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a b s t r a c t

This paper addresses the problem of finding a series representation for the Green’s function
of the Helmholtz operator in an infinite circular cylindrical waveguide with impedance
boundary condition. Resorting to the Fourier transform, complex analysis techniques
and the limiting absorption principle (when the undamped case is analyzed), a detailed
deduction of the Green’s function is performed, generalizing the results available in the
literature for the case of a complex impedance parameter. Procedures to obtain numerical
values of the Green’s function are also developed in this article.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The impedance boundary value problem for the Helmholtz operator, sometimes called the Robin boundary value
problem, has been used extensively in physics and engineering, due to its wide range of applications. It plays an important
role in the fields of acoustics,where itmodels time-harmonicwave propagation in domainswith locally reacting surfaces [1],
and electromagnetism, where it is employed to model time-harmonic electromagnetic wave propagation when the
impedance boundary condition represents the finite conductivity of the materials, the roughness effect on the surface
conductivity and, in general, energy loss through the domain boundaries [2]. In the case of the particular domain considered
in this paper – the circular cylindrical waveguide – it is worth mentioning some engineering applications of this problem.
For instance, according to Rawlins [3], it arises in electromagnetic communications throughout underground tunnels, in the
propagation of waves in fibre-optics waveguides and in the design of mufflers, exhaust and ventilation systems [4].
A powerful mathematical tool to solve impedance boundary value problems for the Helmholtz operator, is the Green’s

function. It is often employed in wave scattering, resonance and inverse problems defined on bounded and unbounded
domains, where it is used as a benchmark solution to test numerical schemes, or it is applied in conjunction with numerical
methods such as the boundary element method (BEM) and the mixed boundary element and finite element method
(BEM/FEM). For a broader framework about the Green’s functions and their use for solving time-harmonic problems,
see [5–7].
For the infinite cylindrical waveguide with a Dirichlet or Neumann boundary condition, the Green’s function can be

obtained by a series provided by the method of separation of variables (see for instance [8] and [9, Section 5.6] for examples
of a Neumann and a Dirichlet boundary condition respectively) usually referred to as the eigenfunction expansion. This
representation is highly appreciated because it is easy to implement on a computer as it does not require that the Fourier
transform be numerically inverted as other Green’s functions do in problems arising, for example, on impedance half-
planes and half-spaces [10,11]. Moreover, such a representation is suitable to achieve directly the asymptotic behavior at
infinity and the radiation condition that the Green’s function satisfies, which differs from the classical Sommerfeld radiation
condition.
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The separation of variables method works well when the Laplace operator, acting on a subspace of L2(Ω ′), where
Ω ′ = {x ∈ R2 : |x| < R} is the waveguide’s cross section, is compact and self-adjoint, and consequently its eigenfunctions
form a complete orthonormal basis of L2(Ω ′), which is the case when the boundary condition is Dirichlet or Neumann.
However, when the impedance boundary condition is imposed, the Laplacian is no longer self-adjoint for all the possible
values of the impedance parameter (it is self-adjoint only for negative real values of the impedance parameter). In spite of
that, a real impedance parameter leads to eigenfunctions that are still orthogonal and the theory of Dini series [12, chapter
18] may be used in order to apply the separation of variables method to our problem. If instead, the impedance parameter
is a proper complex number (i.e. it has non-zero imaginary part), the eigenfunctions are no longer orthogonal and then
it is necessary to develop another way to construct the Green’s function that does not depend on the orthogonality and
completeness of the eigenfunctions.
In this paper we perform a detailed deduction of the eigenfunction expansion of the Green’s function for the Helmholtz

operator in an infinite impedance circular cylindrical waveguide. This deduction is carried out via a Fourier transform and
the theory of Green’s functions for non-self-adjoint singular Sturm–Liouville problems. The eigenfunction expansionmakes
it necessary to study the eigenvalues of the Laplacian generated by the roots of the Dini function zJ ′n(zR) − αJn(zR), where
α is the impedance parameter and Jn(z) is the Bessel function of the first kind with integer order n > 0. Properties of
these roots for α ∈ R, available in [13–15], are used here. Also, new results for the properties of these roots are performed
for complex values of α by means of a Mittag–Leffler expansion. Existence of non-simple eigenvalues are reported for
particular values of α; some of them are computed using the Delves–Lyness algorithm [16,17]. The limiting absorption
principle is employed to analyze the complete undamped case (i.e. real wave number and real impedance parameter), where
the existence of propagative modes (which include surface propagative modes) allows one to obtain the far field and the
radiation condition that the Green’s function satisfies. Finally, basic numerical procedures based on the FEM are stated in
order to obtain numerical evaluations of the Green’s function.
The structure of this paper is as follows. The next section describes both the problem’s set up and the Fourier transform

used to compute the Green’s function. The spectral Green’s function – solution of the problem in the Fourier domain – is also
found in this section. In Section 3, the singularities of the spectral Green’s function are studied in detail so as to obtain, in
Section 4, its series expansion by means of contour integration. Thereafter, Section 5 addresses the inversion of the Fourier
transform, using again contour integration and the limiting absorption principle. Finally, Section 6, develops the numerical
procedures needed to compute the poles of the spectral Green’s function so as to achieve numerical evaluations of the
Green’s function.

2. The Green’s function of the infinite right circular cylinder

The sought Green’s function is given by the solution of the following problem in the sense of distributions: Find
G(x, ·) ∈ D ′(Ω) such that:∆yG(x, y)+ k2G(x, y) = −δx(y), y ∈ Ω,

∂G(x, y)
∂ny

− αG(x, y) = 0, y ∈ Γ , (1)

where
Ω =

{
(x1, x2) ∈ R2 : x21 + x

2
2 < R

2}
× R

Γ =
{
(x1, x2) ∈ R2 : x21 + x

2
2 = R

2}
× R

and δx ∈ D ′(Ω) is the Dirac delta distribution supported at a fixed point x ∈ Ω where D ′(Ω) denotes the dual space of
D(Ω), i.e., the dual of the space of functions infinitely differentiable and compactly supported inΩ .
Due to physical considerations (cf. [1,2]) thewave number and the impedance parameter are respectively k ∈ C, Im k2 >

0 and α ∈ C, Imα > 0, because the time dependence of the wave is assumed given by e−iωt , where ω is the angular
frequency. In absence of dissipation, i.e., when α and k are real numbers, we have to add a radiation condition to (1) in order
to obtain a unique outgoing wave solution. Such radiation condition differs greatly from the classical Sommerfeld radiation
condition and will be stated later on. Then, for the time being, we assume that k or α are not real numbers.
To achieve a solution of (1), we use the Fourier transform. Hence, first we express (1) in cylindrical coordinates (see Fig. 1)

to obtain
1
r
∂

∂r

(
r
∂G
∂r

)
+
1
r2
∂2G
∂θ2
+
∂2G
∂z2
+ k2G = −

δρ(r) δζ (z) δϑ (θ)
r

, y ∈ Ω,

∂G
∂r
− αG = 0, y ∈ Γ ,

(2)

where ρ ∈ (0, R), y = (r cos θ, r sin θ, z) is the observation point and x = (ρ cosϑ, ρ sinϑ, ζ ) is the source point.
Then we define a special Fourier transform in the following way: Let u ∈ D((−π, π) × R), then its Fourier transform

û : N0 × R→ C is defined by

û(n, ξ) =
∫
[−π,π ]×R

u(θ, z) cos(nθ) e−i zξ dξ dθ
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Fig. 1. Domain’s geometry.

and its inverse is defined as

u(θ, z) =
1
4π2

∫
N0×R

û(n, ξ) cos(nθ) ei zξεn dξ dn

where N0 = N ∪ {0} and

εn =

{
1 for n = 0
2 for n > 1.

