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Abstract

In this paper, by using a monotone iterative technique in the presence of lower and upper solutions, we discuss the existence
of solutions for a new system of nonlinear mixed type implicit impulsive integro-differential equations in Banach spaces. Under
wide monotonicity conditions and the noncompactness measure conditions, we also obtain the existence of extremal solutions and
a unique solution between lower and upper solutions.
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1. Introduction

It is well known that the theory of impulsive differential equations is a new and important branch of differential
equation theory, which has an extensive physical, chemical, biological, engineering background and realistic
mathematical model, and hence has been emerging as an important area of investigation in the last few decades,
see [1-9]. Correspondingly, applications of the theory of impulsive differential equations to different areas were
considered by many authors and some basic results on impulsive differential equations have been obtained (see,
for example, [10-22], and the references therein). Furthermore, the existence of solutions to impulsive differential
equations or impulsive integro-differential equations in Banach spaces has also been studied by many authors, see [1,
7,23-40,50,51].

Recently, He and He [51] investigated the existence of minimal and maximal solutions of impulsive integro-
differential equations with periodic boundary conditions by establishing a comparison result and using the method
of upper and lower solutions and the monotone iterative technique. Ahmad and Sivasundaram [7] developed the
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monotone method for impulsive hybrid set integro-differential equations in all its generality. Very recently, Li and
Liu [27] pointed out “the monotone iterative technique in the presence of lower and upper solutions is an important
method for seeking solutions of differential equations in abstract spaces”. Further, Li and Liu used a monotone iterative
technique in the presence of lower and upper solutions to discuss the existence of solutions for the initial value problem
of the impulsive integro-differential equation of Volterra type in a Banach space E:

u' (@) = ft,u(t), Tu®)), teld, t#un,
Auli=y = (), (G=12,...,m),
u(0) = xo,

where f e C(J X EX E,E),J =1[0,al,0<tj<thh <---<tp<aand Il € C(E,E),k=1,2,...,m. Under
wide monotonicity conditions and the noncompactness measure condition of nonlinearity f, the authors also obtained
the existence of extremal solutions and a unique solution between lower and upper solutions. On the other hand, Sun
and Ma [34] used a monotone iterative technique in the presence of lower and upper solutions to discuss the existence
of solutions for the following initial value problem of the impulsive integro-differential equation of Volterra type in a
Banach space:

u//(t)_f(xauau)ZOa xe]vx#xia

Aut|y=y;, = Ii_(u(x,-)), i=12,....,m),
Au/|X=X[ =Il(u(xl))5 (l = 1527"'5m)7
u) =wy, u'(0)=w;.

For more details of the monotone iterative methods, the readers can refer to [7,33,34,43—-51] and the references therein.
In this paper, we study the following system of nonlinear mixed type implicit impulsive integro-differential
equation problem in Banach spaces E; and Ej: Find (x, y) : J x J — E1 x E; such that

x'(t) = f(t,x(0), y(0), ASx (1)), # K,

Y (@) =gt y@),x0), uTy), t#n,

Axle=y = L(x (@), (k=1,2,....m), (1.1)
Ayli=y = Li(y(®)), *k=1,2,...,m),

x(to) = x0, y(to) = Yo,

where J = [fg,f0 + a] C R = (—00,+00) is a compact interval, tp < t; < --- < t,, < th +a < +oo,
f:JXE xEyxE — Erandg:J x Ey x E1 x Ey — E» are continuous, A, i > 0 are two constants, xg € E1,
Yo € Eo,

t
Sx(t) = / h(t, s)x(s)ds
0]
is a Volterra integral operator with integral kernel h(z, s) € C(D,R™), D = {(¢, s)|s, t € J,t > s}, RT = [0, 4+00),
t
Ty@) = / Kk (t, s)y(s)ds
fo

is a Fredholm integral operator with integral kernel «(t,s) € C(Dg,R%), Dg = {(t, s)|s,t € J}, and for
k=12,....m, I € ClEq, Eq], fk € C[Ey, E3], Ax|i=; denotes the jump of x(f) at t = 1, i.e, Ax|—, =
x(t/j ) —x(t, ), x(t, ) and x(t,j ) represent the left and right limits of x(¢) at t = #, respectively.

