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a b s t r a c t

This paper addresses blind source separation (BSS) problem when source signals have
the temporal structure with nonlinear autocorrelation. Using the temporal characteristics
of sources, we develop an objective function based on the nonlinear autocorrelation of
sources. Maximizing the objective function, we propose a fixed-point source separation
algorithm. Furthermore, we give some mathematical properties of the algorithm.
Computer simulations for sources with square temporal autocorrelation and the real-world
applications in the analysis of the magnetoencephalographic recordings (MEG) illustrate
the efficiency of the proposed approach. Thus, the presented BSS algorithm, which is based
on the nonlinear measure of temporal autocorrelation, provides a novel statistical property
to perform BSS.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, blind source separation (BSS) [6,11], as an increasingly popular data analysis technique, has received wide
attention in various fields such as biomedical signal processing and analysis, speech and image processing, wireless
telecommunication systems, data mining, etc. The main task of BSS is to recover original sources from their mixtures using
some statistical properties of original sources.

The blind source separation problem has been studied by researchers in applied mathematics, neural networks
and statistical signal processing. Several methods for BSS using the statistical properties of original sources have
been proposed, such as non-Gaussianity (or equivalently, independent component analysis, ICA) [1,3,5–8,11–13,24,
34], linear predictability or smoothness [2,6], linear autocorrelation [4,19,31], coding complexity [9,26,27,29], temporal
predictability [23], nonstationarity [10,18,21], sparsity [14,15,25,35], energy predictability [28], nonlinear innovation [30]
and nonnegativity [20,22], etc.

In this paper, we present a way using nonlinear autocorrelation of source signals for BSS. We propose a fixed-point algo-
rithm for BSS based on nonlinear autocorrelation and analyze its stability conditions. We show that the BSS problem can be
solved by maximizing nonlinear temporal autocorrelation of the sources. When sources have square temporal autocorrela-
tion, we demonstrate that the efficient implementation of the method. Also, the proposed algorithm can extract the most in-
teresting and meaningful sources in brain magnetoencephalography (MEG) data analysis. Thus, the presented BSS algorithm,
which is based on the nonlinear measure of temporal autocorrelation, provides a new statistical property to perform BSS.

The structure of the paper is as follows. The objective function based on the nonlinear autocorrelation of the desired
source signals, and a fixed-point algorithm for optimizing the objective function are proposed in Section 2. Furthermore, we
analyze the stability conditions of the fixed-point algorithm in Section 3. In Section 4, experiments on different datasets are
presented. Some conclusions are drawn in Section 5.
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2. Proposed algorithm

2.1. Objective function

We observe sensor signals x(t) = (x1(t), . . . , xn(t))T described in the matrix notation:

x(t) = As(t), (1)

where A is an n× n unknown mixing matrix, s(t) = (s1(t), . . . , sn(t))T is a vector of unknown zero-mean and unit-variance
primary sources.

The basic problem of BSS is then to estimate both the mixing matrix A and the source signals si(t) using only observations
of the mixtures xi(t)(i = 1, . . . , n), i.e., to find an n× n separating matrix W = (w1, . . . ,wN)

T such that the unmixed signals
y(t) = (y1(t), . . . , yN(t))T,

y(t) =Wx(t) (2)

are the estimated source signals. The sources are recovered up to scaling and permutation.
A useful preprocessing strategy in BSS is to first whiten the observed variables [11]. This means that we transform the

observed vector x linearly so that we obtain a new vector x̃ which is white, i.e., its components are uncorrelated and their
variances equal unity. In other words, x is linearly transformed into a vector

x̃(t) = Vx(t) = VAs(t) (3)

whose covariance matrix equals the identity matrix: E{x̃(t)x̃(t)T
} = I, where V is a whitening matrix.

If we want to estimate a desired source signal, for this purpose we design a single processing unit described as

ỹi(t) = wT
i x̃(t), (4)

ỹi(t − τk) = wT
i x̃(t − τk), (5)

where wi = (wi1, . . . ,win)
T is the weight vector which corresponds to the estimate of one row of (VA)−1, and ỹi(t) is the

output signal which corresponds to the estimate of the source signal si(t), and τk is a certain time delay.
We present the following constrained maximization problem based on several time delay nonlinear autocorrelation

function of the desired source:

max
‖wi‖=1

Ψ1(wi) =
M∑

k=1
E{G(ỹi(t))G(ỹi(t − τk))}

=

M∑
k=1

E{G(wT
i x̃(t))G(wT

i x̃(t − τk))}. (6)

G is a differentiable nonlinear function, which measures the nonlinear autocorrelation degree of the desired source. Examples
of choices are G(u) = u2 or G(u) = log cosh(u).

