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a b s t r a c t

For any continuous bilinear form defined on a pair of Hilbert spaces satisfying the
compatibility Ladyshenskaya–Babušca–Brezzi condition, symmetric Schur complement
operators can be defined on each of the two Hilbert spaces. In this paper, we find bounds
for the spectrum of the Schur operators only in terms of the compatibility and continuity
constants. In light of the new spectral results for the Schur complements, we review the
classical Babušca–Brezzi theory, find sharp stability estimates, and improve a convergence
result for the inexact Uzawa algorithm. We prove that for any symmetric saddle point
problem, the inexact Uzawa algorithm converges, provided that the inexact process for
inverting the residual at each step has the relative error smaller than 1/3. As a consequence,
we provide a new type of algorithm for discretizing saddle point problems,which combines
the inexact Uzawa iterations with standard a posteriori error analysis and does not require
the discrete stability conditions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the present literature, the abstract formulation and analysis for saddle point systems is based on themain properties of
the operators B and B∗ associatedwith a continuous bilinear form b(·, ·) defined on a pair of Hilbert spaces and satisfying the
compatibility Ladyshenskaya–Babušca–Brezzi (LBB) condition. The properties of the two operators are described in terms
of subspaces of dual spaces and polar sets, making the analysis less transparent than that in the finite dimensional case, see
e.g., [9,10,15,17,19,24]. In this paper, we compose B∗ and Bwith corresponding Riesz-canonical isometriesA−1 and C−1 to
get natural bounded operators A−1B∗ and C−1B acting between the original Hilbert spaces, (see Section 2). The operators
A−1B∗ and C−1B are dual to each other as operators between Hilbert spaces, and the compositions (C−1B)(A−1B∗) and
(A−1B∗)(C−1B) define symmetric and non-negative operators on Hilbert spaces.
In the particular case whenA and B are matrices withA an invertible matrix, the standard saddle point system,

Au+ B∗p = f,
Bu = g,

can be reduced to solving a problem in the p variable, by eliminating u from the first equation. Solving for p reduces to
inverting the Schur complement BA−1B∗. In the infinite dimensional case, we have in general that f and g belong to dual
spaces. Using the representation operatorsA−1 and C−1, the above system can be rewritten

u+A−1B∗p = A−1f,
C−1Bu = C−1g,

where now A−1B∗ and C−1B are operators between standard Hilbert spaces. The Schur complement of the above system
is exactly (C−1B)(A−1B∗). In light of the spectral properties emphasized in the next section, we will refer to both
(C−1B)(A−1B∗) and (A−1B∗)(C−1B) as Schur complement type operators.
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We bound the spectrum of the Schur complements only in terms of the compatibility and continuity constants of the
form b. Our approach for analyzing saddle point problems is based on the Schur complements and the properties of the
two operators A−1B∗ and C−1B. By using these tools, new stability estimates for the solutions of saddle point problems
can be found, and convergence results for Uzawa and Arrow–Hurwicz type algorithms can be improved. Convergence
results for such algorithms at the continuous level, combined with standard techniques of discretization and a posteriori
error estimates lead to adaptive algorithms for solving saddle point systems, see [3,4,12]. The main advantage of the new
algorithms is that the LBB discrete condition is not needed.
The paper is organized as follows. In Section 2, we introduce the notation and the natural Schur operators for the general

abstract case, and prove the main properties of the Schur complements and the connecting operators A−1B∗ and C−1B. In
Section 3 andAppendix A,we reconsider the classical LBB theory in the light of Section 2 and find sharp stability estimates for
the solution of a general saddle point system. In Section 4, we analyze the Inexact UzawaMethod (IUM) as introduced in [8,
13]. We consider the symmetric saddle point systems on abstract Hilbert spaces and generalize a finite dimensional result
of Cheng, Hu and Zou from [11,16]. We prove that for any symmetric saddle point problem, the inexact Uzawa algorithm
converges provided that the inexact process for inverting the residual at each step has the relative error smaller than a
threshold δ0 = 2−αM2

2+αM2
, where α is the relaxation parameter of the algorithm andM is the continuity constant of the form b.

In particular, for the choice α = 1
M2
, the threshold δ0 becomes the universal constant 1/3. As a consequence, in Section 4.1,

we indicate a way that the inexact Uzawa algorithm can be combined with standard a posteriori error theory to discretize
saddle point problems, without requiring discrete stability conditions.

2. Schur complements on Hilbert spaces

In this section, we start with a review of the notation of the classical LBB theory and introduce natural operators and
norms for the general abstract case.
We let V and Q be two Hilbert spaces with inner products a0(·, ·) and (·, ·) respectively, with the corresponding induced

norms | · |V = | · | = a0(·, ·)1/2 and ‖ · ‖Q = ‖ · ‖ = (·, ·)1/2. The dual parings on V∗ × V and Q ∗ × Q are denoted by 〈·, ·〉.
Here, V∗ and Q ∗ denote the duals of V and Q , respectively. With the inner products a0(·, ·) and (·, ·), we associate operators
A : V → V ∗ and C : Q → Q ∗ defined by

〈Au, v〉 = a0(u, v) for all u, v ∈ V

and

〈Cp, q〉 = (p, q) for all p, q ∈ Q .

The operatorsA−1 : V ∗ → V and C−1 : Q ∗ → Q are called the Riesz-canonical isometries and satisfy

a0(A−1u∗, v) = 〈u∗, v〉, |A−1u∗|V = ‖u∗‖V∗ ,u∗ ∈ V∗, v ∈ V, (2.1)

(C−1p∗, q) = 〈p∗, q〉, ‖C−1p∗‖ = ‖p∗‖Q∗ , p∗ ∈ Q ∗, q ∈ Q . (2.2)

Next, we consider that b(·, ·) is a continuous bilinear form on V×Q , satisfying the inf-sup condition. More precisely, we
assume that

inf
p∈Q

sup
v∈V

b(v, p)
‖p‖|v|

= m > 0 (2.3)

and

sup
p∈Q

sup
v∈V

b(v, p)
‖p‖ |v|

= M <∞. (2.4)

Here, and throughout this paper, the ‘‘inf’’ and ‘‘sup’’ are taken over nonzero vectors.With the form b, we associate the linear
operators B : V → Q ∗ and B∗ : Q → V ∗ defined by

〈Bv, q〉 = b(v, q) = 〈B∗q, v〉 for all v ∈ V, q ∈ Q .

