Number of Basis Functions N

Dirichlet Boundary Conditions (FFX)
10

107"

102 ¢

10° |

10% |

Relative Error E_,

10°

10 ¢

107 |

10-8 N N PR N N M | " N P |
10 10’ 10° 10°
Number of Basis Functions N

Fig. 3. Case of regular polygons and Dirichlet boundary conditions: Eso as a function of N for the method presented here (SFFS) and the method
presented in [11] (FFX).

where

— )
[ flloc = max { max If’(s)l} (4.3)

SjsSn |-TSs<T

and

<jsSn |-T<Ss<T

If = fwlloo = max { max If(j)(S)—f,(vj)(S)l}, (4.4)
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Neumann Boundary Conditions (SFFS)

10 ¢
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107 ¢ Neumann Boundary Conditions (FFX)

o
-
<
w
T

10% ¢

Relative Error E

10°F

10-8 " N “““11 “12 N N PR |
10 10 10 10
Number of Basis Functions N

Fig. 4. Case of regular polygons and Neumann boundary conditions: Eno as a function of N for the method presented here (SFFS) and the method
presented in [11] (FFX).

with f,g/ ) as in (3.1), and the max over s is taken over a dense discretization of the interval [—m, ©]. The num-
ber N of basis functions on each side remains the same in all experiments and takes successively the values N =
4,8, 16, 32, 64, 128, 256. For the direct solution of the linear systems we have used the standard LAPACK routines,
while for the computation of the right hand side vector we have used a routine (dgawo) from QUADPACK implementing
the modified Clenshaw—Curtis technique.
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Mixed (n/3) Boundary Conditions (SFFS)
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100 F Mixed (n/3) Boundary Conditions (FFX)
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10" 10° 10
Number of Basis Functions N

Fig. 5. Case of regular polygons and mixed boundary conditions: E«; as a function of N for the method presented here (SFES) and the method
presented in [11] (FFX).

Figs. 3-5 refer to the solution for regular polygons with Dirichlet (8 ; =0), Neumann (f§; =7/2) and mixed (8 ; =7/3)
boundary conditions, respectively. The vertices z; of the regular n-gons used in our experiments are lying on a circle
centered at the origin with radius +/2 and they are given by

o = VSRR g
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Table 1
Regular triangle—Dirichlet BCs

N SFFS method FFX method
Ex 0.0.C Ex 0.0.C

4 6.94E — 02 - 2.48E — 01 -

8 2.04E — 02 1.77 9.83E — 02 1.34
16 5.44E — 03 1.91 3.61E — 02 1.45
32 1.40E — 03 1.96 1.30E — 02 1.47
64 3.56E — 04 1.98 4.61E — 03 1.50

128 8.96E — 05 1.99 1.64E — 03 1.49
256 2.25E — 05 1.99 5.79E — 04 1.50
Table 2

Regular square—Neumann BCs

N SFFS method FFX method
Ex 0.0.C E 0.0.C

4 3.20E — 02 - 4.51E — 02 -

8 9.78E — 03 1.71 1.53E — 02 1.56
16 2.66E — 03 1.88 7.04E — 03 1.12
32 6.88E — 04 1.95 3.53E - 03 1.00
64 1.75E — 04 1.98 1.77E — 03 1.00

128 4.40E — 05 1.99 8.90E — 04 0.99
256 1.10E — 05 2.00 4.46E — 04 1.00
Table 3

Regular pentagon—mixed BCs

N SFFS method FFX method
E 0.0.C Ex 0.0.C

4 2.85E — 02 - 4.04E — 02 -

8 7.99E — 03 1.83 1.18E — 02 1.78
16 2.12E — 03 1.91 3.24E — 03 1.86
32 5.46E — 04 1.96 8.49E — 04 1.93
64 1.39E — 04 1.97 2.18E — 04 1.96

128 3.49E — 05 1.99 7.22E — 05 1.59
256 8.76E — 06 1.99 2.57E — 05 1.49
Table 4

Regular octagon—Dirichlet BCs

N SFFS method FFX method
E 0.0.C Eo 0.0.C

4 6.09E — 03 - 1.19E — 02 -

8 1.81E — 03 1.75 4.37E — 03 1.45
16 4.93E — 04 1.88 1.47E — 03 1.57
32 1.28E — 04 1.95 4.79E — 04 1.62
64 3.25E — 05 1.98 1.54E — 04 1.64