Sometimes, we could use only one time lagged nonlinear autocorrelation to obtain the desired source signal:

max
‖wi‖=1

Ψ2(wi) = E{G(ỹi(t))G(ỹi(t − τk))}

= E{G(wT
i x̃(t))G(wT

i x̃(t − τk))}. (7)

Thus, the constrained maximization problem (7) is a special case of the problem (6) when only one time delay can be used.
In Section 3, we give some theoretical properties about the maximization problems (6) and (7).

2.2. Learning algorithms

Maximizing the objective function in (6), we derive a fixed-point blind source separation (BSS) algorithm. The gradient
of Ψ1(wi) with respect to wi can be obtained as

∂Ψ1(wi)

∂wi
=

M∑
k=1

E{g(ỹi(t))G(ỹi(t − τk))x̃(t)+ G(ỹi(t))g(ỹi(t − τk))x̃(t − τk)}. (8)

The function g is the derivative of G. According to the Kuhn–Tucker conditions [17], we note that at a stable point of the
optimization problem (6), the gradient of Ψ1(wi) at wi must point in the direction of wi, thus we can optimize the objective
function in (6) by a fixed-point algorithm [11]. This means that we have

wi ←

M∑
k=1

E{g(ỹi(t))G(ỹi(t − τk))x̃(t)+ G(ỹi(t))g(ỹi(t − τk))x̃(t − τk)},

wi ← wi/‖wi‖. (9)
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If only one time delay can be used, i.e. maximizing the objective function in (7), we have
wi ← E{g(ỹi(t))G(ỹi(t − τk))x̃(t)+ G(ỹi(t))g(ỹi(t − τk))x̃(t − τk)},
wi ← wi/‖wi‖. (10)

To estimate several source signals, one can simply use a deflation scheme (Gram-Schmidt orthogonalization scheme) or
the symmetric orthogonalization [11].

Thus, the fixed-point BSS algorithm (FixNA- BSS using the Fixed-point algorithm for maximizing the Nonlinear
Autocorrelation) is obtained as follows:

Algorithm outline: FixNA (estimating one source)
(1) Center the data to make its mean zero and whiten the data to give x̃(t). Choose random initial values for wi, τk, and M.
(2) Update the weight vector by

wi ←

M∑
k=1

E{g(ỹi(t))G(ỹi(t − τk))x̃(t)+ G(ỹi(t))g(ỹi(t − τk))x̃(t − τk)},

wi ← wi/‖wi‖. (11)
(3) If not converged, go back to step (2).

Note that convergence of the fixed-point algorithm means that the old and new values of wi point in the same direction, as
the well-know fixed-point ICA algorithms [8,11].

To estimate the separating matrix W = (w1, . . . ,wn)
T or estimate all the source signals, one can simply use a deflation

scheme (one-by-one estimation) or the symmetric orthogonalization [11].

3. Theoretical properties of the FixNA

We analyze the stability conditions about the FixNA in this section.1

Theorem 1. Assume that the input data follows the model (1) with whitened data x̃ = VAs where V is the whitening matrix, and
Ψ1(w) is a sufficiently smooth even function. Furthermore, assume that {si, si,τk } and {sj, sj,τk } (∀j 6= i) are mutually independent.
Then the local maxima of Ψ1(w) under the constraint ‖w‖ = 1 include one row of the inverse of the mixing matrix VA such that
the corresponding desired source signal si satisfy

M∑
k=1

E{g′(si)G(si,τk)+ g′(si,τk)G(si)+ 2sjsj,τkg(si)g(si,τk)

− sig(si)G(si,τk)− siτg(si,τk)G(si)} < 0, (∀j 6= i), (12)

where g is the derivative of G, and g′ is the derivative of g.

Proof. Assume that {si, si,τk } and {sj, sj,τk } (∀j 6= i) are mutually independent, and the vector x̃ is white, we have:

E{x̃x̃T
} = VAE{ssT

}ATVT
= (VA)(VA)T

= I, (13)

which means the matrix VA is orthogonal. Make the change of coordinates p = (p1, . . . , pn)
T
= ATVTw and note that

wTx̃ = wTVAs, we have:

Ψ1(p) =
M∑

k=1
E{G(pTs)G(pTsτk)}. (14)

It is enough to analyze the stability of the pointp = e1, where e1 = (1, 0, 0, . . .)T (because Ψ1(w) is even, nothing changes
for (−1, 0, 0, . . .)T). Evaluating the gradient and the Hessian at point p = e1 and using the independency assumptions, and
making a small perturbation ε = (ε1, ε2, . . .)