Let V0 be the kernel of B or C−1B, i.e.,

V0 = Ker(B) = {v ∈ V| Bv = 0} = {v ∈ V| C−1Bv = 0}.

Due to (2.4), V0 is a closed subspace of V. Before we present themain result of this section, we review a few useful functional
analysis results.
For a bounded linear operator T : X → Y between two Hilbert spaces X and Y , we denote by T t the Hilbert transpose of

T . If X = Y , we say that T is symmetric if T = T t . For a bounded linear operator T : X → X , we denote the spectrum of the
operator T by σ(T ). The following Proposition can be found in [18], Section 31.1.
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Proposition 2.1. The spectrum σ(T ) of a bounded symmetric operator T on a Hilbert space H, lies in the closed interval [a, b]
on the real axis, where

a = inf
(Tx, x)
(x, x)

, b = sup
(Tx, x)
(x, x)

.

Moreover, a, b ∈ σ(T ) and consequently,

ρ(T ) := max{|λ|, λ ∈ σ(T )} = ‖T‖ = max{|a|, |b|}.

Here, (·, ·) is the inner product on H.

The next result (see [21], Theorem 12.12), gives a characterization of the spectrum of normal operators in general and
will be used in Section 4 for describing the spectrum of symmetric Schur operators.

Proposition 2.2. Let T be a normal operator on a Hilbert space H. Then, T is invertible if and only if there exists δ > 0 such that
‖Tx‖ ≥ δ‖x‖ for all x ∈ H. Consequently, λ ∈ σ(T ) if and only if there exists a sequence {xn} ⊂ H, such that ‖xn‖ = 1 for all n,
and ‖(T − λ)xn‖ → 0 as n→∞.

The following lemma provides important properties of norms and operators to be used in this paper.

Lemma 2.3 (Schur Complements). Let A,C, B, and B∗ be the operators associated with the spaces V,Q and the connecting form
b(·, ·). Assume that (2.3) and (2.4) are satisfied.

(i) The operators C−1B : V→ Q and A−1B∗ : Q → V are symmetric to each other, i.e.,

(C−1Bv, q) = a0(v,A−1B∗q), v ∈ V, q ∈ Q , (2.5)

consequently,

(C−1B)t = A−1B∗ and (A−1B∗)t = C−1B.

(ii) The Schur complement on Q is the operator S0 := C−1BA−1B∗ : Q → Q . The operator S0 is symmetric and positive
definite on Q , satisfying

(S0p, p) = sup
v∈V

b(v, p)2

|v|2
. (2.6)

Consequently, m2,M2 ∈ σ(S0) and

σ(S0) ⊂ [m2,M2]. (2.7)

(iii) An orthogonal decomposition of V. The following estimate holds

‖p‖S0 := (S0p, p)
1/2
= |A−1B∗p|V ≥ m‖p‖ for all p ∈ Q . (2.8)

Consequently, A−1B∗ : Q → V has closed range, V1 := A−1B∗(Q ) is a closed subspace of V and A−1B∗ : Q → V1 is an
isomorphism. Moreover, V0 = Ker(C−1B) = A−1B∗(Q )⊥ and

V = Ker(C−1B)⊕A−1B∗(Q ) = V0 ⊕ V1.

(iv) The Schur complement on V is defined as the operator S := A−1B∗C−1B : V → V. The operator S is symmetric and
non-negative definite on V, with Ker(S) = V0, S(V) = V1, and satisfies

a0(Su, v) = (C−1Bu,C−1Bv), u, v ∈ V. (2.9)

(v) The Schur complement on V1 = V⊥0 is the restriction of S to V1, i.e., S1 := A−1B∗C−1B : V1 → V1. The operator S1 is
symmetric and positive definite on V1, satisfying

σ(S1) = σ(S0) ⊂ [m2,M2]. (2.10)

(vi) C−1B is a double isometry. The following statements hold

‖C−1Bu1‖ = a0(S1u1,u1)1/2 := |u1|S1 ≥ m |u1|, u1 ∈ V1, (2.11)

and

‖C−1Bu1‖S−10 := (S
−1
0 C−1Bu1,C−1Bu1)1/2 = |u1|, u1 ∈ V1. (2.12)

Consequently, C−1B is an isometry from (V1, | · |S1) to Q , and from V1 to (Q , ‖ · ‖S−10 ).
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(vii)A−1B∗ is a double isometry. The following identity holds

|A−1B∗p|S−11
:= a0(S−11 A−1B∗p,A−1B∗p)1/2 = ‖p‖, p ∈ Q . (2.13)

Consequently,A−1B∗ is an isometry from Q to (V1, | · |S−11 ), and from (Q , ‖ · ‖S0) to V1.

Proof. The proof follows by using standard functional analysis tools. For completeness, we include the main steps.
(i) For any v ∈ V, q ∈ Q , we have

(C−1Bv, q) = 〈Bv, q〉 = 〈B∗q, v〉 = a0(A−1B∗q, v) = a0(v,A−1B∗q),

which proves (2.5).
(ii) The symmetry of S follows by using (i). Indeed,

St =
(
(C−1B)(A−1B∗)

)t
= (A−1B∗)t(C−1B)t = (C−1B)(A−1B∗) = S.