Assuming that for every fixed x ∈ Ω and r ∈ [0, R], G ∈ D ′ ((−π, π)× R), we can apply the former Fourier transform
to (2) to obtain the following integral representation (which, for the time being, is interpreted in the sense of distributions)

G(x, y) =
1
4π2

∫
N0×R

gn(r, ρ; k2 − ξ 2) cos(n(θ − ϑ)) ei ξ(z−ζ )εn dξ dn (3)

where the kernel gn is referred to as the spectral Green’s function and corresponds to the Green’s function of the Bessel
differential equation with an impedance boundary condition, i.e., the solution of

−
d
dr

(
r
dgn
dr

)
+
n2

r
gn − λrgn = δρ, 0 < r < R

dgn
dr
− αgn = 0 r = R

lim
r→0+
|gn(r, ρ; λ)| <∞,

(4)

where λ = k2 − ξ 2, ρ ∈ (0, R) and n ∈ N0.
The solution of (4) can be expressed in terms of Jn and Yn, i.e., the Bessel functions of the first and second kind respectively,

with order n ∈ N0. Thus, resorting to use standard techniques to find one-dimensional Green’s functions (cf. [9]), we obtain
that

gn(r, ρ; λ) = −
ϕ1(r<; λ)ϕ2(r>; λ)
ρW [ϕ1, ϕ2] (ρ)

, (5)

where r< = min{r, ρ}, r> = max{r, ρ},

ϕ1(r; λ) = Jn
(√
λr
)
, (6a)

ϕ2(r; λ) =
[√
λJ ′n
(√
λR
)
− αJn

(√
λR
)]
Yn
(√
λr
)
−

[√
λY ′n

(√
λR
)
− αYn

(√
λR
)]
Jn
(√
λr
)
, (6b)

andW is the Wronskian function given by

W [ϕ1, ϕ2](r) =
2
πr

[√
λJ ′n
(√
λR
)
− αJn

(√
λR
)]
. (7)

It is easy to see from (5) that the spectral Green’s function can be alternatively written as

gn(r, ρ; λ) =
π

2

√
λY ′n

(√
λR
)
− αYn

(√
λR
)

√
λJ ′n
(√
λR
)
− αJn

(√
λR
) Jn (√λr) Jn (√λρ)

−
π

2

Yn
(√
λρ
)
Jn
(√
λr
)
if 0 < r 6 ρ < R,

Yn
(√
λr
)
Jn
(√
λρ
)
if 0 < ρ 6 r < R.

(8)

Before continuing, there is a need to clarify how the square root in the complex plane will be understood. We define it
as the complex map

z 7→
√
z, −π < arg z 6 π (9)

and then, its range is −π/2 < arg
√
z 6 π/2. Let us observe that under our definition of the square root (9), it does not

contain the branch cut of Yn and Y ′n, and then ϕ2(r; ·) is analytic in {z ∈ C : −π < arg z 6 π}.
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3. The singularities of the spectral Green’s function

Now we shall study the singularities of gn as a function of λ. There are two sets of candidates to be a singularity of the
spectral Green’s function. The first one corresponds to the origin in the λ-complex-plane due to the behavior of the Bessel
functions of the second kind near the origin; and the second set corresponds to the solutions of

√
λJ ′n(λR)−αJn

(√
λR
)
= 0.

With respect to the origin we can obtain the following result:

Proposition 3.1. If α 6= n/R the point λ = 0 is a removable singularity of gn(r, ρ; ·) while if α = n/R the point λ = 0 is a
simple pole and the residue is given by

Res
λ=0
gn(r, ρ; λ) = −

2(n+ 1)
R2

( r
R

)n (ρ
R

)n
for all n ∈ N0, ρ ∈ (0, R), and r ∈ [0, R].

Proof. Assume α 6= n/R. Hence, by using the recurrence formulas for the Bessel functions and replacing the resultant
functions by their asymptotic form for small arguments (cf. [18]), we can compute the limit directly to get

lim
λ→0
gn(r, ρ; λ) =

1
2n

(ρ
R

)n ( r
R

)n (n+ Rα
n− Rα

)
+
1
2n


(
r
ρ

)n
if 0 < r 6 ρ < R,(ρ

r

)n
if 0 < ρ 6 r < R,

(10)

when n > 0 and

lim
λ→0
g0(r, ρ; λ) = −

1
Rα
−


ln
(ρ
R

)
if 0 < r 6 ρ < R,

ln
( r
R

)
if 0 < ρ 6 r < R,

(11)

when n = 0. So, as ρ > 0, we conclude that the origin λ = 0 is a removable singularity of gn for all n ∈ N0.
On the other hand, from the previous step we know that
√
λY ′n

(√
λR
)
− αYn

(√
λR
)
=

(n
R
− α

)
Yn
(√
λR
)
−
√
λYn+1

(√
λR
)
,

√
λJ ′n
(√
λR
)
− αJn

(√
λR
)
=

(n
R
− α

)
Jn
(√
λR
)
−
√
λJn+1

(√
λR
)
,

and then, if α = n/R it holds

gn(r, ρ; λ) =
π

2

Yn+1
(√
λR
)

Jn+1
(√
λR
) Jn (√λr) Jn (√λρ)− π2

Yn
(√
λρ
)
Jn
(√
λr
)
if 0 < r 6 ρ < R,

Yn
(√
λr
)
Jn
(√
λρ
)
if 0 < ρ 6 r < R.

(12)

Again substituting the Bessel functions by their asymptotic forms for small arguments in (12) we obtain the residue of gn at
λ = 0, which is

lim
λ→0

λ gn(r, ρ; λ) = −
2(n+ 1)
R2

( r
R

)n (ρ
R

)n
for all n ∈ N0. �

Continuing with the analysis of the singularities of gn in the λ-complex-plane, we study the poles of the spectral
Green’s function given by the non-zero solutions of the equation

√
λJ ′n
(√
λR
)
− αJn

(√
λR
)
= 0, which can be expressed

equivalently as

Dn(z, α) = zJ ′n(zR)− αJn(zR)

=

(n
R
− α

)
Jn(zR)− zJn+1(zR)

= zJn−1(zR)−
(n
R
+ α

)
Jn(zR)

=

(
α −

n
R

)
Jn−1(zR)+

(
α +

n
R

)
Jn+1(zR) = 0, (13)

where λ = z2.
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Table 1
Summary of results concerning positive and imaginary roots of zJ ′n(Rz)− αJn(Rz) for α ∈ R and n ∈ N0 .

α = n/R zn,m = jn+1,m/R,m ∈ N
α = −n/R zn,m = jn−1,m/R,m ∈ N
α > n/R zn,1 = i yn(yn > 0), 0 < zn,2 < zn,3 < · · ·
α < n/R 0 < zn,1 < zn,2 < · · ·

Let us mention that if z is a solution of (13) for some given α ∈ C, then−z is a solution too. Therefore, only the non-zero
roots located in the complex half-plane Re z > 0 are analyzed. Also, it is possible to observe that as Dn(·, α) is an analytic
function, its zeros are isolated and form a countable set {zn,m ∈ C, (n,m) ∈ N0 × N}. Moreover, for the particular cases
α 6= ±n/R, it is possible to achieve explicitly the values of zn,m by replacing α in (13) obtaining that

zn,m = jn±1,m/R, m ∈ N,
where jn±1,m is the m-th positive root of the Bessel function Jn±1(z). It follows from here that in this particular case, there
are infinite simple real roots of (13).
For an arbitrary α ∈ R, the Eq. (13) is well studied in the literature. The first important result about this equation was

made by Dixon [19,12] who proved that (13) has an infinite number of distinct non-zero simple real roots when n > −1.
Resorting to Dixon’s results, Spigler obtained in [13] an asymptotic and series expansion of the roots of (13). Also, he proved
the existence of two symmetric purely imaginary roots if and only if α > n/R > −1/R. The generalization of [13] for
arbitrary cylinder functions instead of Jn, is available in [20]. Properties of convexity and concavity of the zeros depending
onα ∈ R andn > 0 of these general functions are presented in [21]. Bounds for the small positive and imaginary zeros of (13)
are developed in [14,22,23] and for the general cylinder functions in [24]. Recent results on the monoticity and multiplicity
of the positive roots of (13) for n, α ∈ R are presented in [15]. Table 1 outlines the known results for zn,m for α ∈ R. Also, it
establishes the notation assigned to the roots of Dn(·, α) employed throughout the rest of this paper.
The following proposition states some results on the roots of Dn(·, α) for α ∈ C that will be used at a later stage in this

paper.