128 8.21E — 06 1.98 4.88E — 05 1.66

256 2.06E — 06 1.99 1.54E — 05 1.66
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SFFS Regular Polygons

T T
10" | —A— Triangle E
—H&— Square

Pentagon
105 L | —*— Hexagon 4
—+— Octagon

Condition Number
)

10 10°
Number of Basis Functions N

FFX Regular Polygons

T T
10" f| —&A— Triangle
—H—— Square
Pentagon
10° k| — % Hexagon
—+— Octagon

Condition Number
=)

10°
Number of Basis Functions N

10

Fig. 6. Case of regular polygons: the condition numbers of the coefficient matrices as a function of N for the method presented here (SFFS) and the
method presented in [11] (FFX).

The dotted, dashed and dash-dotted lines in the figures are the lines 1/N, 1/N? and 1/N? indicating the slopes for
convergence of order 1, 2 and 3, respectively. We note that in all cases both methods converge. However, the errors
produced by the method described in Proposition 3.1 (SFFS) are significantly smaller.
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4
LA
<
</
-

Fig. 7. The irregular polygons used in our experiments.

Furthermore, one may easily observe that the error lines for the SFFS method are parallel to the 1/N? line indicating a
quadratically convergent method with respect to the infinity error norm. To highlight this fact, the order of convergence
(0.0.C) of both methods, for several cases of regular polygons, has been numerically estimated and included in
Tables 1-4.
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Dirichlet Boundary Conditions (SFFS)
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Fig. 8. Case of irregular polygons and Dirichlet boundary conditions: E as a function of N for the method presented here (SFFS) and the method
presented in [11] (FFX).

As it pertains now to the condition number of the coefficient matrix associated with the SFFS method we point out
the fact that it remains small and grows very slowly with N in contrary to the associated condition number with the
FFX method (see Fig. 6).

In complete analogy to the above numerical treatment, we proceed now to the numerical study of the case of irregular
polygons. The vertices z; of the irregular n-gons (shown in Fig. 7) used in our experiments are lying on the ellipse
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Neumann Boundary Conditions (SFFS)
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Fig. 9. Case of irregular polygons and Neumann boundary conditions: E as a function of N for the method presented here (SFFS) and the method
presented in [11] (FFX).

(x/5)% + (y/2)* = 1 rotated by % Their x-coordinates, before rotation, are given, in a counterclockwise motion, by
o triangle: x = —4, —1, 3;

o quadrilateral: x = —4,4,4, 1,
o pentagon: x = =5, —2,4,3,0;
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Mixed (n/3) Boundary Conditions (SFFS)
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Fig. 10. Case of irregular polygons and mixed boundary conditions: E as a function of N for the method presented here (SFFS) and the method
presented in [11] (FFX).

e hexagon: x = —4,—1,2,4.5,1, —4.5;
e octagon: x = —5,—4,—1,2,3,1, =2, 3.

Figs. 8-10 depict the relative error Eo, as a function of N of both SFFS and FFX methods when they apply to the
solution of the discrete global relation for the case of irregular polygons with Dirichlet, Neumann and mixed (/3 j=n/3)
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Table 5
Irregular quadrilateral—Dirichlet BCs

N SFFS method FFX method
Ex 0.0.C Ex 0.0.C

4 2.70E — 01 - 3.33E — 01 -

8 1.35E — 01 1.00 1.81E — 01 0.88
16 4.79E — 02 1.49 7.13E — 02 1.34
32 1.36E — 02 1.82 2.31E — 02 1.63
64 3.56E — 03 1.93 8.05E — 03 1.52

128 9.05E — 04 1.98 2.90E — 03 1.47
256 2.28E — 04 1.99 1.00E — 03 1.54
Table 6

Irregular Pentagon—Neumann BCs

N SFFS method FFX method
Ex 0.0.C Ex 0.0.C

4 4.19E — 01 - 7.01E — 01 -

8 1.65E — 01 1.34 3.15E — 01 1.15
16 4.77E — 02 1.79 1.04E — 01 1.60
32 1.25E — 02 1.93 3.16E — 02 1.72
64 3.19E — 03 1.97 9.40E — 03 1.75