To prove (2.6), we let p ∈ Q be fixed and consider the following problem:
Find u ∈ V such that

a0(u, v) = b(v, p) for all v ∈ V. (2.14)

Since the functional v→ b(v, p) is continuous on V, by the Riesz representation theorem (see e.g., [25]), we have that the
unique solution u of (2.14) satisfies

a0(u,u) = ‖v→ b(v, p)‖2V∗ = sup
v∈V

b(v, p)2

|v|2
. (2.15)

On the other hand, from (2.14), we have

Au = B∗p or u = A−1B∗p,

and

a0(u,u) = a0(A−1B∗p,A−1B∗p) = ((A−1B∗)tA−1B∗p, p)

= (C−1BA−1B∗p, p) = (S0p, p). (2.16)

Thus, (2.6) follows from (2.15) and (2.16). The inclusion (2.7) follows immediately from (2.6), (2.3), and (2.4).
(iii) From (2.16) and (2.7), we get

(S0p, p) = a0(u,u) = |A−1B∗p|2V ≥ m
2
‖p‖2.

For part (iv), we notice that

a0(Su, v) = a0((A−1B∗)(C−1B)u, v) = (C−1Bu,C−1Bv) u, v ∈ V.

Thus, (2.9) holds and S is symmetric and non-negative definite. The relations Ker(S) = V0 and S(V) = V1 follow from (iii).
(v) By using (ii) and (iv), part (v) reduces to proving that σ(S1) = σ(S0). This holds, because S0 = (C−1B)(A−1B∗) and

S1 = (A−1B∗)(C−1B), where (A−1B∗) and (C−1B) are isomorphisms.
(vi) First, we have that (2.11) is a direct consequence of (2.9) and (2.10). Next, the identity

(S−10 C−1Bu1,C−1Bu1) =
(
(C−1BA−1B∗)−1C−1Bu1,C−1Bu1

)
=
(
(A−1B∗)−1(C−1B)−1(C−1B)u1,C−1Bu1

)
=
(
(A−1B∗)−1u1,C−1Bu1

)
= a0((A−1B∗)(A−1B∗)−1u1,u1) = |u1|2,

proves (2.12). �
(vii) The identity (2.13) follows in a similar way with (2.12).

The splitting V = V0 + V1 of Lemma 2.3 (iii) can be viewed as an abstract Helmholtz decomposition.

Lemma 2.4 (Abstract Helmholtz Decomposition). Let b : V × Q → R be a bilinear form satisfying (2.3) and (2.4). Then, any
u ∈ V has a unique orthogonal decomposition

u = u0 + u1,

where Bu0 = 0, and u1 = A−1B∗p, for some p ∈ Q . In addition, we have

|u1|S1 = ‖C
−1Bu‖ = ‖Bu‖Q∗ and |u1|V = ‖C−1Bu‖S−10 . (2.17)

Proof. According to Lemma 2.3, we only have to justify (2.17). Let u ∈ V be fixed and let u = u0 + u1 with Bu0 = 0, and
u1 = A−1B∗p for some p ∈ Q . Then, Bu = Bu1, and by using (2.11) and (2.12), we obtain (2.17).
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3. Schur complements and stability estimates

In this section, we present the notation and some of the classical theory for saddle point systems in light of the spectral
results of the Schur complements (the results of Lemma 2.3). We recover standard estimates and find sharp new stability
estimates for the solutions of general case of a saddle point problem.
Next, we consider the general abstract saddle point problem. Assume that a bilinear form a(·, ·) is defined on V× V and

satisfies

a(u,u) ≥ m0 a0(u,u), for all u ∈ V0, and (3.1)

sup
u∈V

sup
v∈V

a(u, v)
|u| |v|

= M0 <∞. (3.2)

With the form a, we associate the linear operator A : V → V ∗ defined by

〈Au, v〉 = a(u, v) for all u, v ∈ V.

Let b : V × Q → R be a bilinear form satisfying (2.3) and (2.4). For f ∈ V∗, g ∈ Q ∗, we consider the following variational
problem:
Find (u, p) ∈ V× Q such that

a(u, v)+ b(v, p) = 〈f, v〉 for all v ∈ V,
b(u, q) = 〈g, q〉 for all q ∈ Q .

(3.3)

The problem (3.3) is equivalent to the following reformulation:
Find (u, p) ∈ V× Q such that

Au+ B∗p = f,
Bu = g.

(3.4)

It is known that the above variational problem or system has a unique solution for any f ∈ V∗, g ∈ Q ∗ (see [9,10,15,17]).
Next we present stability estimates for the isomorphism (f, g)→ (u, p).

Theorem 3.1. Assume that the bilinear form b satisfies (2.3) and (2.4), and the bilinear form a satisfies (3.1) and (3.2). Then, for
any (f , g) ∈ (V∗,Q ∗), the problem (3.3) has a unique solution (u, p) ∈ (V,Q ). Let u = u0 + u1 with u0 ∈ V0 and u1 ∈ V1 be
the unique decomposition of u. Then, the following estimates hold:

|u1| = ‖C−1g‖S−10 , and |u1|S1 = ‖g‖Q∗ , (3.5)

|u0| ≤
1
m 0
‖f− Au1‖V∗0 , (3.6)

‖p‖S0 = ‖f− Au‖V∗1 ≤ ‖f‖V∗1 +M0|u|, (3.7)

and

|u| ≤
1
m0
‖f‖V∗0 +

(
1+

M0
m0

)
1
m
‖g‖Q∗ ,

‖p‖ ≤
1
m
M0
m0
‖f‖V∗0 +

1
m
‖f‖V∗1 +

M0
m

(
1+

M0
m0

)
‖g‖Q∗ .

(3.8)

To the best of the author’s knowledge, the estimates (3.5) and (3.7) are new and interesting for theoretical analysis. More
precise estimates are deduced for the symmetric case in Appendix. The estimate (3.8) can be found in e.g., [9,10,15,17]. For
completeness, we include in Appendix a proof of the above theorem together with other sharp results and a more complete
version of the Babušca lemma. The proofs avoid working with subspaces of dual spaces.