Proposition 3.2. (a) The roots of Dn(·, α) form a countable infinite set and their asymptotic behavior as m→∞ is given by

z ∼ jn+1,m ∼
π

R

(
4m+ 2n+ 1

4

)
. (14)

(b) Every non-zero root zn,m is simple if either; α ∈ R or α ∈ C with α 6=
√
n2/R2 − z2n,m. Nevertheless, if zn,m is not simple,

then it has at most multiplicity two.
(c) If Imα 6= 0, then Dn(·, α) has no imaginary and real roots.
(d) If Imα > 0, then Im z2n,m < 0.
Proof. (a) From the asymptotic form of the Bessel functions for large arguments (cf. [18]) and (13), we infer
straightforwardly that for large |z| it holds

Dn(z, α) ∼ zJn+1(zR) ∼

√
2z
π
sin
(
z −

nπ
2
−
π

4

)
, |z| �

∣∣∣n
R
− α

∣∣∣ .
Hence, the zeros ofDn(·, α) have the asymptotic behavior given by (14). From herewe can conclude that (13) has infinite
number of zeros which have an imaginary part that converges to zero.

(b) In order to prove that the zeros are simple, we shall compute the value of D′n(·, α) at a non-zero root zn,m and then, the
pole is simple if D′n(z, α)|z=zn,m 6= 0 (here D

′
n denotes the derivative of Dn with respect to its first variable). Employing

the recurrence relations for the Bessel functions (cf. [18]) and the Eq. (13) itself, we find that

D′n(z, α)|z=zn,m = −
Jn(zn,mR)
zn,mR

(
R2z2n,m − n

2
+ R2α2

)
. (15)

Therefore, if Imα 6= 0, by the assumption α 6=
√
n2/R2 − z2n,m we obtain that D

′
n(z, α)|z=zn,m 6= 0 by virtue of the fact

that zn,mR 6= jn,m, where jn,m is the j-th positive zero of Jn (it follows directly replacing zn,mR by jn,m in (13) and by taking
into account that J ′n and Jn have interlaced roots).
On the other hand, we can note from [19, Eq. (2)] or [13, Eq. II.3] that∫ R

0
rJ2n (zr) dr =

1
2
R2J ′2n (zR)

d
dR

[
Jn(zR)
zRJ ′n(zR)

]
. (16)

Thus, if α ∈ R, we employ again the recurrence relations of Bessel functions and (13) in the right side of (16) to obtain
that ∫ R

0
rJ2n (zn,mr) dr =

J2n (zn,mR)
2

(
R2z2n,m − n

2
+ R2α2

z2n,m

)
. (17)
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Then, if zn,m ∈ Rwe have∫ R

0
rJ2n (zn,mr) dr > 0,

while if zn,m = i y1 we have Jn(i y1r) = i nIn(y1r), where In is the modified Bessel function of the first kind. Then

(−1)n
∫ R

0
rI2n (y1r) dr =

∫ R

0
rJ2n (zn,mr) dr 6= 0

and

D′n(z, α)|z=zn,m = −
2zn,m

RJn(zn,mR)

∫ R

0
rJ2n (zn,mr) dr 6= 0

and consequently, zn,m is simple.
Finally, following [15], we define the function

Fn(z) =
zJ ′n(zR)
Jn(zR)

,

withwhichwe can express (13) as Fn(z) = α. Differentiating Fn two times,we get that it satisfies the differential equation
(cf. [15, Eq. (34)])

F ′′n (z) = −2R−
R+ 2Fn(z)

z
F ′n(z).

Therefore, if zn,m is a repeated root of Dn(·, α), it satisfies

F ′n(z)|z=zn,m = 0,

and then F ′′n (z)
∣∣
z=zn,m

= −2R 6= 0. This proves that the multiplicity of any root is less or equal to two.
(c) The Bessel functions can be represented by the following infinite product (cf. [18]):

Jn(z) =
(z/2)n

n!

∞∏
m=1

(
1−

z2

j2n,m

)
.

It leads to
J ′n(zR)
Jn(zR)

−
α

z
=
1
z

(n
R
− α

)
+

∞∑
m=1

2zR
(zR)2 − j2n,m

= 0,

which is equivalent to the Eq. (13), so that zn,m are the solutions of
∞∑
m=1

2(zR)2

(zR)2 − j2n,m
= αR− n, (18)

for which the left side is the well known Mittag–Leffler expansion of the function zRJ ′n(zR)/Jn(zR), valid for every
z 6= jn,m/R (cf. [23–25]). Now, suppose that there is a purely imaginary zero given by zn,m = i y, y ∈ R. Then replacing
it in (18) we get

∞∑
m=1

2(yR)2

(yR)2 + j2n,m
= αR− n. (19)

Then, since Imα 6= 0 we have that this equation has no solution y ∈ R because the left side of (19) is real while the
right side has a non zero imaginary part. It is a contradiction and then Dn(·, α) has no imaginary zeros. The proof that
there no exist real roots is completely analogous.

(d) Suppose Imα > 0 and that exists a root z of Dn(·, α) such that z2 = (x + i y)/R2 with y > 0. Thus, replacing it in (18)
we obtain

∞∑
m=1

2(x+ i y)(x− j2n,m − i y)
(x− j2n,m)2 + y2

= αR− n.

Performing the product in the nominator of each term of the series and taking the imaginary part of the equation, we
obtain

∞∑
m=1

−2yj2n,m
(x2 − j2n,m)2 + y2

= RImα.

Therefore, since j2n,m > 0 and y > 0, we obtain a contradiction and consequently Im z2 < 0. �
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Fig. 2. Location of the values of α leading to a non-simple root of Dn(·, α) for R = 1 and n = 3. The non-simple zero due to α = ±3 corresponds to the
root z = 0, therefore it does not contradict Proposition 3.2(b) in which the case z 6= 0 is analyzed.

3.1. The non-simple roots of zJ ′n(zR)− αJn(zR)

The condition α 6=
√
n2/R2 − z2n,m for α ∈ C, is necessary in order for zn,m to be a simple zero. Moreover, all the values of

α ∈ C for which it is possible to obtain a non-simple zero, form a countable infinite set. These particular values of α, denoted
by αn,l, where the subindex l arranges them in ascending order according to their absolute value, can be found searching the
roots of the equation

Dn

(√
n2

R2
− α2, α

)
= 0 (20)

in the α-complex-plane. Fig. 2 shows this situation for a particular case.
Let us add that in order to be in accordance with the physical meaning of the impedance boundary condition, we only

have to search the values of α satisfying (20) in the upper complex plane Imα > 0. Numerical procedures to obtain the
numerical values of αn,l may be performed making use of the so-called logarithmic residue based quadrature method. More
references about this method can be found in [16], the paper that originated these kinds of methods, and in the book [17].
Table 2 shows the values of αn,l for different values of n computed with the Delves–Lyness algorithm (cf. [16]). From these
results we may notice that the non-simple zero arising due to the impedance parameter αn,l is the l-th root of Dn(·, αn,l)
i.e. zn,m withm = l.

4. A series representation of the spectral Green’s function

As can be observed in (8), gn(r, ρ; ·)has a branch cut along the negative real line due to the complex square root. However,
in the following proposition we show that gn(r, ρ; ·) is a meromorphic function in the whole λ-complex-plane, i.e. it is
analytic everywhere except at its poles λn,m, (n,m) ∈ N0 × N given by

λn,m =

z
2
n,m if n 6= Rα, m ∈ N
z2n,m−1 if n = Rα, m > 1
0 if n = Rα, m = 1,

(21)

where zn,m, m ∈ N are the non-zero roots of Dn(·, α), and are sorted in increasing order according to their absolute value.

Proposition 4.1. The spectral Green’s function (8) is meromorphic in the whole λ-complex-plane for every α ∈ C, ρ ∈ (0, R),
and r ∈ [0, R].