If » = 0and p = 0, then problem (1.1) reduces to finding (x, y) : J x J — E1 x E»> such that

X'ty = ft,x@),y(10), t#n,

Y() =g, y@),x@1), t#n,

Axli=y = {k(x(tk)), k=1,2,...,m), (1.2)
Ayli=y = L(y(t)), *k=1,2,...,m),

x(tg) = xo, y(to) = Yo.
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ff=g,x=y,Ey=Ey;=FEandfork=1,2,...,m, I = fk, then problem (1.2) further simplifies to finding
x : J — E such that

() = ft.x®),x®), t#u,
Ax'l:tk = Ik(x(tk))v (k = 1’ 2! e m)v (13)
x(t9) = xg.

Problem (1.3) was studied by some authors when f (¢, x, y) = p(¢, x) forallt € J and x, y € E, see, for example, [1,
22,28].

Remark 1.1. For appropriate and suitable choices of f, g, A, u, S, T, I, fk and E; fori = 1,2, it is easy to see
that problem (1.1) includes a number (systems) of differential equations, impulsive differential equations, (impulsive)
integro-differential equations studied by many authors as special cases, see, for example, [1-40,43,44,48-50] and the
references therein.

The purpose of this paper is to discuss the existence of solutions for the new system of nonlinear mixed type
implicit impulsive integro-differential equation (1.1) in Banach spaces by using a monotone iterative technique in the
presence of lower and upper solutions. Further, under wide monotonicity conditions and the noncompactness measure
conditions, we obtain the existence of extremal solutions and a unique solution between lower and upper solutions.
The new and useful results obtained in this paper improve and extend some relevant results in abstract differential
equations.

2. Preliminaries

Let E be an ordered Banach space with the norm || - || and partial order <, whose positive cone P = {x € E|x > 0}
is normal with normal constant N. Let J = [fg,f90 + a] (Where a > 0), 10 < t; < -+ <ty < to+a < 400,
Jo =0, 1], Ji = (11, 2], - .o, Jie = (ks i1 )y« -y I = (I, 10 + @] and
PC(J,E) = {x :J — E|x(t)is continuous att # t;, and left
continuous att = f, andx(t,j') exists, k =1,2,...,m}.
Evidently, PC(J, E) is a Banach space with norm || x||pc = sup,c; x(¢). Let J' = J \ {f1, f2, ..., t}. An abstract

function (x, y) € PC(J, E))NCY(J', E))NPC(J, E2))NC(J', E,) is called a solution of problem (1.1) if (x (), y(¢))
satisfies all the equalities of (1.1).
Let

PC'(J,E)={x e PC(J,E)NC'(J', E)| x'(t}"), x'(t] ) exist, k = 1,2,...,m},

where x’ (t,:r ) and x’ (¢, ) represent the right and left derivatives of x(¢) at # = #, respectively. For x € PCY(J, E), by
virtue of the mean value theorem

x(ty) —x(ty —h) e heolx'(t) :tx —h <t <t} (h>0),

it is easy to see that the left derivative x’_(#;) exists and
() = lim A~ () = x (= h)] = x'@),
h—0

where co{x’(t) : tp —h < t < t;} denotes the smallest closed convex subset containing {x'(t) : tt —h <t < f}in
PCY(J, E), and co(K) = {x|x = Z),GK Ayy, Ay € [0, 1], there exist finite numbers A, # 0and ZyeK Ay = 1} for
K C PCY(J, E). In what follows, x'(;) is understood as x’ (), hence x’ € PC(J, E). Evidently, PC'(J, E) is a
Banach space with norm ||x || po1 = max{sup,c; [|x ()|, sup,c; X"}

If (x,y) € PC(J, ENNCY(J’, E))NPC(J, E2)NC'(J’, Ey) is a solution of problem (1.1), then by the continuity
of f, g, (x,y) € PC'(J, E) N PC'(J, Ey).

A mapping F : J — E is differentiable at t € J if there exists a F’(t) € E such that the limits

. F@+h) —F@
lim ——=
h—0t h
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and
F@)— F(t—h)
h—0F h

exist and are equal to F'(¢). Here the limits are taken in E. At the endpoints of J, we consider the one-sided derivatives.

Let C(J, E) denote the Banach space of all continuous E-value functions on interval J with norm ||x||c =
max;cy ||x(¢)]|. Let a(-) denote the Kuratowski measure of noncompactness of the bounded set. For the details of
the definition and properties of the measure of noncompactness, see [38]. For any B C C(J,E) and t € J, set
B(t) = {x(t)|x € B} C E.If B is bounded in C(J, E), then B(¢) is bounded in E, and «(B(t)) < «(B).

Now, we first give the following lemmas in order to prove our main results.

