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Motivated by a recent article of the second author, we relate a family of Artin–Schreier type
curves to a sequence of codes. We describe the algebraic structure of these codes, and we
show that they are quasi-cyclic codes. We show that if the family of Artin–Schreier type
curves consists of supersingular curves then the weights in the related codes are divisible
by a certain power of the characteristic.We give some applications of the divisibility result,
including showing that some weights in certain cyclic codes are eliminated in subcodes.
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1. Introduction

For q = 2n and α a primitive element in Fq, let C⊥ be the binary cyclic code of length 2n
− 1 with dual zeros α, α3, α13.

It is well known (see [1] for example) that the weights in C⊥ are related to the number of Fq-rational points of curves of the
form

y2 + y = ax + bx3 + cx13, (1.1)

where a, b, c ∈ Fq. In [1], the second author used the supersingularity of these curves to prove that, when n is odd, all the
weights in C⊥ are divisible by 2(n−1)/2. This was a very short proof of the same divisibility result that appeared in [2] with a
rather long proof.

In fact, the only information used about curves of the form (1.1) in [1] was the divisibility of their number of affine
Fq-rational points by a power of 2, which is implied by their supersingularity. However, supersingularity tells more about
the arithmetic of the curve. It implies divisibility by a certain power of the characteristic not only over the field of definition
Fq but also over finite extensions of Fq.

The purpose of this paper is to extend the work in [1] by utilizing all the arithmetic information that comes with
supersingularity to obtain conclusions regarding a certain sequence of codes that we define. From a family of Artin–Schreier
type curves

F = {yr − y = λ1xi1 + · · · + λsxis : λ1, . . . , λs ∈ Fq},
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where r is a prime power and q is a power of r , we define a sequence Cj of Fr -linear codes of increasing length. This
establishes a new relation between curves and codes than the ones that have been explored so far (see [3–5]). Our main
theorem (Theorem 3.1) shows that if F consists of supersingular curves, then the weights in Cj’s satisfy certain divisibility
conditions. In Section 4 we prove that Cj is quasi-cyclic of length qj − 1 and index (qj − 1)/(q − 1) for all j ≥ 1. In the same
section, we also determine the algebraic structure of these quasi-cyclic codes completely by describing their constituents. In
Section 5 we give some interesting consequences of our results. The main application is elimination of weights in subcodes
of certain cyclic codes. Our results also have applications to permutation polynomials and divisibility properties of certain
exponential sums. We conclude in Section 6 by addressing the converse question. Namely, we elaborate on whether one
can conclude supersingularity of Artin–Schreier type curves from certain divisibility assumptions on codes.

2. Divisibility for supersingular curves

Let q = pm where p is an arbitrary prime andm ≥ 1 is an integer. Let X be a curve defined over Fq with L-polynomial

LX (t) = 1 + a1t + a2t2 + · · · + a2g−1t2g−1
+ qg t2g ∈ Z[t], (2.1)

where g is the genus of X . Let Nj = Nj(X) denote the number of Fqj-rational points of X and set Sj := Nj − (qj + 1) for all
j ≥ 1. If we factor LX (t) as

LX (t) =

2g
i=1

(1 − ωit),

where the ωi’s are algebraic integers with |ωi| =
√
q, then we know that

Sj = −

2g
i=1

ω
j
i, for all j ≥ 1 [6, Corollary 5.1.16].

Then by Newton’s identities [7, p. 245], [6, Corollary 5.1.17], we have the following relation between the coefficients of LX (t)
and the numbers Sj:

a0 = 1
Si + a1Si−1 + · · · + ai−1S1 − iai = 0, for 1 ≤ i ≤ 2g (2.2)
S2g+i + a1S2g+i−1 + · · · + a2gSi = 0, for i ≥ 1. (2.3)

Given the L-polynomial as in (2.1) of a curve X over Fq, consider the following set of points in R2
i,

ord p(ai)
m


: 0 ≤ i ≤ 2g, ai ≠ 0


,

where ord p(·) denotes the p-adic valuation. The lower convex hull of these points is called theNewton polygon of X (see [8]).
Note that (0, 0) and (2g, g) are respectively the initial and the terminal points of theNewtonpolygon. The ith slope is defined
to be the slope of the line segment lying over the interval [i − 1, i]. The curve X is said to be supersingular if all 2g slopes of
its Newton polygon are 1/2 (see [9]). In other words, the Newton polygon is a straight line segment of slope 1/2. Another
equivalent definition is that the Jacobian of X is isogenous (over the algebraic closure of Fq) to a product of supersingular
elliptic curves. See [10] for details.