4. Schur complements and the inexact Uzawa algorithm the exact amount of inexactness we can afford

Besides the pure theoretical contribution to the classical stability theory for saddle point problems, the use of Schur
complements turns out to be of practical interest in designing and analyzing Arrow–Hurwicz–Uzawa type algorithms
for saddle point systems. In this section, we further motivate the efficiency of using Schur complements in finding the
convergence factors of two algorithms.
We assume that the form a(·, ·) coincides with the form a0(·, ·) which gives the inner product on V. Consequently, we

have m0 = M0 = 1, and A = A. The Uzawa algorithm for solving the Stokes system was introduced in [1]. It can be easily
generalized to solve the general problem (3.3), provided that the form a is coercive on the whole space V, see e.g., [7,13,3].
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First, we review the Uzawa algorithm for the symmetric saddle point problem, and present a sharp convergence result for
the inexact Uzawa algorithm.
Given a parameter α > 0, called the relaxation parameter, the Uzawa algorithm for approximating the solution (u, p) of

(3.3) can be described as follows.

Algorithm 4.1 (Uzawa Method (UM)). Let p0 be any approximation for p, and for k = 1, 2, . . . , construct (uk, pk) by

uk = A−1(f− B∗pk−1),

pk = pk−1 + αC−1(Buk − g).
(4.1)

The convergence of the UM is discussed for particular cases in many publications, see e.g., [5,9,14,15,22]. Included below
is a theorem taken from [3] that describes the convergence of the Uzawa algorithm. We will compare the result with our
main theorem about the inexact Uzawa algorithm.

Theorem 4.2. Let (u, p) be the solution of (3.3) and let (uk, pk) be the sequence of approximations built by the UM (4.1). Then,
the following holds.

(i) The sequences u− uk and p− pk satisfy

|u− uk|V ≤ M‖p− pk−1‖,
‖p− pk‖ ≤ ‖I − αS0‖‖p− pk−1‖.

(ii) For α < 2
M2
, the UM is convergent and

‖I − αS0‖ = max{|1− αm2|, |1− αM2|} < 1.

(iii) For α = 1
M2
, the convergence factor is ‖I − αS0‖ = 1− m2

M2
.

(iv) The optimal convergence factor is achieved for

αopt :=
2

M2 +m2
and ‖I − αoptS0‖ =

M2 −m2

M2 +m2
.

Next, following the ideas in [8,13], we will investigate the convergence of an abstract inexact Uzawa algorithm where
the exact solution of the elliptic problem (the action of A−1) is replaced by an approximation process.
We describe the approximate process as a map Ψ defined on a subset of V∗, which for φ ∈ V∗, returns an approximation

of ξ , the solution of Aξ = φ. If V and Q are finite dimensional spaces, then Ψ can be considered as a linear or non-
linear preconditioner for A (see e.g., [8]). One example of nonlinear process Ψ can be taken as the approximate inverse
associated with the preconditioned conjugate gradient algorithm. If V and Q are not finite dimensional spaces, then Ψ (φ)
can be considered as a discrete Galerkin approximation of the elliptic problem Aξ = φ. The inexact Uzawa algorithm for
approximating the solution (u, p) of (3.3) is as follows.

Algorithm 4.3 (Inexact Uzawa Method (IUM)). Let (u0, p0) be any approximation for (u, p), and for k = 1, 2, . . . , construct
(uk, pk) by

uk = uk−1 + Ψ (f− Auk−1 − B∗pk−1),
pk = pk−1 + αC−1(Buk − g).

For k = 0, 1, . . ., let euk := u−uk, e
p
k := p− pk, rk = f− Auk− B∗pk, erk := e

u
k + A

−1B∗epk = A
−1rk. Next, we present the main

result of the paper.

Theorem 4.4. Let 0 < α < 2/M2 and assume that Ψ satisfies∣∣Ψ (rk)− A−1rk∣∣V ≤ δ ∣∣A−1rk∣∣V , k = 0, 1, . . . , (4.2)

with

δ <
2− αM2

2+ αM2
. (4.3)

Then, the IUM converges. There exists ρ = ρ(α, δ,m,M) ∈ (0, 1) such that

(δ|erk|
2
V + ‖e

p
k‖
2
S0)
1/2
≤ ρk (δ|er0|

2
V + ‖e

p
0‖
2
S0)
1/2 k = 1, 2, . . . . (4.4)
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For the particular casewhenV,Q are finite dimensional spaces,α = 1, andM = 1, by using singular value decomposition
of matrix type operators, a similar result was obtained in [11,16]. The above Algorithm (and Theorem) applies to any
symmetric and positive definite saddle point problem no matter the dimension. Theorem 4.4 also improves a similar result
presented in [3], where threshold δ0 depends on the constant m. In our case now, δ0 = 2−αM2

2+αM2
is independent of m. If we

choose α to be the practical choice α = 1
M2
, then δ0 = 1/3 is a universal constant. Thus, if α = 1

M2
and the relative error

of the approximate process (the amount of inexactness) at each step is smaller than any fixed number smaller than 1/3,
then the algorithm converges. The value ρ in (4.4) can be taken exactly the spectral radius of the error operator as can be
seen from the proof below. The convergence result for the algorithm for the general infinite dimensional case can be used in
building new algorithms for solving saddle point systems with no discrete LBB condition assumption for the discrete spaces
(see Section 4.1).