Lemma 2.1 (/39]). Let B C C(J, E) be bounded and equicontinuous. «(B(t)) is continuous on J, and

o ({f x(t)dt|x € B}) < / a(B(t))dt.
J J

Lemma 2.2 ([40]). Let B = {x,} C PC(J, E) be a bounded and countable set. a(B(t)) is a Lebesque integral on J,

and
o ({/ xn(t)dt}> < 2/ a(B(t))dt.
J J

Lemma 2.3 (/27]). Forany p € PC! (J,B,veBand wr € B, k =1,2,...,m, the line initial value problem
W' (t)+ Mut) = pt), t#n,
Au'l:lk = Wk, (k=1727"'7m)a (2.1)
u(to) = v,

has a unique solution u € PC'(J, B) given by
t

u(t) =ve*M(’*’°)+/ e M(tfs)p(s)ds+ Z e MU=t 4y

fo o<ty <t

where M > 0 is a constant.
3. Main results

In this section, we are in a position to prove our main results concerning the solutions of the nonlinear mixed type
implicit impulsive integro-differential equation system (1.1) in Banach spaces.
If a function (v, w) € PCL(J, E}) x PCY(J, E,) satisfies

V() < f(t,x@), y(1), ASx(1), t# 1,
o' (1) < g(t, y(@), x(1), uTy(1)), t# 1,
Avlr=y < Le(x(t),  (k=1,2,....m), 3.1
Awli=y < L)), *k=1,2,...,m),
v(tp) < x0, (to) < Yo,
we call it a lower solution of problem (1.1); if all the inequalities of (3.1) are inverse, we call it an upper solution of
problem (1.1).

Lemma 3.1. (x, y) € PC'(J, E1) x PC'(J, E») is a solution of problem (1.1) if and only if x € PC'(J, E}) and
y € PCY(J, Ey) satisfy the following impulsive integral equations

t
x(1) = xpe M0 f e MU f(5,x(5), y(5), ASx () + Mix(9)lds + D e MWL (x(n)),
fo o<ty <t

t
Y () = yoe MU0 4 / e MU g (s, y(5), X(5), nTY($)) + May(®)lds + Y e W L (y(wy)),

Io to<ty <t
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where M; > 0(i = 1, 2) is a constant.
Proof. The proof directly follows from Lemma 2.1 in [26] and it is omitted. [

Now, let us first list the following assumptions for convenience:

(Hy) There exist ug, vo € PC[J, E1], vo, wo € PC'[J, E»] and constants M, M> > 0 such that for all r € J,
vo(t) < uo(1), wo(t) < vo (1), (vo, wp) € PC'(J, E1) x PC'(J, E2) and (ug, vo) € PC'(J, E1) x PC!(J, E2)
are lower and upper solutions of problem (1.1), respectively, and

St x2,y2,22) — f(t, x1,y1,21) = —M1(x2 — x1),
forallr € J and vo(¢) < x1 < x2 < up(t), wo(t) < y1 < y2 <o) and ASvy(t) < z1 < z2 < ASup(t), and

g(t, y2,x2,&) — g(t, y1, x1,61) = —Ma(y2 — y1)

forallz € J and vo(r) < x1 < x2 < up(?), wo(t) < y1 < y2 < vo(?) and uTwo(t) < & < & < puTv(?).

(Hp) Ix(x) and fk(y) are increasing on intervals [vg(?), uo(¢)] and [wo(?), vo(t)] for t € J, k = 1,2,...,m,
respectively, where [vo(2), ug(¥)] = {x € PCl[J, E{llvo(t) < x(t) < up(t),t € J} and [wo(t), vo(t)] =
{x € PC'[J, Exllwo(t) < x(t) < vo(t),t € J}.

(H3) There exists L; > 0(i = 1, 2) such that

a({f (@, x0(2), yu (@), 22 (1))} = Lila(xn (D)) +a({za(DD],
a({g(t, yn (@), x2(1), . (1))}) < Lafa({yn(D}) + a({&x (D]

for all + € J and increasing or decreasing monotonic sequences {x,} C [vo(?), ug(®)], {yn} C [wo(?), vo(t)],
{zn} C[ASvo(r), ASuo(1)] and {§,} C [T wo(1), wTvo(2)].

In what follows, we prove the following main result of this paper.

Theorem 3.1. Let E| and E; be two ordered Banach spaces, whose positive cone P; (i = 1,2) is normal,
f € CJ X E; Xx Ey x E\,E1), g € C(J X Ey x E1 X Er, Ep), and I, € C(E1, Ey), fk e C(Ey, Ey),
k=1,2,...,m. Suppose that the conditions (H1)—(H3) hold. Then problem (1.1) has minimal and maximal solutions
between (vo, wo) and (ug, vo), which can be obtained by a monotone iterative procedure starting from (vo, wg) and
(uo, vo), respectively.