Proof. First, let us observe that gn(r, ρ; ·) is actually meromorphic in the whole complex plane except at the negative real
axis. Consequently, to prove this proposition we only have to show that gn(r, ρ; ·) is also meromorphic in a region that
contains the negative real axis. Thus, without losing generality, let us assume that λ 6= −y2n (where±yni are the imaginary
roots of Dn(·, α) arising when α > n/R), and then the limits

lim
ε→0+

gn(r, ρ; |λ| ei (π−ε)) and lim
ε→0+

gn(r, ρ; |λ| e−i (π−ε)) (22)
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Table 2
Numerical values of the first (in norm) five impedance parameters αn,l leading to a non-simple root zn,l of the Dn(·, α) computed with the Delves–Lyness
algorithm for R = 1 and n = 0, 1, 2, 3, 4.

n l αn,l zn,l |Dn(zn,l, αn,l)| |D′n(zn,l, αn,l)|

0

1 1.2796+ 2.9804i 2.9804− 1.2796i 0.0031 · 10−6 0.0031·10−6

2 1.6187+ 6.1752i 6.1752− 1.6187i 0.0281 · 10−6 0.0281·10−6

3 1.8189+ 9.3420i 9.3420− 1.8189i 0.0788 · 10−6 0.0788·10−6

4 1.9615+ 12.4985i 12.4985− 1.9615i 0.1260 · 10−6 0.1260·10−6

5 2.0723+ 15.6501i 15.6501− 2.0723i 0.1347 · 10−6 0.1347·10−6

1

1 1.5017+ 4.3646i 4.4663− 1.4675i 0.0073 · 10−5 0.0071·10−5

2 1.7410+ 7.6320i 7.6941− 1.7270i 0.0345 · 10−5 0.0342·10−5

3 1.9028+ 10.8299i 10.8746− 1.8949i 0.0862 · 10−5 0.0858·10−5

4 2.0251+ 14.0040i 14.0389− 2.0201i 0.1344 · 10−5 0.1341·10−5

5 2.1235+ 17.1669i 17.1956− 2.1199i 0.1409 · 10−5 0.1407·10−5

2

1 1.6950+ 5.4908i 5.8169− 1.6000i 0.0491 · 10−6 0.0467·10−6

2 1.8590+ 8.9054i 9.1185− 1.8155i 0.2383 · 10−6 0.2331·10−6

3 1.9870+ 12.1756i 12.3346− 1.9613i 0.5460 · 10−6 0.5393·10−6

4 2.0902+ 15.3933i 15.5204− 2.0731i 0.7386 · 10−6 0.7327·10−6

5 2.1764+ 18.5855i 18.6914− 2.1640i 0.6197 · 10−6 0.6162·10−6

3

1 1.8701+ 6.4813i 7.1010− 1.7069i 0.0200 · 10−5 0.0185·10−5

2 1.9716+ 10.0606i 10.4837− 1.8921i 0.1088 · 10−5 0.1047·10−5

3 2.0698+ 13.4197i 13.7437− 2.0210i 0.2691 · 10−5 0.2630·10−5

4 2.1553+ 16.6943i 16.9575− 2.1219i 0.3827 · 10−5 0.3769·10−5

5 2.2298+ 19.9263i 20.1482− 2.2053i 0.3339 · 10−5 0.3303·10−5

4

1 2.0323+ 7.3836i 8.3439− 1.7984i 0.0160 · 10−4 0.0144·10−4

2 2.0794+ 11.1310i 11.8075− 1.9603i 0.0778 · 10−4 0.0736·10−4

3 2.1506+ 14.5865i 15.1145− 2.0755i 0.1657 · 10−4 0.1602·10−4

4 2.2198+ 17.9251i 18.3597− 2.1673i 0.1931 · 10−4 0.1886·10−4

5 2.2833+ 21.2031i 21.5730− 2.2441i 0.1286 · 10−4 0.1265·10−4

exist, by virtue of the fact that gn(r, ρ; ·) has no other poles on the negative real line (see Proposition 3.2(c)). Employing
(5), we compute the limits in (22), proving that they are equal and then the spectral Green’s function is continuous in any
region that contains the negative real line (except the poles). Immediately afterwards, a theorem of analytic continuation
along curves will ensure that gn(r, ρ; ·) is meromorphic.
First, let us claim that ϕ2(r; ·), defined in (6b), is continuous in the whole complex plane as a function of λ, except at

λ = 0, where it has a singularity due to the Bessel function of the second kind. To show it, we ought to compute

ϕ2(r; λ)|
λ=|λ| eiπ

λ=|λ| e−iπ
= lim

ε→0+
ϕ2(r; |λ| ei (π−ε))− lim

ε→0+
ϕ2(r; |λ| e−i (π−ε))

where

ϕ2(r; λ)|
λ=|λ| eiπ

λ=|λ| e−iπ
=
(
βJ ′n(βR)− αJn(βR)

)
Yn(βr)|

β=i |λ|1/2

β=−i |λ|1/2
−
(
βY ′n(βR)− αYn(βR)

)
Jn(βr)|

β=i |λ|1/2

β=−i |λ|1/2
. (23)

Replacing Y ′n and J
′
n in (23) by their respective recurrence formulas, and observing, with the aid of the analytic continuation

formulas (cf. [18]), that

βJn(βr)Yn+1(βR)|
β=i |α|1/2

β=−i |α|1/2
= βJn(βR)Yn+1(βr)|

β=i |α|1/2

β=−i |α|1/2

= 2|λ|1/2Jn(i |λ|1/2r)Jn+1(i |λ|1/2R)

and

βJn+1(βR)Yn(βr)|
β=i |λ|1/2

β=−i |λ|1/2
= βJn+1(βr)Yn(βR)|

β=i |λ|1/2

β=−i |λ|1/2

= 2|λ|1/2Jn+1(i |λ|1/2R)Jn(i |λ|1/2r),

we find

ϕ2(r; λ)|
λ=|λ| eiπ

λ=|λ| e−iπ
= 0.

From here we have that ϕ2(r; ·) is continuous in the whole complex plane except at λ = 0.
On the other hand, evaluating the remaining term of the Green’s function in λ = |λ| eiπ and λ = |λ| e−iπ , we achieve

ϕ1(r; λ)
ρW [ϕ1(r; λ), ϕ2(r; λ)](ρ)

∣∣∣∣
λ=|λ| eiπ

=
Jn(βr)

βJ ′n(βR)− αJn(βR)

∣∣∣∣
β=i |λ|1/2
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=
Jn(i |λ|1/2r)

i |λ|J ′n
(
i |λ|1/2R

)
− αJn

(
i |λ|1/2R

) (24)

and
ϕ1(r; λ)

ρW [ϕ1(r; λ), ϕ2(r; λ)](ρ)

∣∣∣∣
λ=|λ| e−iπ

=
Jn(βr)

βJ ′n(βR)− αJn(βR)

∣∣∣∣
β=−i |λ|1/2

=
(−1)nJn(i |λ|1/2r)

(−1)n
[
i |λ|J ′n

(
i |λ|1/2R

)
− αJn

(
i |λ|1/2R

)] . (25)

Therefore, since (24) and (25) are equal and ϕ2(r; ·) is continuous, it follows that gn(r, ρ; ·) is continuous in any region that
contains the negative real axis (except the poles).
Now, the fact that gn(r, ρ; ·) ismeromorphic can be inferred directly from the following theorem of analytic continuation

along curves (cf. [26, p. 206]): If f is a function which is continuous on an open set U and analytic on U except possibly at
the points of a simple analytic curve C in U , then f is actually analytic on all of U . �

Having stated the fact that gn(r, ρ; ·) is meromorphic, we proceed to present the main result of this section, which is a
series expansion of gn. To accomplish that, we need first the following lemma.

Lemma 4.2. There exist positive constants C1 and C2 depending on n such that

|gn(r, ρ; λ)| 6
C1

|λ|1/2
√
rρ

provided that: (i) |λ| > C2, and (ii) either Re
√
λ = (4l+ 2n+ 3)π/4R for some integer l or |Im

√
λ| > R−1.