Proof. From the first equation of (3.4) and the first equation of Algorithm 4.3 we have

euk = e
u
k−1 − Ψ (Ae

u
k−1 + B

∗epk−1)

= (A−1 − Ψ )(Aeuk−1 + B
∗epk−1)− A

−1B∗epk−1. (4.5)

From the second equation of (3.4) and the second equation of Algorithm 4.3, we get

epk = e
p
k−1 + αC−1Beuk . (4.6)

If we substitute euk from (4.5) in (4.6), then

epk = αC−1B(I − Ψ A)(euk−1 + A
−1B∗epk−1)+ (I − αC−1BA−1B∗)epk−1, (4.7)

and

A−1B∗epk = αA
−1B∗C−1B(I − Ψ A)(euk−1 + A

−1B∗epk−1)+ (I − αA
−1B∗C−1B)A−1B∗epk−1. (4.8)

Thus,

euk + A
−1B∗epk = (I + αA

−1B∗C−1B)(I − Ψ A)(euk−1 + A
−1B∗epk−1)− αA

−1B∗C−1B(A−1B∗)epk−1. (4.9)

With the notation of Section 2, since A = A, we have A−1B∗C−1B = S, V1 = A−1B∗(Q ), and that S1 : V1 → V1 is the
restriction of S to V1. Here, we introduce two other closely related operators.
Let S12 : V1 → V, S12v1 = Sv1 and S21 : V→ V1, S21v = Sv.
Then, from (4.9) and (4.8), we obtain(

euk + A
−1B∗epk

A−1B∗epk

)
=

(
I + αS −αS12
αS21 I1 − αS1

) (
(I − Ψ A)(euk−1 + A

−1B∗epk−1)
A−1B∗epk−1

)
,

where I1 is the identity on V1. Using just elementary manipulation, we get(
δ1/2 erk
A−1B∗epk

)
=

(
δ(I + αS) δ1/2α S12
δ1/2αS21 −I1 + αS1

) (
δ−1/2(I − Ψ A)erk−1
−A−1B∗epk−1

)
.

Let V× V1 be the Hilbert space with the standard product inner product with a0(·, ·) as inner product on each component.
Then,

T :=
(
δ(I + αS) δ1/2α S12
δ1/2α S21 −I1 + αS1

)
is a symmetric operator on V× V1,∥∥∥∥( δ1/2 erkA−1B∗epk

)∥∥∥∥2
V×V1

= δ|erk|
2
V + |A

−1B∗epk|
2
V = δ|e

r
k|
2
V + ‖e

p
k‖
2
S0 ,

and, using the assumption (4.2),∥∥∥∥(δ−1/2(I − Ψ A)erk−1−A−1B∗epk−1

)∥∥∥∥2
V×V1

= δ−1|(I − Ψ A)erk−1|
2
V + |A

−1B∗epk−1|
2
V

≤ δ−1δ2|erk−1|
2
V + ‖e

p
k−1‖

2
S0

= δ|erk−1|
2
V + ‖e

p
k−1‖

2
S0 .

Thus,

(δ|erk|
2
V + ‖e

p
k‖
2
S0)
1/2
≤ ρ(T ) (δ|erk−1|

2
V + ‖e

p
k−1‖

2
S0)
1/2,
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where ρ(T ) is the spectral radius of T . To complete the proof, we have to show that ρ(T ) < 1 provided that 0 < α < 2/M2
and (4.3) holds. First we will prove that any eigenvalue ρ ∈ σ(T ) corresponds to a value λ ∈ [m2,M2] and a relation
between ρ and λ holds, see (4.11). Then, we will prove that the relation remains valid in the general case when ρ ∈ σ(T )
and ρ is not necessarily an eigenvalue.
Let ρ ∈ σ(T ) be an eigenvalue and let

(
x
y

)
∈ V× V1 be a corresponding eigenvector. Then,

T
(
x
y

)
= ρ

(
x
y

)
,

which leads to

δ(I + αS)x+ δ1/2αSy = ρx,
δ1/2αSx+ (−I + αS)y = ρy.

Equivalently,

S(δ1/2αx+ αy) = δ−1/2(ρ − δ)x,

S(δ1/2αx+ αy) = (ρ + 1)y.
(4.10)

One can easily see from the above system that, if x ∈ V0, x 6= 0, then
(
x
0

)
is an eigenvector for T corresponding to ρ = δ.

Thus, δ ∈ σ(T ). If ρ 6= δ, then from (4.10), we have that

x =
δ1/2(ρ + 1)
ρ − δ

y, with y 6= 0, and S1y =
(ρ − δ)(ρ + 1)
αρ(δ + 1)

y.

From Lemma 2.3 (v), we deduce that

λ =
(ρ − δ)(ρ + 1)
αρ(δ + 1)

∈ [m2,M2]. (4.11)

or,

ρ2 − (αλ(δ + 1)+ δ − 1)ρ − δ = 0, with λ ∈ [m2,M2]. (4.12)

Now let ρ ∈ σ(T ), ρ 6= δ be any spectral value.

According to Proposition 2.2, there exists a sequence
(
xn
yn

)
∈ V× V1, such that∥∥∥∥(xnyn

)∥∥∥∥ = 1 and
∥∥∥∥T (xnyn

)
− ρ

(
xn
yn

)∥∥∥∥→ 0, as n→∞.

This leads to

δ(I + αS)xn + δ1/2αSyn − ρ xn → 0,
δ1/2αSxn + (−I + αS)yn − ρ yn → 0.

Equivalently,

S(δ1/2αxn + αyn)− δ−1/2(ρ − δ)xn → 0,

S(δ1/2αxn + αyn)− (ρ + 1)yn → 0,
(4.13)

which gives the following convergence on V,

δ−1/2(ρ − δ)xn − (ρ + 1)yn → 0, (4.14)

Since ‖(xn, yn)t‖2 = |xn|2 + |yn|2 = 1, and ρ − δ 6= 0, from (4.14) we can claim that there exists a subsequence of (xn, yn)t ,
for convenience still denoted by (xn, yn)t , for which

|yn|2 ≥ α0 > 0. (4.15)

Let {zn} ⊂ V be defined by

zn := αδ1/2xn −
αδ(ρ + 1)
ρ − δ

yn. (4.16)
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From (4.14) we have that zn → 0. Substituting αδ1/2xn from (4.16) in the second part of (4.13), leads to

S1 yn −
(ρ − δ)(ρ + 1)
αρ(δ + 1)

yn → 0.