128 8.03E — 04 1.99 3.09E — 03 1.61
256 2.02E — 04 1.99 1.12E — 03 1.46
Table 7

Irregular hexagon—mixed BCs

N SFFS method FFX method
E 0.0.C Ex 0.0.C

4 2.51E - 01 - 4.96E — 01 -

8 9.56E — 02 1.39 2.39E — 01 1.05
16 2.80E — 02 1.77 8.74E — 02 1.45
32 7.37E — 03 1.93 2.86E — 02 1.61
64 1.88E — 03 1.97 9.04E — 03 1.66

128 4.74E — 04 1.99 2.81E — 03 1.69
256 1.19E — 04 1.99 8.69E — 04 1.69
Table 8

Irregular octagon—Dirichlet BCs

N SFFS method FFX method
Ex 0.0.C Ex 0.0.C

4 6.38E — 02 - 1.04E — 01 -

8 2.01E — 02 1.67 3.79E — 02 1.46
16 5.48E — 03 1.87 1.16E — 02 1.71
32 1.42E — 03 1.95 341E — 03 1.77
64 3.60E — 04 1.98 9.85E — 04 1.79

128 9.07E — 05 1.99 2.83E — 04 1.80

256 2.28E — 05 1.99 8.07E — 05 1.81
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SFFS Irregular Polygons
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Fig. 11. Case of irregular polygons: the condition numbers of the coefficient matrices as a function of N for the method presented here (SFFS) and
the method presented in [11] (FFX).

boundary conditions, respectively. Once more, both methods converge and the errors produced by the SFFS method
are considerably smaller.

The quadratic convergence property of the SFFS method for the case of irregular polygons is being highlighted
through Tables 5-8.
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Fig. 12. The relative error E~ as a function of Jacobi iterations for (a) a regular and (b) an irregular pentagon (N = 64).

Finally, Fig. 11 refers to the behavior of the condition number of the coefficient matrices associated with the SFFS
and FFX methods. Similar to the case of regular polygons, the condition number associated with the SFFS remains
small and grows very slowly with N.
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Fig. 13. The relative error E as a function of Gauss—Seidel iterations for (a) a regular and (b) an irregular pentagon (N = 64).

4.2. Performance of iterative solution methods for sine basis functions

Here we present some preliminary results for the performance of the iterative methods employed for the solution
of the linear systems produced by the two methods (SFFS and FFX). A complete study for the behavior of iterative
methods is outside the scope of the present work and will be presented elsewhere. Here we consider the classical Jacobi
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Fig. 14. The relative error E as a function of BiCGstab iterations for (a) a regular and (b) an irregular pentagon (N = 64).

and Gauss—Seidel as well as the Bi-Conjugate Gradient stabilized (BiCGstab) iterative methods. The results depicted
in Figs. 12—14 refer to the reduction of the relative error Eo, with respect to the number of iterations for the regular
and irregular pentagons described earlier with the number of basis functions per side fixed at N = 64. To improve the
convergence properties of the point Jacobi and Gauss—Seidel iterative methods for the linear system produced by the
method in [11], we also considered their block analogs (the block size is fixed to N). For the same reason, together
with the unpreconditioned BiCGstab we have also considered its block Jacobi preconditioned analog. In these cases,
the computational cost increases due to the factorization involved. The maximum number of iterations allowed for all
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Regular Polygons—Chebyshev Basis—Dirichlet B.C. (SFFS)
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Fig. 15. Exo as a function of N for the SFFS method with Chebyshev basis functions for regular polygons (top panel) and irregular polygons (bottom
panel) with Dirichlet boundary conditions.

methods to perform is set to 200 and the zero iterate U©) is set to be equal to the right-hand side vector. The stopping
criterion used for the Jacobi and Gauss—Seidel methods is
1 _ 10D — ™

< —6
> UMD 0
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Regular Polygons—Chebyshev Basis—Neumann B.C. (SFFS)
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Fig. 16. Exo as a function of N for the SFFS method with Chebyshev basis functions for regular polygons (top panel) and irregular polygons (bottom
panel) with Neumann boundary conditions.

while for the BiCGstab method is
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Regular Polygons—Chebyshev Basis—Mixed B.C. (SFFS)
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Fig. 17. Exo as a function of N for the SFFS method with Chebyshev basis functions for regular polygons (top panel) and irregular polygons (bottom
panel) with mixed (7/3) boundary conditions.