The following is an immediate consequence of the definition of supersingularity above and it will be used extensively.

Lemma 2.1. A curve X over Fq with the L-polynomial LX (t) = 1 +
2g

i=1 ait
i is supersingular if and only if

ord p(ai) ≥
i
2
ord p(q), for all i = 1, . . . , 2g,

where p is the characteristic of Fq.

This yields the following divisibility results on the Sj’s, which will be used in the next section.

Theorem 2.2. Let q = pm and X be a supersingular curve over Fq of genus g.

(i) If m is even then p
jm
2 | Sj, for every j ≥ 1.

(ii) If m is odd, then

p
jm
2

 Sj, for all j ≥ 1 even,

p
jm+1

2

 Sj, for all j ≥ 1 odd.

If p = 2, then we further have 2
jm
2 +1

| Sj, for all j ≥ 1 even.
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Proof. Assume thatm is even. Then by Lemma 2.1, we have

p
im
2

 ai, for all 1 ≤ i ≤ 2g. (2.4)

Then by (2.2), we have S1 = a1 is divisible by p
m
2 , and S2 = −a1S1 + 2a2 is divisible by p

2m
2 = pm. Continuing to use (2.2)

and (2.4), we conclude that

p
jm
2

 Sj, for all 1 ≤ j ≤ 2g. (2.5)

For j = 2g + 1, we now use (2.3) to write

S2g+1 = −a1S2g − a2S2g−1 − · · · − a2gS1.

By (2.4) and (2.5), we conclude that p
(2g+1)m

2 | S2g+1. Then, we can conclude by induction that p
jm
2 | Sj for all j > 2g .

Now assume thatm is odd. In this case Lemma 2.1 yields

p
im
2

 ai, for all 1 ≤ i ≤ 2g even, (2.6)

p
im+1

2

 ai, for all 1 ≤ i ≤ 2g odd. (2.7)

Then by (2.2), we have S1 = a1 is divisible by p
m+1
2 . For S2 = −a1S1 + 2a2 and arbitrary prime p, note that a1S1 is divisible

by p
2(m+1)

2 = pm+1, whereas 2a2 is divisible by p
2m
2 = pm. Hence, S2 is divisible by pm for a general prime. However, for

p = 2, 2a2 is divisible by one higher power 2m+1 and hence the same conclusion holds for S2. Continuing to use (2.2), (2.6)
and (2.7), we reach the conclusion in the statement of this theorem for all 1 ≤ j ≤ 2g and for both an arbitrary prime p and
the special case p = 2.

For j = 2g + 1, we use (2.3) to write

S2g+1 = −a1S2g − a2S2g−1 − · · · − a2gS1. (2.8)

For a summand involving ai with odd i on the right hand side of (2.8), the index of S2g+1−i is even. By (2.7), ai is divisible by

p
im+1

2 . We also know that S2g+1−i is divisible by p
(2g+1−i)m

2 for an arbitrary prime p, and it is divisible by 2
(2g+1−i)m

2 +1 for p = 2.

Hence, the product aiS2g+1−i is divisible by p
(2g+1)m+1

2 for an arbitrary prime p, and it is divisible by 2
(2g+1)m+1

2 +1 for p = 2.
For a summand involving ai with even i on the right hand side of (2.8), the index of S2g+1−i is odd. By (2.6), ai is divisible

by p
im
2 . On the other hand, S2g+1−i is divisible by p

(2g+1−i)m+1
2 . Hence the product aiS2g+1−i is divisible by p

(2g+1)m+1
2 for such

summands. Hence, S2g+1 is divisible by p
(2g+1)m+1

2 for all primes.
For j = 2g + 2, (2.3) yields

S2g+2 = −a1S2g+1 − a2S2g − · · · − a2gS2. (2.9)

We analyze summands as above. For a summand involving ai with odd i on the right hand side of (2.9), we have p
im+1

2 | ai and
p

(2g+2−i)m+1
2 | S2g+2−i. Hence the product aiS2g+2−i is divisible by p

(2g+2)m+2
2 = p

(2g+2)m
2 +1 for such summands. For a summand

involving ai with even i on the right hand side of (2.9), we have p
im
2 | ai. In this case, S2g+2−i is divisible by p