Here we used the fact that zn → 0 and Syn = S1yn. Due to the estimate (4.15), in light of Proposition 2.2, we have that

λ :=
(ρ − δ)(ρ + 1)
αρ(δ + 1)

∈ σ(S1).

From Lemma 2.3(v), we conclude that (4.11) and consequently (4.12) hold for any ρ ∈ σ(T ), ρ 6= δ. Next, based on the
spectral informations we have, we will compute ρ(T ).
Introducing the real functions f (x) = 1

2 (x+
√
x2 + 4δ) and g(x) = 1

2 (x−
√
x2 + 4δ), the roots of (4.12) are

ρ1(λ) := f (αλ(δ + 1)+ δ − 1), ρ2(λ) := g(αλ(δ + 1)+ δ − 1),

and we have

ρ(T ) ≤ max

{
δ, sup
λ∈[m2,M2]

|ρ1(λ)|, sup
λ∈[m2,M2]

|ρ2(λ)|

}
. (4.17)

Since f is an increasing and positive function on R, and g is an increasing and negative function on R, we have that

sup
λ∈[m2,M2]

|ρ1(λ)| = f (αM2(δ + 1)+ δ − 1),

and

sup
λ∈[m2,M2]

|ρ2(λ)| = −g(αm2(δ + 1)+ δ − 1).

Elementary calculations show that

0 < δ < f (αM2(δ + 1)+ δ − 1).

Moreover, for any λ ∈ σ(S1) we have that ρ1(λ), ρ2(λ), the roots of (4.12), belong to σ(T ). Indeed, if λ ∈ σ(S1) then, by
Proposition 2.2, there exists a sequence (yn) ⊂ V1, such that ‖yn‖ = 1 for all n, and S1 yn − λ yn → 0 as n → ∞. If we
define

xn =
δ1/2(ρ + 1)
ρ − δ

yn,

with ρ = ρ1(λ) or ρ = ρ2(λ), then it is easy to check that∥∥∥∥(xnyn
)∥∥∥∥ = β0 > 0 and

∥∥∥∥T (xnyn
)
− ρ

(
xn
yn

)∥∥∥∥→ 0, as n→∞.

In particular, sincem2 andM2 ∈ σ(S1), we obtain that ρ1(M2) = f (αM2(δ+1)+δ−1) and ρ2(m2) = g(αm2(δ+1)+δ−1)
belong to σ(T ). Therefore,

ρ(T ) = max
{
f (αM2(δ + 1)+ δ − 1),−g(αm2(δ + 1)+ δ − 1)

}
. (4.18)

Using the monotonicity of the two functions f and g , it is easy to verify the following:

0 < −g(αm2(δ + 1)+ δ − 1) < 1, for all α > 0,

0 < f (αM2(δ + 1)+ δ − 1) < 1, iff δ <
2− αM2

2+ αM2
,

ρ(T )(α) is optimal (minimal) for

αopt :=
1− δ
1+ δ

2
m2 +M2

,

ρ(T ) = −g(αm2(δ + 1)+ δ − 1), for 0 < α ≤ αopt ,

and

ρ(T ) = f (αM2(δ + 1)+ δ − 1), for αopt ≤ α <
2
M2
.

This completes the proof of the theorem. �



590 C. Bacuta / Journal of Computational and Applied Mathematics 225 (2009) 581–593

Remark 4.5. For δ→ 0, we ‘‘recover’’ the convergence results of UM.

(i) For α = 1/M2 and δ→ 0, we have that ρ(T )(δ)→ 1− m2

M2
, (see part (iii) of Theorem 4.2).

(ii) For α = αopt = 1−δ
1+δ

2
m2+M2

and δ→ 0, we have that ρ(T )(δ)→ M2−m2

M2+m2
, (see part (iv) of Theorem 4.2).

The IUM can be applied in particular when V and Q are finite dimensional spaces. In this case, Ψ can be taken to be a
preconditioner for A, and C can also be replaced with any symmetric and positive definite operator on Q . In particular, C
can be associated with a preconditioner on Q . In this way, by the above theorem we can recover or improve convergence
results presented in [8,5,11,16].

4.1. A bridge to adaptive methods

The value of the above theorem resides also in the possibility of solving a saddle point problem by combining the IUM
algorithm at the continuous level with standard adaptive methods. The main idea is to build an iterative process of inexact
Uzawa type, where the u variable is updated by solving adaptively (on larger and larger subspaces of V) a simple elliptic,
symmetric and positive definite problem, while the second variable p is updated according to the standard Uzawa algorithm.
Themain advantage of such a process is that only discrete subspaces ofV play amajor role in the algorithm and compatibility
conditions for discrete subspaces of V and Q are not required. To be more precise, we consider that (3.3) is the variational
formulation of a boundary value problem on a fixed domainΩ . The Algorithm 4.3 can be used in the following adaptive way
to approximate the solution (u, p) ∈ V× Q .
First, for a fix α ∈ (0, 2/M2) we choose a positive number δ strictly smaller than the computable value 2−αM

2

2−αM2
and let

V0 ⊂ V be a finite dimensional space, e.g., the space of continuous piecewise polynomials of certain degree with respect to
a given coarse partition T0 ofΩ . Take u0 ∈ V0 be any approximation of u and take p0 = 0.
Next, for k = 1, 2, . . ., assuming that (uk−1, pk−1) is determined such that uk−1 ∈ Vk−1 ⊂ V, to determine (uk, pk) as

defined in Algorithm 4.3, we find first Ψ (f − Auk−1 − B∗pk−1) = Ψ (rk−1) := wk as the discrete solution of the following
elliptic, symmetric and positive definite problem:

a(wk, v) = 〈rk−1, v〉 for all v ∈ Vk. (4.19)

The space Vk will be chosen by using an adaptive process such that Vk−1 ⊂ Vk ⊂ V, and

|wk − A−1rk−1|V ≤ δ|rk−1|V∗ . (4.20)