Proof. For any (x, y) € PCl(J, Eq) x PCl(J, E»), define (Px, Qy) on J x J by the equation

t
(Px)(t) = xpe~Mit—10) +/ e MU= £(s, x(s), y(s), ASx(s)) + M1x(s)]ds

1
Y e MO L),
o<t <t . (32)
(Qy)(t) = yoe M2t / e M0 [g(s, y(5), x(s), uTy(5)) + May(s)]ds

1

N 0
+ > e MWL (y(1).

o<t <t

Now define | - ||l on PC(J, E1) x PC'(J, E) by
I, Wl = lxl + Iyl Y(x,y) € PC'(J, E1) x PC'(J, E).

It is easy to see that (PCY(J,E)) x PCY(J, Ey), Il - |lx) is a Banach space (see [41]). Thus, for any given
(x,y) € PCY(J, E1) x PC'(J, Ey), it follows from (3.2) that

{(PX)'(I) =—MiP(x(t)) + Mix(®) + f(t, x(1), y(t), ASx(1)),
(QY)' (1) = =M2Q(x(1)) + Moy (1) + g(t, y(t), x (1), uTy(1)),

and so F(x, y) := (Px, Qy) € PC'(J, E\) x PC'(J, E) is a continuous mapping from PC'(J, E{) x PC'(J, E3)
into PC'(J, E1) x PC'(J, E»). By Lemma 3.1, the solution of problem (1.1) is equivalent to the fixed point of F.
By assumptions (Hy) and (H»), F is increasing in [vg, ug] X [wg, Vo], and maps any bounded set in [vg, ©o] X [wo, Vo]
into a bounded set.
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Firstly, we show that vy < Pvg, Pug < ug, wg < Qwo and Qvg < vg. In fact, let p(z) = v(’)(t) + Mjvy(t), by the
definition of lower solution, p € PC'(J, Ey) and p(t) < f(t, vo(t), wo(t), ASvo(r)) + Myvo(z) for t € J'. Because
vo(?) is a solution of problem (2.1) for v = vy (#p) and wx = Avgli=, (kK = 1,2, ..., m), it follows from Lemma 2.3
that for all t € J,

t

vo(t) = e*Ml(FIO)vo(to)—i-/ e M=% b (5)ds + Z efMl(“t")Avoh:tk

Io <t <t
t
ge—M'("’O)vo+/ e M p(s)ds + Y e METAL (1))
1y o<t <t

< Puy(1),

i.e., v9 < Puvgp. Similarly, it can be shown that Puy < ug, wp < Qwp and Qvy < vy. Combining these facts and
the increasing property of F in [vg, ug] x [wo, vol, we see that F maps [vo, ug] X [wp, vo] into itself and F is a
continuously increasing operator.

Next, we define two sequences {(vy,, ,)} and {(u,, v,)} in [vo, ugl X [wo, Vo] by the iterative scheme

vy = Poy—1, up = Puy_1, wp = Qwy—1, Vp=Qvy—1, h=12,.... (3.3)
Then by the monotonicity of F, we obtain

Vo=V =SV S-Sy o0 S Uy S U,

= = (3.4)

W) =W = =Wy XSV S0 SV S V.

We shall prove that {v,} and {u,} are uniformly convergent in J, and {w,} and {v,} are uniformly convergent in J.

For convenience, let B = {v,jn € N}, V = {w,|n € N} and By = {v,—1ln € N}, Vo = {w,—1|ln € N}.
Since B = P(Bg), V = Q(W), by (3.2) and the boundedness of By and Vj, we easily see that B and V
are equicontinuous in every interval J;, where J{ = [fo,t1] and J; = (&_1.%]. k = 2,3,...,m. From
By = B U {v} and Vy = V U {wp}, it follows that a(By(¢)) = a(B(t)) and a(Vp(t)) = a(V(t)) fort € J.
Letting