(2g+2−i)m
2 for an

arbitrary prime p and it is divisible by 2
(2g+2−i)m

2 +1 for p = 2. Hence the product aiS2g+2−i is divisible by p
(2g+2)m

2 for any p,

and it is divisible by 2
(2g+2)m

2 +1 for p = 2. Therefore S2g+2 is divisible by p
(2g+2)m

2 in general and it is divisible by 2
(2g+2)m

2 +1

for p = 2. Now an induction argument proves the claim for all Sj with j > 2g . �

We next state a proposition which gathers together results showing that particular curves are supersingular. Proving
that a given explicit curve is supersingular is usually difficult. We will use these results later for our applications.

Proposition 2.3. The following curves, defined over F2k for any k, are supersingular.

(1) y2 + y =
d

i=0 λix2
i
+1, d ≥ 1,

(2) y2 + y = ax + bx3 + cx13.

The first of these is proved in [3], the second in [11] which gives an argument due to Elkies. We remark that y2 + y =

ax + bx3 + cx13 is a curve of genus 6, and that genus 6 is the smallest genus in characteristic 2 that cannot be proved to be
supersingular using the family (1).
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3. Divisibility for codes

We wish to consider the most general case of Artin–Schreier curves, see (3.1), so we let r = pv and q = ru throughout,
where p is a prime number and u, v ≥ 1 are integers. Usually v = 1 in our examples. Assume that 1 ≤ i1 < · · · < is < q are
integers such that gcd(p, ij) = 1, for all j, and ij’s lie in distinct r-cyclotomic cosets modulo q− 1 (see Remark 3.3). Consider
the family of Artin–Schreier type curves over Fq:

F = {yr − y = λ1xi1 + · · · + λsxis : λ1, . . . , λs ∈ Fq}. (3.1)

Since the ij’s are relatively prime to the characteristic, each equation, except the ‘‘trivial’’ one with λk = 0 for all k, defines
an absolutely irreducible curve over Fq.

For each j ≥ 1, we denote the trace map from Fqj to Fr as follows:

Trj : Fqj −→ Fr

a −→

ju−1
t=0

ar
t
.

Let X = Xλ1,...,λs be an arbitrary nontrivial member of F which is described by λ1, . . . , λs ∈ Fq. Note that X has r points
with x = 0 and one point at infinity over the base field Fq or any extension of Fq. Moreover, if there is an affine rational
point (x0, y0) on X over Fq or an extension of Fq, then there are r rational points over the same field whose x-coordinate is
x0 (namely, (x0, y0 + β) for any β ∈ Fr ).

We associate with X the following vector of length qj − 1 for every j ≥ 1:

cj = cj(λ1, . . . , λs) :=

Trj

λ1xi1 + · · · + λsxis


x∈F∗

qj
. (3.2)

The vector cj has entries in Fr , and the entry in coordinate x ∈ F∗

qj is obtained by evaluating the given trace expression at x.
By Hilbert’s Theorem 90, the Hamming weight of cj is related to the number Nj of Fqj-rational points on X , for every j ≥ 1:

w(cj) = r ju − 1 −
Nj − (r + 1)

r
.

Equivalently, we have

rw(cj) = r ju(r − 1) − Sj, (3.3)

where Sj = Nj − (r ju + 1) as in Section 2.
Based on the discussion above, the following relates the family F to a sequence of Fr -linear codes and yields conclusions

on the weights of these codes when F consists of supersingular curves.

Theorem 3.1. Assume that the family F in (3.1) consists of supersingular curves over Fq = Fpuv . For each j ≥ 1, define the
Fr -linear code of length qj − 1 = pjuv − 1 as follows:

Cj := {(Trj(λ1xi1 + · · · + λsxis))x∈F∗

qj
: λ1, . . . , λs ∈ Fq}. (3.4)

(i) If uv is even, then p
juv
2 −v divides all the weights in Cj for every j.

(ii) If uv is odd, then

p
juv
2 −v divides all the weights in Cj for j even,

p
juv+1

2 −v divides all the weights in Cj for j odd.

If p = 2, then we further have that 2
juv
2 −v+1 divides all the weights in Cj for j even.