More precisely, we let ηk be a computable a posteriori error estimator for the problem (4.19), i.e,

|wk − A−1rk−1|V ≤ ηk. (4.21)

We assume that ηk is a sum of local error estimators associated with the mesh which defines the space Vk. Since the form
a(·, ·) in (4.19) gives the inner product on V, and Vk is a subspace of V, we have

|wk|V ≤ |rk−1|V∗ . (4.22)

Thus, to satisfy the sufficient condition (4.20), would be enough to verify that ηk ≤ δ|wk|V, where both ηk and |wk|V are
computable quantities. Consequently, at the kth iteration of the algorithm we start by taking Vk = Vk−1 and by solving
(4.19) with Vk = Vk−1. If ηk ≤ δ|wk|V, then we compute uk = uk−1 + wk, pk = pk−1 + αC−1(Buk − g), and let k→ k+ 1
(move to the next iteration). If ηk > δ|wk|V, then we refine Tk−1 according to the information provided by the local error
estimators defining ηk and obtain a new space Vk. Then, we solve again (4.19) and verify the validity of ηk ≤ δ|wk|V. The
process of refining and solving on a larger space repeats until Vk is large enough to assure that the sufficient condition
ηk ≤ δ|wk|V is satisfied. Under a minimal regularity assumption for the problem of solving or approximating A−1rk−1, we
can prove that the process at each step ends, because rk−1 in (4.19) is fixed and the spaces Vk’s are allowed to become better
and better approximation spaces for V. We can stop the algorithm after a fixed number of iterations given by the rate of
convergence of IUM or after |wk|V is smaller than a fixed tolerance ε.
Let us note that if the update of the p variable (pk = pk−1 + αC−1(Buk − g)) can be done at the continuous level, in

particular if C is the identity operator (which is the case for Q = L2), then a sequence of spaces for the p variable is not even
needed to be defined in implementing the above algorithm. In any case a discrete LBB condition is not required.
Similar approaches on combining Uzawa algorithms at the continuous level with standard techniques of discretization

and a posteriori error estimates can be found in [3,4,12]. Bansch,Morin andNochetto (see [4]) used a similar adaptive inexact
Uzawa algorithm for the Stokes problem and proved a convergence result. Nevertheless, estimates (in terms of the constants
α,m,M of the Stokes system) for the amount of inexactness of the approximate inverse or for the convergence factor of the
algorithm are not provided in their paper. The precise convergence analysis of the IUM algorithm at the continuous level
brings more clarity in implementing, and analyzing such combined algorithms.
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5. Conclusion

Based on Schur operators on Hilbert spaces, the paper provides new tools in analyzing saddle-point problems. In the
author’s opinion, the use of the Schur complements in the infinite dimensional case can recover powerful results proved in
the finite dimensional setting by means of spectral properties of matrices. As an example, the Inexact Uzawa algorithm at
the abstract general level was efficiently analyzed. We proved that for any symmetric saddle point problem, the algorithm
converges provided that the inexact process for inverting the residual at each step has the relative error smaller than
any fixed number smaller than a computable threshold. The result was known for particular cases and only in the finite
dimensional setting. The convergence result for the algorithm at the continuous level, combined with standard techniques
of discretization and a posteriori error estimates [4,20,23], could lead to new and efficient algorithms for solving saddle
point systems. New applications of the Schur complements, including sharp estimates for Arrow–Hurwicz algorithms for
non-symmetric saddle point systems are the focus of the author’s work in progress.
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Appendix

In this appendix, we present more of the classical theory for saddle point systems in light of the spectral results of the
Schur complements (Lemma 2.3). The first application is the Babušca Lemma (as described in [2]) enriched with Schur
stability estimates.

Lemma A.1 (Babušca). Let b : V× Q → R be a bilinear form satisfying (2.3) and (2.4), and let F ∈ V∗.

(i) The problem: Find p ∈ Q such that

b(v, p) = 〈F , v〉, for all v ∈ V (A.1)

has a unique solution if and only if

〈F , v〉 = 0, for all v ∈ V0. (A.2)

If (A.2) holds and p is the solution of (A.1), then

m‖p‖ ≤ ‖p‖S0 = ‖F‖V∗ = ‖F‖V∗1 ≤ M‖p‖, and ‖p‖ = |A−1F |S−11
. (A.3)

(ii) Let F ∈ V∗1 . The problem: Find p ∈ Q such that

b(v, p) = 〈F , v〉, v ∈ V1 (A.4)

has a unique solution p, and

‖p‖S0 = ‖F‖V∗1 . (A.5)

(iii) Assume that the form b, in addition, satisfies the condition

b(v, p) = 0 for all p ∈ Q implies v = 0. (A.6)

Then, the problem (A.1) has a unique solution p which satisfies (A.3).

This is a classical result. The improvement brought by the Schur complement approach is the isometric correspondence
between the functionals in the subspace V∗1 of V

∗ and the solutions space Q described by (A.3).

Proof. (i) The problem (A.1) reduces to finding p ∈ Q such that B∗p = F orA−1B∗p = A−1F . By Lemma2.3, this is equivalent
toA−1F ∈ V1 = V⊥0 , i.e,

a0(A−1F , v) = 0, for all v ∈ V0,

which is exactly the condition (A.2). By part (iii) of Lemma 2.3, we have

m‖p‖ ≤ ‖p‖S0 = |A
−1B∗p|V = |A−1F |V = ‖F‖V∗ = ‖F‖V∗1 .