Proof. Let M1 be a positive constant such that the asymptotic forms of the Bessel functions for large arguments (cf. [18])
are valid when |λ| > M1. Thus, substituting the Bessel functions by their asymptotic forms in (6a) and (6b) we obtain, after
some manipulation with the complex trigonometric functions, that the asymptotic form of ϕ1 and ϕ2 is given by

ϕ1(r; λ) ∼
[
2

π
√
λr

]1/2
cos

(
√
λr −

π(2n+ 1)
4

)
,

ϕ2(r; λ) ∼
−2

π
√
Rrλ

[√
λ cos

(√
λ(R− r)

)
+

(n
R
− α

)
sin
(√
λ(R− r)

)]
,

for all |λ| > M1.
Considering the properties of the complex trigonometric functions, |cos(x+ i y)| 6 2 e|y| and |sin(x+ i y)| 6 2 e|y| for

every x, y ∈ R, we get that for |λ| large enough, the following inequalities hold

|ϕ1(r<; λ)| 6
[
8
π

]1/2 e|Im
√
λ|r<

|λ|1/4
√
r<
, (26)

|ϕ2(r>; λ)| 6
4

π
√
R

[
1+

1
M1

∣∣∣n
R
− α

∣∣∣] e|Im
√
λ|(R−r>)

√
r>

, (27)

for every |λ| > M1. Then, multiplying (26) by (27), we obtain

|ϕ1(r<; λ)ϕ2(r>; λ)| 6
C

|λ|1/4
√
r<r>

e|Im
√
λ|(R−r>+r<),

and since r> − r< = max(r, ρ)−min(r, ρ) > 0, we have R− r> + r< 6 R and hence

|ϕ1(r<; λ)ϕ2(r>; λ)| 6
C

|λ|1/4
√
r<r>

e|Im
√
λ|R. (28)

On the other hand, the denominator of the spectral Green’s function is Dn(
√
λ, α) and its asymptotic behavior for large

arguments is given by

Dn
(√
λ, α

)
∼

[
2

π
√
λR

]1/2 {(n
R
− α

)
cos

(
√
λR−

π(2n+ 1)
4

)
−
√
λ sin

(
√
λR−

π(2n+ 1)
4

)}
.

So that for all |λ| > M1 we have∣∣∣Dn (√λ, α)∣∣∣ ∼
∣∣∣∣∣2
√
λ

πR

∣∣∣∣∣
1/2 ∣∣∣∣sin(√λR− π(2n+ 1)4

)∣∣∣∣ ∣∣∣∣ 1√
λ

(n
R
− α

)
cot

(
√
λR−

π(2n+ 1)
4

)
− 1

∣∣∣∣ . (29)
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Let us note that for any real x and y, we have

| cos(x+ i y)|2 = cosh2(y)− sin2(x) (30)

| sin(x+ i y)|2 = cosh2(y)− cos2(x). (31)

Thus, since cosh y > e|y|/2, we have that placing cos x = 0 in (31) the sine function can be bounded by |sin(x+ i y)| > e|y|/4.
If instead we have |y| > 1, the same bound holds due to the inequality

|sin(x+ i y)|2 = cosh2(y)− cos2(x) > cosh2(y)− 1 >
e2|y|

4
− 1 >

e2|y|

16
. (32)

Consequently, from (30) and (32), we obtain that

|cot(x+ i y)|2 =
∣∣∣∣ cos(x+ i y)sin(x+ i y)

∣∣∣∣2 6 16 cosh2(y)e2|y|
6 32

e2|y|

e2|y|
, (33)

provided that either cos x = 0 or |y| > 1.
Now, setting

√
λR−

π(2n+ 1)
4

= x+ i y, (34)

we can make use of the inequality (33) and then, choosing a constant C2 = max {M1,M2}, where

M2 > 128
∣∣∣n
R
− α

∣∣∣2 ,
we obtain that for every |λ| > C2 the following inequality holds∣∣∣∣ 1√

λ

(n
R
− α

)
cot

(
√
λR−

π(2n+ 1)
4

)
− 1

∣∣∣∣ > ∣∣∣∣1− 1
|λ|1/2

∣∣∣n
R
− α

∣∣∣ ∣∣∣∣cot(√λR− π(2n+ 1)4

)∣∣∣∣∣∣∣∣ > 12 . (35)

Then, employing it in (29), we obtain that∣∣∣Dn (√λ, α)∣∣∣ > |λ|1/4 e|Im
√
λ|R

8

∣∣∣∣ 2πR
∣∣∣∣1/2 , (36)

and thus finally computing the quotient between (28) and (36), we get

|gn(r, ρ; λ)| =

∣∣∣∣∣∣ϕ1(r<; λ)ϕ2(r>; λ)Dn
(√
λ;α

)
∣∣∣∣∣∣ 6 C1
|λ|1/2

√
r<r>

,

where by definition r<r> = min{r, ρ}max{r, ρ} = rρ. �

Theorem 4.3. Let λ 66= λn,m, then spectral Green’s function (8) admits the following representation:

gn(r, ρ; λ) =
∞∑
m=1

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

,

with n ∈ N0, r ∈ [0, R], and ρ ∈ (0, R).

Proof. Let γN be the contour depicted in Fig. 3, where N is a positive integer large enough such that
π

4R
(4N + 2n+ 3) > C2

π

4R
(4N + 2n+ 3) >

1
R

N > 2|λ|,

where C2 is the second constant in Lemma 4.2. Note that in the region bounded by γN the function gn is meromorphic as
a function of λ, i.e. holomorphic except at the isolated points λ = λn,m, which are its poles, so that the residue theorem
applies. Also, we have that by virtue of Lemma 4.2, on γN the function gn is bounded by C1 (|λ|rρ)−1/2 and thus there are no
poles on it.
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Fig. 3. Integration contour utilized in the proof of Theorem 4.3.

Hence, according to the residue theorem (cf. [26]), the following equality holds for every λ 6= λn,m:

1
2π i

∫
γN

gn(r, ρ; ν)
λ− ν

dν = −gn(r, ρ, λ)+
M(N)∑
m=1

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

, (37)

whereM(N) is the number of poles ν = λn,m enclosed by γN , which is a monotone increasing function of N .
On the other hand, thanks to Lemma 4.2, we have that the integral over γN can be bounded in the following way:∣∣∣∣∫

γN

gn(r, ρ; ν)
λ− ν

dν
∣∣∣∣ 6 ∫

γN

∣∣∣∣gn(r, ρ; ν)λ− ν

∣∣∣∣ dν 6 C1
√
rρ

∫
γN

|ν|−1/2

|ν − λ|
dν.

Then, as N > 2|λ|we have that |λ− ν| > N and |ν| 6 π
√
2(4N + 2n+ 3)/4R 6 C̃N for every ν ∈ γN . Consequently

C1|ν|1/2

|λ− ν|
6
C̃
N3/2

, ∀ν ∈ γN

and noting that the length of the path γN is l(γN) 6 2π(4N + 2n+ 3)/R, we get∣∣∣∣∫
γN

gn(r, ρ; ν)
λ− ν

dν
∣∣∣∣ 6 1
√
rρ

Ĉ
N1/2

. (38)

Next, taking the absolute value of (37), we obtain∣∣∣∣∣g(r, ρ; λ)− M(N)∑
m=1

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

∣∣∣∣∣ 6 1
2π

∣∣∣∣∫
γN

gn(r, ρ; ν)
λ− ν

dν
∣∣∣∣

6
1
√
rρ

Ĉ
N1/2

(39)

and hence

gn(r, ρ; λ) = lim
N→∞

M(N)∑
m=1

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

=

∞∑
m=1

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

.

Moreover, from (39) it is possible to conclude that

lim
N→∞

√
rρ

∣∣∣∣∣gn(r, ρ; λ)− M(N)∑
m=1

Res
ν=z2n,m

gn(r, ρ; ν)
λ− ν

∣∣∣∣∣ = 0
uniformly for every r ∈ [0, R] and ρ ∈ (0, R). �
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4.1. Computing the residues of the spectral Green’s function

To find the residue of gn(r, ρ; ν)/(λ− ν) at ν = λn,m, we will express the spectral Green’s function as

gn(r, ρ; λ) =
Nn
(√
λ, α

)
Dn
(√
λ, α

) Jn (√λr) Jn (√λρ)− π2 Jn (√λr<) Yn (√λr>) , (40)

where Dn is defined in (13) and

Nn(z, α) =
π

2

[
zY ′n(zR)− αYn(zR)

]
.