¢ (1) = ((B(1)), a(V (1)) = (@(Bo(1)), a(Vo(1))), 1€,

by Lemma 2.1, we know that ¢ € PC(J, R*) x PC(J,RY). Going from Jl/ to J:;1+1 interval-by-interval, we show
that ¢(t) =0in J.
Indeed, for t € J, there exists a J; such that 7 € J;. By Lemma 2.1, we have that

t
a(S(By)(?)) = « ({/ h(t, s)v,—1(s)ds|n € N})
fo

—1 ;
o ({/Z h(t, s)v,—1(s)ds|n € N}) + <{ft h(t, s)v,—1(s)ds|n € N})
tj—1 tk—1

-

M

I
~ =

J

[ t
<ty [ atBosnds +ho [ atBotsnds
rj—1

j= k-1
t

= ho/ a(Bo(s))ds
0]

and

t
a(T(Vo)(t)) =« ({/ Kk(t, s)w,—1(s)ds|n € N})
i

0
k—1 1 t

< Zoc ({/ Kk(t, s)w,—1(s)ds|n € N}) + ({/ Kk(t,s)wy—1(s)ds|n € N})
i=1 tji—1 Tk—1

J =
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k=1 pr; t
<a) [ athends o [ oo
j=174

11 Tk—1

t
= Ko/ a(Vo(s))ds,

]

where ho = max{|h(t, s)| : (t,s) € D} and k9 = max{|k (¢, s)| : (t,s) € Dg}. Thus,

Tp

t t

t t
/ a(S(Bo)(s))ds = aho/ a(Bo(s))ds, / a (T (Vo)(s))ds < aKo/ a(Vo(s))ds.

to to fo

Fort e Jl’, from (3.2), using Lemma 2.2, assumption (H3) and (3.5), we have

a(B(1) =

IA

IA

IA

IA

a(V(r) =

IA

IA

IA

IA

and so

a(P(Bo)(1))
t
o ({ f e MU= (£ (s, vy-1(5), Wp—1(5), ASvu_1(5)) + M) vn_l(s»ds})

fo

t
2 f e MU ({(f (5, vn1(5), @n—1(5), ASVL—_1(5)) + Myv,_1(5))}) ds

fo

t
2/ (L1(a(Bo(s)) + 2 (S(Bo)(s))) + Mia(Bo(s)))ds
fo

t t
2(Ly +M1)/ a(Bo(s))ds +2L1/\f o (S(Bo)(s))ds
fo

fo

'
2(L1 + M, —i—a/’lole)/ o (By(s))ds,
fo

a(Q(Vo)(1))
t
o ({ / e M2 (f (s, wp—1(5), Vn—1(5), T wp—1(5)) + Mzwn_1<s))ds}>

fo

t
2 / Mgy ((F(5, o1 (5)s Vno1 (), LT n—1(5)) + Macon_1(s))}) s

Ip
t
2/ (L2(a(Vo(s)) + na(T (Vo) (s))) + Maa(Vo(s)))ds
fo
t t
2(Ly + Mz)/ a(Vo(s))ds + 2L2M/ a(T (Vo)(s))ds
140 fo

t
2(Ly + My +axoLop) / a(Vo(s))ds,
fo

@) = (a(B(1)), a(V(1)))

t t
< <2(L1 + M + ahole)/ a(Bo(s))ds, 2(Ly + My + Lll(()Lz,bL)/ oz(Vo(s))ds)
to fo

t
_r / (@(Bo(s)), (Vo (s)))ds
0]

t
= F/ ¢ (s)ds,
fo

537

(3.5)

where I' = max{2(L; + My + ahoL1A),2(Ly + M> + axoLop)}. Hence, by the Bellman inequality, we know
that ¢(¢) = 0 in Jl’. In particular, (x(B(t1)), ¢ (V(#1))) = (a(Bo(t1)), «(Vo(t1))) = ¢ (1) = 0, this means that
B(t1), Bo(t1) and V (t1), Vo(t1) are precompact in E| and E», respectively. Therefore, 11 (By(¢1)) and fl(Vo(tl)) are
precompact in E and Ej3, respectively. This implies that

a(li(Bo(t1))) =0 and a(l;(Vo(t1))) = 0.
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Now, for t € J;, by (3.2) and the above argument for J{, we have
d(1) = (a(B(@)), a(V(2)))

t
(Z(Ll + M + ahoLv\)/ a(Bo(s))ds + a(l1(vy—1(t1))),
]

IA

t A
2(Ly + My + akoLap) / a(Vo(s))ds + a(l) (wn—l(ll)))>
fo
t
= Ff (e (Bo(s)), a(Vo(s)))ds
fo

t
=F/ ¢ (s)ds.
fo

Again by the Bellman inequality, we know that ¢ (#) = 0 in J,,, from which we obtain that o (By(72)) = a(Vy(t2)) =0
and a(l2(By(12))) = a(l2(Vo(12))) = 0.

Continuing such a process interval-by-interval up to J;,
1,2,...,m+1.