The second part of (A.3) follows from (2.13).
(ii) If F is defined on V1 only, we can extend F to the entire V = V0 + V1 by defining F to be zero on V0. The extension

has the same norm, and we can apply part (i).
(iii) The condition (A.6) implies V0 = {0}. Thus, (A.2) holds trivially. The result follows from part (i). �
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Remark A.2. Many boundary value problems can be written in the form presented in Lemma A.1 (i). In [6], Bramble and
Pasciak introduced a newmethod for solving the general problem presented in Lemma A.1 (i) based on Riesz representation
operators and on reduction to elliptic problems. In light of Lemma 2.3, the Bramble–Pasciak method can be described as
follows.
From part (iii) of Lemma 2.3, we have that V1 = A−1B∗(Q ) = V⊥0 . Thus, under the assumption (A.2), the problem: Find

p ∈ Q such that (A.1) holds, is equivalent to: Find p ∈ Q such that

b(v, p) = 〈F , v〉 for all v ∈ V1 = A−1B∗(Q ).

or to: Find p ∈ Q such that

(S0p, q) = b(A−1B∗q, p) = 〈F ,A−1B∗q〉 for all q ∈ Q . (A.7)

Since S0 is a symmetric and positive definite operator, once the action of A−1 is available, (A.7) becomes a symmetric
and positive definite problem. More details about discretizing (A.7) in general and for solving concrete div–curl systems
in particular, can be found in [6].

The proof of Theorem 3.1. First, let us assume the existence of a solution (u, p) of (3.3), and let us consider the unique
decomposition u = u0 + u1 with u0 ∈ V0 and u1 ∈ V1. Then, u1 = A−1B∗p1 with p1 ∈ Q and (u1, p1) satisfies

Au1 + B∗(−p1) = 0,
Bu1 = g,

(A.8)

or equivalently,

a0(u1, v)− b(v, p1) = 0, for all v ∈ V, ( or V1),
b(u1, q) = 〈g, q〉 for all q ∈ Q .

(A.9)

From (3.3), we have that u0 satisfies

a(u0, v) = 〈f, v〉 − a(u1, v) for all v ∈ V0, (A.10)

which is equivalent to

〈f− Au, v〉 = 0 for all v ∈ V0. (A.11)

Now, the system (A.8) is equivalent to

Au1 = B∗p1,

C−1BA−1B∗p1 = C−1g.
(A.12)

Since S0 : Q → Q and A−1B∗ : Q → V1 are isomorphisms (by part (ii) and (iii) of Lemma 2.3), (A.12) has a unique
solution depending only on g . Hence, u1 is unique. Also, by Lax–Milgram lemma, we have that u0 solving (A.10) is unique,
and consequently, u is unique. From the first equation of (3.4), we have that B∗p = f − Au. Using that (A.11) holds, from
Lemma A.1, we get that p is also unique. To prove the existence, we just notice that if we define (u1, p1) as the unique
solution of (A.9), and u0 as the unique solution of (A.10), then (u, p) is a solution for (3.3), where u := u0 + u1 and p is
uniquely defined via Lemma A.1, by B∗p = f − Au. Next, we estimate the norm of the unique solution (u, p) in terms of
(f, g). From (2.8) and (A.12), we have

|u1| = |A−1B∗p1| = ‖p1‖S0 = ‖C
−1g‖S−10

≤
1
m
‖g‖Q∗ , (A.13)

which proves the first part of (3.5). The second part of (3.5) follows immediately from the second equation of (2.11) and
(A.8). Using the Lax–Milgram for (A.10), we obtain

|u0| ≤
1
m 0
‖f− Au1‖V∗0 ≤

1
m 0
(‖f‖V∗0 +M0|u1|) ≤

1
m 0

(
‖f‖V∗0 +

M0
m
‖g‖Q∗

)
. (A.14)

To obtain (3.7), we notice that B∗p = f− Au and by Lemma A.1 we have

m‖p‖ ≤ ‖p‖S0 = ‖f− Au‖V∗1 ≤ ‖f‖V∗1 +M0|u|. (A.15)

Combining (A.13)–(A.15), and using |u| ≤ |u0| + |u1|, we arrive at (3.8). The estimates can be improved if we use that
|u|2 = |u0|2 + |u1|2. �
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Remark A.3. Special case: When the form a(·, ·) coincides with the form a0(·, ·) which gives the inner product on V, we
have m0 = M0 = 1, and A = A. Thus, the estimates (3.8) can be made more precise by using Schur norms. Indeed, in this
case, (A.10) becomes

a0(u0, v) = 〈f, v〉 for all v ∈ V0. (A.16)

Thus,

|u0| = ‖f‖V∗0 . (A.17)

On the other hand,

‖p‖S0 = ‖f−Au‖V∗1 = ‖f−Au1‖V∗1 = ‖f− B
∗p1‖V∗1 = ‖f− B

∗S−10 C−1g‖V∗1 .

Then, the solution (u, p) satisfies

|u|2 = ‖f‖2V∗0 + ‖C
−1g‖2

S−10
, |u0|2 + |u1|2S1 = ‖f‖

2
V∗0
+ ‖g‖2Q∗ ,

‖p‖S0 = ‖f−Au1‖V∗1 = ‖f− B
∗S−10 C−1g‖V∗1 .

(A.18)

By using the spectral properties of S0 and the estimate

‖f−Au1‖V∗1 ≤ ‖f‖V∗1 + |u1|,

we get

|u|2 ≤ ‖f‖2V∗0 +
1
m2
‖g‖2Q∗

‖p‖S0 ≤ ‖f‖V∗1 +
1
m
‖g‖Q∗ .

(A.19)

Remark A.4. Let b : V×Q → R be a bilinear form satisfying (2.3) and (2.4). Givenu ∈ V, according to the abstract Helmholtz
decomposition of Lemma 2.4, there exists u0,u1 ∈ V and p ∈ Q such that u = u0+ u1, Bu0 = 0, and u1 = A−1B∗p. We can
effectively find u0,u1 and p by first solving for (u1,−p) the solution of the symmetric saddle point problem

a0(u1, v)+ b(v,−p) = 0, for all v ∈ V,
b(u1, q) = b(u, q), for all q ∈ Q ,

and then, take u0 = u− u1.
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