Let us observe that the last term in (40) contributes only to the residue at the pole ν = 0, arising when α = n/R, was
obtained in Proposition 3.1 and is given by

Res
ν=0

gn(r, ρ; ν)
λ− ν

= −
2(n+ 1)
λR2

( r
R

)n (ρ
R

)n
.

Therefore, this term in (40) does not exert any influence on the computation of the residues at the non-zero poles.
Consequently, all other residues can be obtained with the following formula:

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

= Res
ν=z2n,m

[
Nn(
√
ν, α)

Dn(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

λ− ν

]
.

At this stage we ought to distinguish two cases; ν = λn,m is a simple pole (i.e. λn,m = z2n,m with α ∈ R or Imα 6= 0 with

α 6=
√
n2/R2 − z2n,m); or ν = λn,m is a double pole (i.e. λn,m = z

2
n,m with Imα 6= 0 and α =

√
n2/R2 − z2n,m).

When ν = λn,m is a simple pole, the following formula holds

Res
ν=λn,m

[
Nn(
√
ν, α)

Dn(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

λ− ν

]
= lim

ν→z2n,m

2
√
νNn(
√
ν, α)

D′n(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

λ− ν

where D′n denotes the derivative of Dn with respect to its first variable. Making use of the Wronskian between Jn and Yn
(cf. [18]), we get that

lim
ν→z2n,m

Nn(
√
ν, α) =

1
RJn(zn,mR)

,

and from Proposition 3.2(b) it follows that

lim
ν→z2n,m

D′n(
√
ν, α) = −

Jn(zn,mR)
zn,mR

(
R2z2n,m − n

2
+ R2α2

)
.

Therefore

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

=
2z2n,mJn(zn,mr)Jn(zn,mρ)

J2n (zn,mR)(z2n,m − λ)
(
R2z2n,m − n2 + R2α2

) (41)

when ν = λn,m 6= 0 is a simple pole.
Now, let us assume that ν = λn,m is a double pole. Thus, the residue must be computed by the formula

Res
ν=λn,m

gn(r, ρ; ν)
ν − λ

= lim
ν→z2n,m

d
dν

[
(ν − z2n,m)

2

(ν − λ)

Nn(
√
ν, α)

Dn(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

]
.

After performing algebraic manipulation, employing the properties of the Bessel functions and the equations that define
non-simple roots, i.e. Dn(zn,m, α) = 0 and α2 = n2/R2 − z2n,m, we obtain

Res
ν=λn,m

gn(r, ρ; ν)
λ− ν

= −
4
3
Jn(zn,mr)Jn(zn,mρ)
R2J2n (zn,mR)

[
3z2n,m

(z2n,m − λ)2
+
(2Rα − 3n− 2)
z2n,m − λ

]

−
Jn+1(zn,mr)Jn(zn,mρ)
R2J2n (zn,mR)

2zn,mr
z2n,m − λ

−
Jn(zn,mr)Jn+1(zn,mρ)
R2J2n (zn,mR)

2zn,mρ
z2n,m − λ

. (42)
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5. The spatial Green’s function

Herein we recover the spatial Green’s function from the integral representation and the spectral Green’s function
introduced in (3). Two different expressions of the spatial Green’s function are obtained. The first one corresponds to a series
expansion deduced as a result of Theorem 4.3, and the second one shows explicitly the behavior of the Green’s function at
the source point.

5.1. Series representation

Thanks to Theorem 4.3, we have that if k2 − ξ 2 6= λn,m, then the spectral Green’s function can be expressed as

gn(r, ρ; k2 − ξ 2) =
∞∑
m=1

Res
ν=λn,m

gn(r, ρ; ν)
k2 − ξ 2 − ν

. (43)

Paying attention to the condition k2 − ξ 2 6= λn,m and to Proposition 3.2(d), it may be noted that such condition holds if
Im k2 > 0 or Imα > 0, by virtue of the fact that under either of those conditions, Im(k2 − ξ 2) and Im λn,m have opposite
signs. This guarantees that every term in the series (43) belongs to L1(R)when it is viewed as a function of ξ , due to the fact
that the functions (k2 − ξ 2 − z2n,m)

−1 and (k2 − ξ 2 − z2n,m)
−2, that appear in (41) and (42), have no singularities on the real

line.
Therefore, assuming that Im k2 > 0 or Imα > 0, we utilize (3) and Theorem 4.3 to obtain the following integral

representation of the Green’s function with the aid of the Lebesgue convergence theorem

G(x, y) =
1
4π2

∞∑
n=0

∞∑
m=1

εn cos(n(θ − ϑ))
∫

R
Res
ν=λn,m

gn(r, ρ; ν)
k2 − ξ 2 − ν

ei ξ(z−ζ ) dξ . (44)

To compute the integral in (44), we need the following inverse Fourier transforms (cf. [27, p. 116])∫
R

ei zξ

ξ 2 + z2n,m − k2
dξ = iπ

ei
√
k2−z2n,m|z|√
k2 − z2n,m

(45)

∫
R

ei zξ

(ξ 2 + z2n,m − k2)2
dξ = iπ

ei
√
k2−z2n,m|z|

2(k2 − z2n,m)3/2

[
i
√
k2 − z2n,m|z| − 1

]
. (46)

The formulas (45) and (46) together with (41) and (42) lead to:

• If the pole of the spectral Green’s function is λn,1 = 0, which occurs when α = n/R, then we have that∫
R
Res
ν=λn,1

gn(r, ρ; ν)
k2 − ξ 2 − ν

ei ξ(z−ζ ) dξ =
2π i (n+ 1)

R2

( r
R

)n (ρ
R

)n ei k|z−ζ |
k

. (47)

• If λn,m = z2n,m is a simple pole of the spectral Green’s function, i.e. Dn(zn,m, α) = 0 and D
′
n(zn,m, α) 6= 0, then we obtain

that ∫
R
Res
ν=λn,m

gn(r, ρ; ν)
k2 − ξ 2 − ν

ei ξ(z−ζ ) dξ =
2π i z2n,m

J2n (zn,mR)
(
R2z2n,m − n2 + R2α2

) Jn(zn,mr)Jn(zn,mρ) ei
√
k2−z2n,m|z−ζ |√
k2 − z2n,m

. (48)

• When λn,m = z2n,m is a double pole of the spectral Green’s function, i.e. Dn(zn,m, α) = 0 and D
′
n(zn,m, α) = 0, we find that∫

R
Res
ν=λn,m

gn(r, ρ; ν)
k2 − ξ 2 − ν

ei ξ(z−ζ ) dξ =
1

2R2J2n (zn,mR)

z2n,mJn(zn,mr)Jn(zn,mρ)
[
i
√
k2 − z2n,m|z − ζ | − 1

]
(k2 − z2n,m)

+ zn,mJn+1(zn,mr)Jn(zn,mρ)r + zn,mJn(zn,mr)Jn+1(zn,mρ)ρ

+
2
3
(2Rα − 3n− 2)Jn(zn,mr)Jn(zn,mρ)

 ei√k2−z2n,m|z−ζ |
i
√
k2 − z2n,m

. (49)

Replacing (47)–(49) in (44) when it corresponds, we get the series expansion of the Green’s function. It is important to
note that under the assumption Im k2 > 0 or Imα > 0, every term in the series representation of Green’s function decays
exponentially in the direction of the axis of the waveguide (see Proposition 3.2(c)).
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Results on the convergence of the series (44) for the particular case α = 0 can be found in [8]. More specifically, in that
work it is proved that for (x, y) ∈ Ω ×Ω \ {z = ζ } and Im k2 > 0, the series converges uniformly. A generalization of this
result for α ∈ C, Imα > 0 seems to be possible to obtain from this work, but it is out of the scope of this paper. Anyway, we
will assume that the uniform convergence of the series (44) for the domain stated above holds for an arbitrary impedance
parameter α with Imα > 0.