T, we obtain:

Ψ1(e1 + ε) = Ψ1(e1)+ ε
T ∂Ψ1(e1)

∂p
+

1
2
εT ∂

2Ψ1(e1)

∂p2 ε+ o(‖ε‖2)

= Ψ1(e1)+
M∑

k=1
E{s1g(s1)G(s1,τk)+ s1τg(s1,τk)G(s1)}ε1

+

M∑
k=1

1
2
[E{s2

1g
′(s1)G(s1,τk)+ s2

1,τk
g′(s1,τk)G(s1)+ 2s1s1,τkg(s1)g(s1,τk)}]ε

2
1

+
1
2

M∑
k=1

∑
j>1
[E{g′(s1)G(s1,τk)+ g′(s1,τk)G(s1)+ 2sjsj,τkg(s1)g(s1,τk)}ε

2
j ] + o(‖ε‖2). (15)

1 We will drop the sampling index t for simplicity, i.e., yτk = y(t − τk), si,τk = si(t − τk), and w = wi .
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Due to the constraint ‖w‖ = 1 and the matrix VA is orthogonal, we have ‖p‖ = ‖ATVTw‖ = 1. Thus, we get ε1 =√
1− ε2

2 − ε
2
3 − · · · − 1. Due to the fact that

√
1− α = 1− α

2 + o(α), the term of order ε2
1 is o(‖ε‖2), i.e., of higher order, and

can be neglected [11]. Using the first-order approximation for ε1, we obtain ε1 = −
∑

j>1
ε2
j

2 + o(‖ε‖2) [11], which finally
gives

Ψ1(e1 + ε) = Ψ1(e1)+
1
2

M∑
k=1

∑
j>1

E{g′(s1)G(s1,τk)+ g′(s1,τk)G(s1)

+ 2sjsj,τkg(s1)g(s1,τk)− s1g(s1)G(s1,τk)− s1,τkg(s1,τk)G(s1)}ε
2
j + o(‖ε‖2) (16)

which clearly proves p = e1 is an extremum, and of the type implied by the condition of the theorem. �

If we choose only one time delay, we can similarly prove the following corollary.

Corollary 1. Assume that the input data follows the model (1) with whitened data x̃ = VAs where V is the whitening matrix, and
Ψ2(w) is a sufficiently smooth even function. Furthermore, assume that {si, si,τk } and {sj, sj,τk } (∀j 6= i) are mutually independent.
Then the local maxima of Ψ2(w) under the constraint ‖w‖ = 1 include one row of the inverse of the mixing matrix VA such that
the corresponding desired source signal si satisfy

E{g′(si)G(si,τk)+ g′(si,τk)G(si)+ 2sjsj,τkg(si)g(si,τk)− sig(si)G(si,τk)− siτg(si,τk)G(si)} < 0, (∀j 6= i), (17)

where g is the derivative of G, and g′ is the derivative of g.

Remark 1. Assume that the following conditions are satisfied (∀j 6= i): (a) {si, si,τk } and {sj, sj,τk } are mutually independent;
(b) E{sjsj,τk } = 0, from (12), we have the further stability condition:

M∑
k=1

E{g′(si)G(si,τk)+ g′(si,τk)G(si)− sig(si)G(si,τk)− si,τkg(si,τk)G(si)} < 0, (∀j 6= i). (18)

Particularly, assume that the square function G(u) = u2 is chosen, we have the stability condition
∑M

k=1 cov(s2
i , s

2
i,τk

) > 0.

Remark 2. Assume that the signal has no time dependencies and G(si,τk) = 1, from the stability condition (17), we obtain:

E{g′(si)− sig(si)} < 0. (19)

This is in fact the well-known stability condition of independent component analysis (ICA) [11].

4. Experimental results

4.1. Experimental results about source signals with square temporal autocorrelations

We demonstrate that when we choose G(u) = u2 and G(u) = log(cosh(u)), the two FixNA algorithms2 can separate the
source signals with square temporal autocorrelations.

We create five artificial signals which have square temporal autocorrelations as follows (with Gaussian marginal
distributions, zero linear autocorrelations)3 [10]: first, we create five signals using a first-order autoregressive model with
constant variances of the innovations, with 5000 time points. The signals are created with Gaussian innovations and have
identical autoregressive coefficients (0.8). All these innovations have constant unit variance. Then, the signs of the signals are
completely randomized by multiplying each signal by a binary i.i.d. signal that takes the values±1 with equal probabilities.
The five source signals are shown in Fig. 1. The source signals are mixed with 5× 5 random matrices. The FixNA algorithms
with the nonlinear functions (G(u) = u2 andG(u) = log(cosh(u))) with the symmetric orthogonalization are used to estimate
the separating matrix. For comparison, we also run the cumulant-based fixed-point approach using the nonstationarity of
variance (FPNSV) (τk = 1) [10]. In order to measure the accuracy of separation, we calculate the performance index [1,16,
28,30]

PI =
1
n2

{
n∑

i=1
rPIi +

n∑
j=1

cPIj

}

=
1
n2

 n∑
i=1

 n∑
j=1

|pij|

max
k
|pik|
− 1

+ n∑
j=1

 n∑
i=1

|pij|

max
k
|pkj|
− 1

 , (20)