For any Ji, if for all n € N, we modify the value of v, and w, att = ;1 via v, (fx—1) = v, (t,;tl) and w, (tx—1) =
o (l,j,]), respectively, then {v,} C C(Jk, E1), {w,} C C(Jk, E2) and they are equicontinuous. Since « ({v,(#)}) =0
and o ({w,(1)}) = 0, {v,(¢)} and {w,(¢)} are precompact in E; and E, for every ¢t € Ji, respectively. By the
Arzela—Ascoli theorem, we know that {v,} and {w,(¢)} are precompact in C(Ji, E1) and C(Ji, E7), respectively.
Hence, {v,} and {w,} have convergent subsequences in C(Ji, E1) and C (Jg, E»), respectively. Combining this with
the monotonicity (3.4), we easily prove that {v,} itself is convergent in C(J, E1) and {w,} itself is convergent in
C(Ji, E2). In particular, {v,(r)} and {w,(¢)} are uniformly convergent in J;. Consequently, {v,(#)} and {w, (f)} are
uniformly convergent over the whole of J.

Using an argument similar to that for {v, (¢)} and {w, (¢)}, we can prove that {u, (¢)} and {v, (¢)} are also uniformly
convergent in J. Hence, {v,(#)} and {u,(¢)} are convergent in PC'(J, E}), and {w,(¢)} and {v, ()} are convergent in
PCY(J, Ey). Set

41> We can prove that ¢(t) = 0 in every Ji k=

x = lim vy, X = lim u, inPC'(J, Ey), (3.6)
n—o00 n—oo

y= lim w,, y= lim v, inPC'(J, Ey). (3.7)

- n—0o0o n—0oo

Letting n — oo in (3.3) and (3.4), we see that vg < x <X < up, wp < Y=Yy = and

x = Px, y=0Qy and X =Px, y = 0y,

ie.,
@y =Fay., & =F&7). (3.8)

By the monotonicity of F, it is easy to see that (x, y) and (X, y) are the minimal and maximal fixed points of F
in [vg, ug] X [wp, vo]. That is, they are the minimal and maximal solutions of problem (1.1) between (vg, wo) and
(uo, vo), respectively. This completes the proof. [

Remark 3.1. The conditions for an impulsive argument are dropped in Theorem 3.1, i.e., we do not need the following
restrictions:
a(le() < Mea(xe),  a(le(i) < Nea (), k=1,2,....m.

Further, the results do not rely on the Hausdorff measure of noncompactness, but use the Kuratowski measure of
noncompactness. Therefore, Theorem 3.1 greatly improves the corresponding results in [39].

In Theorem 3.1, if E; and E, are weakly sequentially complete, the condition (H3) holds automatically. In
fact, by Theorem 2.2 of [42], any monotonic and order-bounded sequence is precompact. Let {x,} and {z,}, {y.}
and {&,} be two increasing or decreasing sequences obeying condition (H3), respectively, then by condition (Hj),
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{f@, xn, yn, 2n) + M1x,} and {g (¢, x5, Yu, &) + M2y, } are monotonic and order-bounded sequences. By the property
of measure of noncompactness, we have

a ({f (&t Xn, Yu, zn) + Mixn}) < o {f(t, Xn, Yn» 20) + M1xp}) + Mia ({x,}) = 0.
a ({g(t, xu, yn, &n) + Moya}) < a ({g(t, xu, Yn, &) + Moyn}) + Maa ({ys}) = 0.

Hence, condition (H3) holds. From Theorem 3.1, we obtain the following result.

Corollary 3.1. Let E| and E, be ordered and weakly sequentially complete Banach spaces, whose positive cone P)
and Py are normal, respectively, f € C(J X E1 X Ey X E1, E1), g € C(J X Ea x E1 X E, Ep) and Iy € C(E1, Ey),
fk € C(Ey, E2), k = 1,2,...,m. If conditions (Hy) and (H») are satisfied, then problem (1.1) has minimal and
maximal solutions between (v, wo) and (ug, vo), which can be obtained by a monotone iterative procedure starting
from (vg, wg) and (ug, vo), respectively.

Moreover, we shall discuss the uniqueness of the solution to problem (1.1) in [vg, ug] X [wo, vo]. If we replace
assumption (H3) by the following assumption:
(H4) There exist positive constants C; (i = 1, 2, 3, 4) such that

f@, x2,¥2,22) — f(t, x1,¥1,21) < C1(x2 — x1) + Ca(z2 — 21),
g(t,y2,x2,8) — g(t, y1,x1,61) < C3(y2 — y1) + Ca(62 — &1)

forall 1 € J,vo(t) < x1 < x2 < up(®), wo(®) < y1 < y2 < w0, ASvo(t) < z1 < 22 = ASup(®),
uTwo(t) <& <& < uTvy(t), then we have the following unique existence result.