5.2. Local behavior at the source point

Let us replace the Bessel function of second kind, Yn, by

Yn(z) = i
[
Jn(z)− H(1)n (z)

]
in (8), where H(1)n (z) is the Hankel function of the first kind (cf. [18]). It leads to

gn(r, ρ; λ) = −
iπ
2

√
λH(1)

′

n

(√
λR
)
− αH(1)n

(√
λR
)

√
λJ ′n
(√
λR
)
− αJn

(√
λR
) Jn

(√
λr
)
Jn
(√
λρ
)

+
iπ
2

Jn
(√
λr
)
H(1)n

(√
λρ
)
if 0 < r 6 ρ < R,

Jn
(√
λρ
)
H(1)n

(√
λr
)
if 0 < ρ 6 r < R,

which may be written equivalently as

gn(r, ρ; λ) = g∞n (r, ρ; λ)+ g
c
n(r, ρ; λ),

where

g∞n (r, ρ; λ) =
iπ
2

Jn
(√
λr
)
H(1)n

(√
λρ
)
if 0 < r 6 ρ < R,

Jn
(√
λρ
)
H(1)n

(√
λr
)
if 0 < ρ 6 r < R,

(50)

and

gcn(r, ρ; λ) = −
iπ
2

√
λH(1)

′

n (λR)− αH(1)n (λR)
√
λJ ′n(λR)− αJn(λR)

Jn(λr)Jn(λρ). (51)

Now, setting (50) and (51) in the integral representation of the Green’s function (3), we define

G∞(x, y) =
1
4π2

∫
R
ei ξ(z−ζ )

∑
n∈N0

g∞n (r, ρ; k
2
− ξ 2) cos(n(θ − ϑ))εn dξ (52)

and

Gc(x, y) =
1
4π2

∫
N0×R

gcn(r, ρ; k
2
− ξ 2) cos(n(θ − ϑ))εn dξ dn, (53)

fromwhich the Green’s function may be expressed as G = G∞+G c. Hence, as a result of Graf’s addition theorem (cf. [27, p.
21, Eq. (3b)]) we find that

H(1)0
(√
k2 − ξ 2

√
r2 + ρ2 − 2rρ cos(θ − ϑ)

)
=

∑
n∈N0

εnH(1)n
(√
k2 − ξ 2ρ

)
Jn
(√
k2 − ξ 2r

)
cos(n(θ − ϑ)). (54)

Therefore, replacing (54) in (52), we obtain

G∞(x, y) =
i
8π

∫
R
H(1)0

(√
k2 − ξ 2

√
r2 + ρ2 − 2rρ cos(θ − ϑ)

)
ei ξ(z−ζ ) dξ, (55)

and then, thanks to Weyrich’s formula [27, p. 34],

i
2

∫
R
H(1)0

(√
k2 − ξ 2%

)
ei ξz dξ =

ei k
√
%2+z2√

%2 + z2
,

which is valid for every k ∈ C such that 0 6 arg
√
k2 − ξ 2 < π, 0 6 arg(k) < π , which is our case. We get that the integral

in (55) can be solved exactly to obtain

G∞(x, y) =
ei k
√
(z−ζ )2+r2+ρ2−2rρ cos(θ−ϑ)

4π
√
(z − ζ )2 + r2 + ρ2 − 2rρ cos(θ − ϑ)

,
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where G∞(x, y) = Φ(x− y), with

Φ(x) =
ei k|x|

4π |x|
,

the fundamental solution of the Helmholtz equation in R3. It can be noted that G∞ contains the unique singularity of the
Green’s function located at y = x. Therefore, the remaining term Gc is ‘‘regular’’, in the sense that numerical techniques
such as the Inverse Fast Fourier Transform may be applied to approximate it (cf. [9–11]).

5.3. Undamped wave propagation and the radiation condition

Now we turn our attention to the complete undamped case, i.e. when the wave number and the impedance parameter
are such that Im k2 = Imα = 0 and, consequently, all the poles of the spectral Green’s function λn,m are simple and lie on
the real line.
When these conditions hold, the functions in the inverse Fourier transforms (45) and (46) no longer belong to L1(R)

for all m ∈ N and n ∈ N0, because, when k2 > z2n,m for some m and n, they have poles on the real line at
√
k2 − z2n,m

and −
√
k2 − z2n,m. Consequently, the integrals (45) and (46) lack meaning within the frame of the Lebesgue integral and

must be understood in a broader sense. To face that problem we appeal to the limiting absorption principle (cf. [28,29]), a
mathematical procedure that allows us to obtain a suitable meaning in physical terms for (45) and (46) in a way that leads
to an unique outgoing wave solution of (1).
To apply the limiting absorption principle we ought to add dissipation to the system, perturbing either the wave number

designated as kε = k + i ε, ε > 0 or the impedance parameter as αε = α + i ε, ε > 0. Subsequently, (1) can be solved
resorting to the procedure described above to obtain an ε-dependent Green’s function Gε . Finally, taking the limit assuming
the uniform convergence of the series

G = lim
ε→0
Gε (56)

we get the unique outgoing wave solution of (1) that can be represented by the following series

G(x, y) =
i
4π

∑
n∈N0

∑
m∈Z

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ)
ei
√
k2−λn,m|z−ζ |√
k2 − λn,m

, (57)

where

ϕn,m(r) =

√
2zn,mJn

(
zn,mr

)
Jn
(
zn,mR

)√
R2z2n,m − n2 + R2α2

, m ∈ N, (58)

if α 6= n/R, λn,m = z2n,m and

ϕn,m(r) =


√
2Jn(jn+1,m−1r/R)
Jn
(
jn+1,m−1

)
R

ifm > 1,
√
2n+ 2
R

( r
R

)n
ifm = 1,

(59)

if α = n/R for some n ∈ N0. Let us observe that the set of functions {
√
rϕn,m(r)} forms a complete orthonormal basis of

L2((0, R)). It can be deduced from the theory of Dini series [12] or, equivalently, from the theory of singular self-adjoint
Sturm–Liouville problems [30].
Unlike the damped case, in the undamped case the Green’s function does not decay exponentially in the direction of the

waveguide’s axis. In fact, we have that the term i
√
k2 − λn,m in (57) can be either purely real or purely imaginary. Thus,

when k2 > λn,m, it holds that
√
k2 − λn,m > 0, and then themode in the series representation of the time-harmonic Green’s

functionRe(G(x, y) e−iωt), that is

Re

[
cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ) e

i
[√
k2−λn,m|z−ζ |−ωt

]]
, (60)

represents an unattenuated propagative mode that travels out from the point source located at x = (ρ cosϑ, ρ sinϑ, ζ ) in
the direction of the waveguide’s axis, with velocity cn,m = ω/

√
k2 − λn,m. On the other hand, when k2 < λn,m we have that

i
√
k2 − λn,m < 0, thus the mode (60) decays exponentially while it travels out from the source. The latter modes are the

so-called evanescent modes and the former correspond to the propagative modes.
The following result states that in absence of dissipation the number of propagative modes is finite while the number of

evanescent modes is infinite.
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Proposition 5.1. The cardinality of the set

Λ =

{
(n,m) ∈ N0 × N : D

(√
λn,m, α

)
= 0 and λn,m < k2

}
(61)

is finite.

Proof. First, let us observe that when α ∈ R we have that λn,m ∈ R and λn,m → ∞ as m → ∞ for every n ∈ N0. Then,
there exists M ∈ N such that λn,m > k2 for every m > M and n ∈ N0. On the other hand, according to [24] the following
bound holds:

x21 >
(Rn− α)(n+ 1)
R(2R+ nR− α)

, ∀n > α/R,

where x1 is the first positive (real) root of Dn(·, α). According to that, we can choose a N > max{α/R, 0} such that

λn,1 >
(Rn− α)(n+ 1)
R(2R+ nR− α)

> k2, ∀n > N,

and hence we obtain that |Λ| < MN <∞. �

Now, since the evanescent modes decay exponentially, the far-field form of the Green’s function is only composed by the
propagative modes. Hence it is given by

Gff (x, y) =
i
4π

∑
(n,m)∈Λ

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ)
ei
√
k2−λn,m|z−ζ |√
k2 − z2n,m

.