2 We choose the initial values τk = 1 and M = 1 for the two FixNA algorithms, which are to be suitable for the all experiments.
3 Thus, source signals of this kind could not be separated by ordinary source separation methods based on non-Gaussianity, such as FastICA [11], linear

correlation method such as AMUSE [31] and SOBI [4].
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Fig. 1. Five sources with square temporal autocorrelation.

where rPIi =
∑n

j=1
|pij|

maxk |pik|
−1 and cPIj =

∑n
i=1

|pij|

maxk |pkj|
−1 in which pij is the ijth element of n×n matrix P =WVA. The term

rPIi gives the error of the separation of the output component yi with respect to the sources and cPIj measures the degree
of the source cj appearing multiple times at the output. The larger the value PI is, the poorer the statistical performance of
a BSS algorithm [1,16,28,30].

Fig. 2 shows the average performance indexes over 100 independent trials against iteration numbers by the three
algorithms. The FixNA algorithm using G(u) = u2 performs similarly to the FPNSV algorithm in the sense of the separation
accuracy. The FastNA algorithm using G(u) = log(cosh(u)) has a slightly better performance than the other two algorithms.

To investigate the robustness of algorithms, we randomly add 30 outliers whose values are 10 in each source signal.
Fig. 3 shows the average performance indexes over 100 independent trials against iteration numbers. Obviously, the FixNA
algorithm using G(u) = log(cosh(u)) outperforms the two other algorithms when the outliers are introduced. In fact, the
FPNSV algorithm and the FixNA algorithm using G(u) = u2 are both sensitive to the outliers and degrade in performance.
Thus, the FixNA algorithm with the nonlinear G(u) = log(cosh(u)) could have better convergence in practice.

4.2. Applications in magnetoencephalography (MEG) data analysis

Magnetoencephalography (MEG) is a passive functional brain imaging technique which, under ideal conditions, can
monitor the activation of a neuronal population with a spatial resolution of a few mm and with millisecond temporal
resolution. When performing MEG measurements, physicians often have to deal with considerable amounts of artifacts
that may render impossible the extraction of valuable information therein. The presence of artifacts, such as eye and muscle
activity, the activity of heart and environment electric, digital watch and magnetic disturbances, may render impossible
the extraction of useful information from MEG data. If the magnitude of artifacts is larger than that of brain signals, it may
become hard to distinguish and interpret the actual and valuable brain activity [32,33]. It is challenging to identify and
remove the artifacts from the signals and analyze/explain the brain signals themselves.

Independent component analysis (ICA) has been shown effective to extract and eliminate the artifacts [32,33]. Unlike
ICA which assumes that the source signals are non-Gaussian, we use the nonlinear autocorrelation to capture the statistical
character of sources. Several artifact structures are evident, such as eye and muscle activity. Thus, the nonlinear temporal
autocorrelation is also likely a strong feature of MEG data sets.

The MEG data set studied in this section consists of preprocessed signals originating from 122-channel whole-scalp MEG
measurements from the brain [32,33]. The original signals are band-pass filtered between 0.5 and 45 Hz, and the data
dimension is reduced from 122 to 20 using the principal component analysis (PCA) whitening approach to reduce noise
and over-learning. The record lasts 2 min and includes 17730 samples and the 20 whitened signals are illustrated in Fig. 4.



Z. Shi et al. / Journal of Computational and Applied Mathematics 223 (2009) 908–915 913

Fig. 2. Average performance indexes over 100 independent runs for 5 sources with square temporal autocorrelation.

Fig. 3. Average performance indexes over 100 independent runs for 5 sources with square temporal autocorrelation when the outliers are introduced.

Fig. 5 shows the extracted 20 nonlinear autocorrelation source signals with the proposed FixNA approach (using G(u) =
log(cosh(u))). It is known that some of extracted source signals have clear physical or physiological interpretation [32,33],
i.e. the extracted source signals 5 and 16 correspond to eye movements, 7 and 8 are related to the muscular activities, the
signal 2 corresponds to the heart beating, and 17 shows clearly the artifact originated from the digital watch.

5. Conclusions

We have proposed the FixNA algorithm for blind source separation based on the nonlinear autocorrelation of source
signals and have analyzed its stability conditions. We show that the BSS problem can be solved by maximizing the nonlinear
temporal autocorrelation of sources. When sources have square temporal autocorrelation, we demonstrated the efficient
implementation of the method. Also, the proposed FixNA can extract the artifacts in brain MEG data analysis. Thus, the FixNA
algorithm, which is based on the nonlinear measure of temporal autocorrelations of sources, provides a novel statistical
property to perform BSS.
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Fig. 4. The 20 whitened MEG signals.

Fig. 5. The 20 source signals obtained by the presented FixNA.
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