Theorem 3.2. Let E; be an ordered Banach space, whose positive cone P; is normal fori = 1,2, f € C(J x
E1 x Ey x E1,E1), g € C(J x Ep x E1 x E>, Ep) and Iy € C(E1, Ey), ik € C(Er,Er), k = 1,2,...,m.
If conditions (Hy), (Ha) and (Ha) hold, then problem (1.1) has a unique solution between (vy, wg) and (ug, vo), which
can be obtained by a monotone iterative procedure starting from (vg, wo) or (ug, vo).

Proof. We first prove that (H;) and (Hs) imply (H3). In fact, for t € J, let {x,} C [vo, uol, {yva} C [wo, vol,
{zn} C [ASvo(t), ASup(?)] and {&,} C [uT wo(t), uTvo(t)] be increasing sequences. For m,n € N with m > n, by
(Hy) and (Ha),

0 < (f(t, Xms Ym» 2m) — f& Xny Yns 20)) + M1 (X — X)
< (C1+ M) Gm — x0) + Co(zim — za),

0 < (& Ym, X, Em) — &, Yu, Xn, &) + M2V — Yn)
< (C3+ M) (Ym — yn) + Cal&m — &n).

By these and the normality of cone P; (i = 1,2), we have

||f(t’xm’ Ym Zm) - f(t’-xnv Yn, Zn)”
S NIICr+ M) (i — x0) + C2(Zim — 20| + Myllxp — x4l
< My + MiN1 + NiC)lxm — xnll + N1Callzm — zall

and
g, yms XmsEm) — &, Yns Xn, En)ll

< NolI(C3 + M2) (Y — yn) + Ca&m — ED N + Mallym — yull
< (Mz + MaNy + NoC3) [y — Yull + NaCallém — &nll.

From these inequalities and the definition of the measure of noncompactness, it follows that

(o4 ({f(t’ Xns Yn» )} < (M1 4+ MiN1 4+ NiCpa ({x,}) + N1Crax ({z4})

Li(a ({xp}) + @ ({zn})),

o ({g(t, yn, xn, E)}) < (Mz + MaNy + N2C3)a ({yn}) + N2Caax ({£,})
< Ly(a ({)’n}) + o ({&:))),

IA
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where L3 = max{M| + M;N| + N1Cy, N1C,} and Ly = max{M, + MyN, + N,C3, NyC4}. If {x,}, {v}, {2z} and
{&,} are two decreasing sequences, the above inequalities are also valid. Hence (H3) holds.

Therefore, by Theorem 3.1, problem (1.1) has minimal solution (x, y) and maximal solution (X, ¥) in [vg, ug] x
[wo, vo]. By the proof of Theorem 3.1, (3.3), (3.4), (3.6) and (3.7) are valid. Going from Jl’ to J,; 41 interval-by-
interval, we show that (x, X) = (¥, y) in every J,é, k=1,2,...,m+ 1.

Indeed, fort € Jl’, by (3.6), (3.7) and (3.2) and assumption (H4), we have

0 <x(t) —x(t) = Px(1) — Px(t)

1
= / MU (f (s, % (), F(5), AST(5)) — [ (s, £(5), y(5), ASx(5)) + M1 (X(s) — x(s)))ds
1

0

t
< f M=) (M) + C1)(F(s) — x(5)) + AC2(SX(s) — Sx(s)))ds

fo

t
< / (M1 + C)(x(s) — x(5)) + AC2(SX(s) — Sx(s)))ds
0]
t t ps
= (M +C1)/ (x(s) —L(S))dS+kC2ho/ / (X(1) — x(1))drds
to o J1o

t
=M +C+ axczho)f (x(s) — x(s))ds (3.9)
fo

and

6 < (1) — y()
t
< (My+ Cz + aAC4K0)/ (¥(s) — y(s))ds. (3.10)
fp
It follows from (3.9) and (3.10) and the normality of cone P; (i = 1, 2) that

t
IX(@) —x@OI < Ni(M1 +C1 + ax\Czho)/ X(s) — x(s)lds,
fo

t
I5(t) = y(@)|l < No(M3 + C3 + arCaxo) / I3(s) = y(s)lds.
1o

By the Bellman inequality, these imply that (x(7), y(#)) = (x(¢), y(7)) in Ji.
Fort € J2’, since I1(x(#1)) = I1(x(t1)) and fl () = fl (Z(tl))’ using (3.2) and completely the same argument
as above for ¢ € Jl’ , we can prove that

t

IF() — x(0)] < Ni (M + €1 + arCaho) f IT(s) — x(s)1ds
fo
t

— N\(M + C1 +arCaho) f I(s) — x(s) s,
n
t

176 — y(Oll < Na(Ma + C3 + ahCako) / I7s) — y(s)llds
0]

t
=N (M2 +C3 + a/\C4Ko)f y(s) — y(s)lids.
n

Again, by the Bellman inequality, we obtain that (x(7), y(r)) = (x(7), y(#)) in J3.