Proof. By (3.3) and the definition of Cj, the quantities Sj (for all j ≥ 1) attached to every curve X ∈ F determine the weight
of one codeword in Cj. Moreover, this is a one-to-one correspondence between the members of F and all the codewords in
these codes. Rewriting (3.3) as

pvw(cj) = pjuv(pv
− 1) − Sj, (3.5)

we obtain the conclusions of this theorem from Theorem 2.2. �

Remark 3.2. Note that the sequence Cj of codes can be defined for any family F of Artin–Schreier type curves in (3.1). The
supersingularity assumption on F yields the weight divisibility result in Theorem 3.1 for Cj.
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Remark 3.3. For each j ≥ 1, consider the Fr -linear code of length qj − 1

C̃j := {(Trj(λ1xi1 + · · · + λsxis))x∈F∗

qj
: λ1, . . . , λs ∈ Fqj}.

Since the ij’s lie in distinct r-cyclotomic cosets mod q − 1, they also lie in distinct r-cyclotomic cosets mod qj − 1. Hence,
C̃j is the cyclic code with dual zeros α

i1
j , . . . , α

is
j , where αj is a primitive element of Fqj . Our codes Cj are subcodes of these

cyclic codes.

4. Algebraic structure of the codes

Our aim in this section is to understand the algebraic structure of the codes Cj in Theorem 3.1.

4.1. Background on quasi-cyclic codes

We follow [12] for the basics on quasi-cyclic codes. A linear codewhich is invariant under the shift of codewords by ℓunits
is called a quasi-cyclic (QC) code of index ℓ, if ℓ is the smallest positive number with this property. This is a generalization
of classical cyclic codes since index 1 QC codes are cyclic.

Let C be a QC code over Fr of length mℓ and index ℓ, where m is relatively prime to r . We can think of the codewords of
C as m × ℓ arrays

c =


c00, . . . , c0,ℓ−1
c10, . . . , c1,ℓ−1

...
cm−1,0, . . . , cm−1,ℓ−1

 . (4.1)

It is clear that being closed under the shift by ℓ units amounts to being closed under row shift.
Let us set R := Fr [x]/⟨xm − 1⟩. To c as in (4.1), we associate an element of Rℓ

(c0(x), c1(x), . . . , cℓ−1(x)) ∈ Rℓ, (4.2)

where for each 0 ≤ j ≤ ℓ − 1,

cj(x) := c0j + c1jx + c2jx2 + · · · + cm−1,jxm−1
∈ R.

Then we can think of C as an additive subgroup of Rℓ. Note that being closed under row shift amounts to being closed under
coordinatewise multiplication by x in Rℓ. Hence, a QC code C is an R-submodule of Rℓ.

Sincem is relatively prime to r , the polynomial xm − 1 factors into distinct irreducible polynomials in Fr [x] as

xm − 1 = b1(x)b2(x) · · · bn(x). (4.3)

Roots of bi(x)’s are powers of a fixed primitivemth root of unity ξ . Let us choose nonnegative integers ui so that bi(ξ ui) = 0 ui
for each i = 1, 2, . . . , n. Hence by the Chinese Remainder Theorem we have a ring isomorphism

R ∼=

n
i=1

Ei, (4.4)

where Ei := Fr [x]/⟨bi(x)⟩ = Fr(ξ
ui) is an extension field of Fr for each i. This implies that

Rℓ ∼= Eℓ
1 ⊕ · · · ⊕ Eℓ

n. (4.5)

Hence, a QC code C ⊂ Rℓ can be viewed as an (E1 ⊕ · · · ⊕ En)-submodule of Eℓ
1 ⊕ · · · ⊕ Eℓ

n and as such let us suppose C
decomposes as

C = D1 ⊕ · · · ⊕ Dn, (4.6)

where Di is a linear code of length ℓ over Ei, for each i. These length ℓ linear codes over various extensions of Fr are called
the constituents (see [13]) of C .

The next result gives a trace representation for QC codes.

Theorem 4.1 ([12, Theorem 5.1]). Assume that xm − 1 factors into irreducibles as in (4.3) and adopt all the notation above. Let
Ui denote the r-cyclotomic coset mod m corresponding to Ei for all i = 1, . . . , n (i.e. corresponding to the powers of ξ among the
roots of bi(x)). Fix representatives ui ∈ Ui from each cyclotomic coset.