This far-field form of the Green’s function and the orthogonality of the functions{√
rϕn,m(r) ei nθ , (n,m) ∈ N0 × N

}
in the L2(Ω ′) inner product (whereΩ ′ is the waveguide’s cross section), allow us to obtain directly the radiation condition,
which can be written as

lim
|L|→∞

∫
ΓL

{
∂G
∂z
− i

√
k2 − λn,msign(z − ζ )G

}
ei nθϕn,m(r) dσy = 0, ∀(n,m) ∈ Λ

where the convergence of the limit is uniformly for every x ∈ Ω , the surface ΓL is defined by

ΓL =
{
x = (x1, x2, x3) ∈ R3 : x21 + x

2
2 < R

2, x3 = L
}
= Ω ′ × {L}

and the set of indicesΛ is defined in (61).
An interesting phenomenon arising only when a non-dissipative impedance boundary condition is imposed on the

waveguide’s walls, is the propagation of a surface wave. This kind of wave decays exponentially to the interior of the
waveguide, transporting energy only near the waveguide’s surface. This wave is the result of the superposition of the
surface wavemodes that comprise the series expansion of the Green’s function. Thesemodes appear for any real impedance
parameter α > 0 due the negative poles of the spectral Green’s function that arise when a purely imaginary root of Dn(·, α)
exists. It leads to the fact that the radial component of these modes (58) is

ϕn,1(r) =

√
2ynIn(ynr)

In(ynR)
√
R2y2n + n2 − R2α2

,

where In are the modified Bessel functions of the first kind (cf. [18]), which are monotonically increasing functions.

6. Numerical procedures

In this section we state some basic procedures to obtain numerical evaluations of the Green’s function (44). To do that,
we present two different methods to compute the zeros of Dn(·, α), based on standard algorithms for finding the roots of a
real valued function when the impedance parameter is real, and based on the finite element method when the impedance
parameter is a proper complex number.We are particularly interested in obtaining accurate approximations for the smallest
zn,m, since the larger ones can be approximated by the asymptotic formula obtained in Proposition 3.2.

6.1. Real impedance case

As was discussed above, in this case there exist an infinite number of real positive roots of Dn(·, α) and only one purely
imaginary root in the positive imaginary axis. Therefore, the search for the imaginary root does not present difficulties
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Fig. 4. Location of zn,m for α = 2.5, R = 1 and n = 1.

because there are standard methods to solve that kind of problem. However, the search for the positive real roots produce
more complications. To face them, let us note that the equation Dn(z, α) = 0 can be expressed as

Fn(z) = α,
so that to achieve a good approximation of zn,m we have to compute the intersection points of the horizontal line w = α
and the real valued function w = Fn(z). Thus, since F ′n(z) < 0 for all 0 < z 6= jn,m/R and n > −1 (cf. [15]) and Fn has poles
in jn,m, we have that there is at most one intersection point in every interval [jn,m/R, jm+1,n/R]. So that, to obtain the positive
real roots of Dn(·, α)we only have to search for them in every interval [jn,m/R, jm+1,n/R]. Fig. 4 shows the situation.
From a numerical point of view, to obtain the value of zn,m we need first to have jn,m, the positive zeros of the Bessel

function Jn(x). To compute them there exist several efficient numerical methods. Some of them can be found in [31,32].
Once the numbers jn,m are found, we may obtain zn,m making use of standard algorithms to find zeros of functions that
change their sign once in a given interval, such as can be found in [33] (which is implemented inMatlab).

6.2. Complex impedance case

When the impedance parameter is a proper complex numberwe cannot use themethod described above because nothing
guarantees that the zeros are real. In fact, they have a non-zero imaginary part, as can be seen from Fig. 5. Consequently, we
have to face the problem of finding zn,m on the whole complex plane.
To find these values we appeal to the Bessel differential equation. Thus, let us note that the zeros of Dn(·, α) can be

characterized as the eigenvalues of the following differential problem for ϕ ∈ C1[0, R] ∩ C2(0, R)
−
(
rϕ′
)′
+
n2

r
ϕ = rλϕ, 0 < r < R,

ϕ′ − αϕ = 0, r = R,
lim
r→0+

ϕ(r) <∞,
(62)

where the eigenvalues and the eigenfunctions are λ = z2n,m and ϕn,m respectively and where the functions ϕn,m are defined
in (58) and (59).
To achieve the numerical values of zn,m, we transform the differential eigenvalue problem (62) into a generalized matrix

eigenvalue problem by means of the finite element method or the finite difference method. To employ the finite element
method,wediscretize the interval (0, R) atN regular subintervals [rn, rn+1]of lengthh = R/N , where rn = nR/N, 0 6 n 6 N ,
and we construct basis functions that are linear at every subinterval and satisfy ψn(rm) = δn,m. Thus, multiplying (62) by
rψ ∈ H1(0, R), and using integration by parts, the variational formulation is obtained. Next, making use of the Galerkin
method with basis functions ψn, the discretized version of (62) is achieved and reads as follows:{

Find 0 6= λ(h) ∈ C and 0 6= x ∈ CN such that:
Anx = λ(h)Bx,

(63)

where the matrices A, B ∈ CN×N are sparse and are defined by:

[An]i,j = −αR2ψi(R)ψj(R)+
∫ R

0
r2ψi(r)ψ ′j (r) dr + n

2
∫ R

0
ψi(r)ψj(r) dr

[B]i,j =
∫ R

0
r2ψi(r)ψj(r) dr.
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Fig. 5. Location of zn,m for α = 2.5+ i , R = 1 and n = 1.

Table 3
Numerical results of the finite element method applied to find the first five zeros of Dn(·, α) for R = 1, n = 0, 1, 2, 3, 4 and α = 2.5 + i . All the values
were computed with h = 10−5 .

n m z(h)n,m jn+1,m/R |Dn(z
(h)
n,m, α)|

0

1 0.9701− 3.0594i 3.8317 0.0834 · 10−5

2 3.1926− 0.1935i 7.0156 0.0055 · 10−5

3 6.6600− 0.1322i 10.1735 0.0025 · 10−5

4 9.9279− 0.0950i 13.3237 0.0057 · 10−5

5 13.1361− 0.0736i 16.4706 0.0042 · 10−5

1

1 1.1116− 2.8342i 5.1356 0.5515 · 10−5

2 4.8468− 0.1694i 8.4172 0.0464 · 10−5

3 8.2396− 0.1131i 11.6198 0.0394 · 10−5

4 11.4909− 0.0839i 14.7960 0.0295 · 10−5

5 14.6947− 0.0665i 17.9598 0.0281 · 10−5

2

1 1.5439− 2.1842i 6.3802 0.7108 · 10−5

2 6.2959− 0.1511i 9.7610 0.1933 · 10−5

3 9.7081− 0.1009i 13.0152 0.1558 · 10−5

4 12.9761− 0.0762i 16.2235 0.1356 · 10−5

5 16.1923− 0.0613i 19.4094 0.1206 · 10−5

3

1 2.5572− 1.4060i 7.5883 0.5930 · 10−5

2 7.6507− 0.1378i 11.0647 0.4173 · 10−5

3 11.1088− 0.0923i 14.3725 0.3600 · 10−5

4 14.4068− 0.0704i 17.6160 0.3167 · 10−5

5 17.6441− 0.0572i 20.8269 0.2794 · 10−5

4

1 3.8601− 0.9877i 8.7715 0.8437 · 10−5

2 8.9496− 0.1277i 12.3386 0.6867 · 10−5

3 12.4627− 0.0858i 15.7002 0.5919 · 10−5

4 15.7969− 0.0660i 18.9801 0.5265 · 10−5

5 19.0599− 0.0540i 22.2178 0.4756 · 10−5

The generalized matrix eigenvalue problem (63) can be solved with Arpack (or the Matlab version of it, implemented
in the function eigs.m) to obtain the eigenvalues λ(h) with smallest absolute value. Thus, with this method we can achieve
the first N smallest approximated zeros of Dn(·, α), which are z

(h)
n,m =

√
λ(h).

Table 3 shows the results for the particular case n = 1, where the error is measured by |Dn(z
(h)
n,m, α)|.
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