Continuing such a process interval-by-interval up to J,; 41> We see that (x(7), y(#)) = (X(1), ¥(7)) over the whole
of J. Hence, (x*, y*) = (x(¢), y(t)) = (x(¢), y(¢)) is the unique solution of problem (1.1) in [vg, ug] X [wo, vol,
which can be obtained by the monotone iterative procedure (3.3) starting from (vg, wg) or (wp, Vo). This completes
the proof. O
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Remark 3.2. Using the same approach as in Theorems 3.1 and 3.2, we can consider initial value problems (1.2) and
(1.3) and obtain analogous conclusions, respectively.

Remark 3.3. Using the above argument method interval-by-interval from J{ to J/, 41> We can also improve the main
results in [29] and [34], and delete some restrictive conditions there.

4. An example

Example 1. Consider the following system of nonlinear mixed type implicit impulsive integro-differential equations
in Banach spaces E1 and E»: Find (x, y) : J x J — E| x Ej such that

Lfe® 4 3 "6 !

xr/z(t)=%{§[xn+l+(t—h) ]+)\/‘0 € (H_S)xn(s)ds}a VOSZ‘SI,I‘#E,

/ 1 4 3 H ! ts ’ 1
() = 9—n[yn+1 + ¢ —x)7 1+ | )y e yppa(s)ds |, VO<t<1,1t# 5

) 1 4.1
Axn|t:l/2 = _gxn 5 ,
1

Aypli=172 = 4yn 7))

X0)=y,0=0 n=1,2,...,).

Evidently, (x,(#), y,(#)) = (0,0) (n = 1, 2, ...) is a trivial solution of problem (4.1).

Theorem 4.1. Problem (4.1) admits minimal and maximal solutions (v(t), w(t)) and (u(t),v(t)) which are
continuously differentiable on J x J and satisfy

t 1
-, VO<t<-—
O<v.un <" | 2 (n=1,2,..)),

—— —, V=-<t<1,
n  5Sn 2

t 1
-, VO<t <=
-+ —, V=<t=<1,
n 8n 2

where J = [0, %] U (%, 1].

Proof. Letty = 0,a =1, Ey = E» = Cyp = {x = (x1,x2,...,Xp,...) : X, — 0} with norm |x|| = sup,, |x,|
and Py = P, = {x = (x1,Xx2,...,%Xp,...) € Cg : x, > 0,n = 1,2,...}. Then P; and P, are normal cones in
E1 and Ej, respectively, and problem (4.1) can be regarded to be of the form (1.1) in E7 x E». In this situation,
xo = yo = (0,0,...,0,...) = 60, J = [0,1], h(t,s) = e O w(t,s) = e, x = (X1, X2, ..., Xns...),
Yy=01,Y2 s V-0, 2=(21,22, > 2Zn>--) f = (1, faseovs fn,...)and g = (g1, &2, ..., &n, - ..) in Which

e 3, 4
fﬂ(t7x7ysz)=%{ 3}’1 [(t_)’n) +xn+]]+)\2n},

1 2
gt 3.y, 2) = 51 —x) + 3]+ 5

m:l,tlz%and

2
Il(x):—gx, Vx € E1 = Cp,

Ii(y) =4y, Vye E»=Co.
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Obviously, f € C[J x Ey x E» x E1, E1], g € C[J x Es x E{ x E», E2], I € C[Ey, E1] and I} € C[E, E]. Let
v () = wo(t) = (0,0,...,0,...), Yo<t<1

t t 1
A VO<t<—
2 n 2
uo(t) = 1 1 ro1 1
t—=t——, ..., —— —, ..., V—<l§1,
5 10 n 5Sn 2
¢ |
oz =), VO<t<-
2 n 2
vo(t) = 1 | o1 1
t -, 1 — ., — —, ... ], V- [Sl
(+8 LT ) 2~

It is not difficult to verify that conditions (H;)—(H3) hold. Hence, our conclusion follows from Theorem 3.1. [
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