where A, b and U denote the coefficient matrix (with the appropriate modifications for the preconditioned cases),
the right-hand side vector and the mth iterate, respectively.
Figs. 12-14 indicate the following:

e All iterative methods for the SFFS-algorithm converge rapidly in a few iterations. Specifically, for the case of
the regular pentagon the Jacobi, Gauss—Seidel and BiCGstab iterative methods converge in 9, 7 and 4 iterations,
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respectively. For the case of the irregular pentagon the corresponding numbers of iterations are 30, 16 and 7,
respectively.

e The same iterative methods for the FFX-algorithm appear to have weak convergent properties. Namely, the Jacobi
method diverges and the unpreconditioned BiCGstab method fails to reduce the relative error Ef,? to a value less
than 107° after 200 iterations for both cases of regular and irregular pentagons. The Gauss—Seidel method converges
in 69 and 125 iterations for the case of regular and irregular pentagons, respectively. The situation improves by
using the block Jacobi and Gauss—Seidel as well as the block Jacobi preconditioned BiCGstab methods, but this
leads to extra computational cost due to the direct factorization involved. In these cases, the iterations needed for the
convergence of the block-Jacobi, block-Gauss—Seidel and preconditioned-BiCGstab methods, respectively, are 46,
24 and 10 for the regular pentagon and 34, 21 and 10 for the irregular pentagon.

4.3. Higher-order convergence

The sine basis functions ¢, (s) used in the approximation (3.1) in both the SFFS and FFX methods are natural
in that they are closely connected to the underlying Fourier transform [cf. (3.4)]. Indeed, this is the reason that the
diagonal blocks in the matrix are diagonal. However, from the point of view of approximation theory, these functions
are not optimal. Thus, we can ask: Can the convergence be improved by using other basis functions? Here we explore
only one choice, namely, Chebyshev polynomials. Since the endpoint values of the unknown functions f/) have been
removed (see Remark 2.3), the basis functions should vanish at the endpoints s ==m. To obtain reasonable conditioning,
we construct polynomial basis functions from the Chebyshev polynomials 7}, (x) = cos(ncos™!(x)), defining @, (s)
forr=1,...,Nby

Tr+1 (%) — T (%) , rodd,

s s
T4 (—) - T (—), r even.
T T

The Fourier transforms of these functions needed for (3.4) can be computed using the recursion relation

T,y (X) _ T,y (x)

n—+1 n—1

0, (s) =

2T, (x) = , n>1.

Figs. 15—17 show the error E as a function of N for the SFFS method using this Chebyshev basis for the regular and
irregular polygon cases of Section 4.1. In each case the convergence is faster than quadratic; for the regular polygons, it
appears to be exponential. The convergence is slower for the irregular polygons; the eventual breakdown of convergence
may be due to roundoff error. In each case the error for a given value of N is smaller than that obtained with the sine
basis. While the diagonal blocks in the linear system are no longer diagonal, the matrices are still well-conditioned,
with condition numbers (not shown) typically less than 10 until the convergence breaks down.

5. Conclusions and remarks

We have introduced a revised implementation of the collocation numerical method introduced in [11] for solving
linear elliptic PDEs with constant coefficients on arbitrary polygonal domains. The new version is based on a different
choice of “collocation points”, as well as different choice of basis functions and produces significantly better approx-
imations, especially for regular polygons. This is numerically demonstrated in Section 4; however, a rigorous proof
for the convergence remains open. The associated condition number for polygons with relatively few number of sides
remains confined and smaller than the corresponding one in [11].

For the case of sine basis functions, the computational advantage of our method is based on the fact that the block
diagonal submatrices of the coefficient matrix of the linear system obtained from the discrete analog of the global
relation (cf. [5,6]) are strictly diagonal. Thus, by construction and without introducing any computational cost from
direct factorization, the coefficient matrix is “block-Jacobi preconditioned”. This property, besides the fact that it can be
used to reduce the computational cost of direct factorization methods, points directly to the efficient implementation of
the classical SOR-like and CG-like iterative methods. The rapid convergence properties of the Jacobi, Gauss—Seidel and
BiCGstab iterative methods are numerically demonstrated in the previous section for regular and irregular pentagons.
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A complete numerical study for the behavior of iterative methods pertaining to our algorithm, as well as their rigorous
convergence analysis, is in progress.

For the case of Chebyshev basis functions, the block diagonal submatrices are no longer diagonal matrices, but
the condition number is still small and numerical experiments indicate higher order of convergence. In particular, for
regular polygons, it appears that the method converges exponentially.

This new method has been implemented recently to the modified Helmholtz and to the Helmholtz equations in the
interior of a convex polygon.
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