Let Di over Ei be a linear code of length ℓ for all i. For codewords βi ∈ Di and for each 0 ≤ g ≤ m − 1, let

cg = cg(β1, . . . , βn) :=

n
i=1

TrEi/Fr


βiξ

−gui

, (4.7)
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where the traces are applied to vectors coordinatewise so that cg is a vector of length ℓ over Fr for all 0 ≤ g ≤ m − 1. Then the
code

C =

(c0(β1, . . . , βn), . . . , cm−1(β1, . . . , βn)) =


c0(β1, . . . , βn)
c1(β1, . . . , βn)

...
cm−1(β1, . . . , βn)

 : βi ∈ Di,

 (4.8)

is a QC code over Fr of length mℓ and index ℓ.
Conversely, every QC code of length mℓ and index ℓ is obtained through this construction.

4.2. Our codes are quasi-cyclic

Next, we observe that the linear codes Cj in Theorem 3.1 are QC codes.

Theorem 4.2. For each j ≥ 1, the code Cj defined in (3.4) is a length qj − 1 QC code over Fr of index ℓj := (qj − 1)/(q − 1).

Proof. Let αj ∈ Fqj be a primitive element. Then we can write Cj as follows:

Cj = {(Trj(λ1α
ki1
j + · · · + λsα

kis
j ))0≤k≤qj−2 : λ1, . . . , λs ∈ Fq}.

If Nrj denotes the norm map from Fqj to Fq, then it is easy to see that Nrj(αj) = α
ℓj
j is a primitive element of Fq,

and the number ℓj is the smallest exponent of αj such that α
ℓj
j lies in Fq. Let T denote the shift operator on vectors

(i.e. T (v0, . . . , vn) = (vn, v0, . . . , vn−1)). If c = c(λ1, . . . , λs) denotes the following codeword in Cj

c =


Trj

λ1α

ki1
j + · · · + λsα

kis
j


0≤k≤qj−2

, (4.9)

then we have

Tc =


Trj

λ1α

(k−1)i1
j + · · · + λsα

(k−1)is
j


0≤k≤qj−2

=


Trj

λ1α

−i1
j α

ki1
j + · · · + λsα

−is
j α

kis
j


0≤k≤qj−2

.

Hence,

T ℓjc =


Trj

λ1α

(k−ℓj)i1
j + · · · + λsα

(k−ℓj)is
j


0≤k≤qj−2

=


Trj

λ1α

−ℓj i1
j α

ki1
j + · · · + λsα

−ℓj is
j α

kis
j


0≤k≤qj−2

= c

λ1α

−ℓji1
j , . . . , λsα

−ℓjis
j


.

Note that λ1α
−ℓj i1
j , . . . , λsα

−ℓjis
j all lie in Fq since α

ℓj
j lies in Fq. Hence, T ℓjc ∈ Cj. Moreover, ℓj is the smallest power of αj such

that α
ℓj
j ∈ Fq. Therefore, ℓj is the minimal number such that the ℓj shift of c ∈ Cj lies again in Cj. This proves the claim. �

4.3. Identifying the constituent codes

Westartwith realizing a codeword c ∈ Cj in (4.9) as a (q−1)×ℓj array. As noted in the proof of Theorem4.2, Nrj(αj) = α
ℓj
j

is a primitive element of Fq. We set ξ := α
−ℓj
j , which is also a primitive element in Fq. Then,

c = Trj



s
t=1

λtα
0it
j ,

s
t=1

λtα
it
j , . . . ,

s
t=1

λtα
(ℓj−1)it
j

s
t=1

λtα
ℓjit
j ,

s
t=1

λtα
(ℓj+1)it
j , . . . ,

s
t=1

λtα
(2ℓj−1)it
j

...
s

t=1

λtα
(q−2)ℓjit
j ,

s
t=1

λtα
((q−2)ℓj+1)it
j , . . . ,

s
t=1

λtα
((q−1)ℓj−1)it
j





480 C. Güneri, G. McGuire / Journal of Computational and Applied Mathematics 259 (2014) 474–484

= Trj



s
t=1

λtξ
−0it ,

s
t=1

(λtα
it
j )ξ−0it , . . . ,

s
t=1

(λtα
(ℓj−1)it
j )ξ−0it

s
t=1

λtξ
−it ,

s
t=1

(λtα
it
j )ξ−it , . . . ,

s
t=1

(λtα
(ℓj−1)it
j )ξ−it

...
s

t=1

λtξ
−(q−2)it ,

s
t=1

(λtα
it
j )ξ−(q−2)it , . . . ,

s
t=1

(λtα
(ℓj−1)it
j )ξ−(q−2)it



= Tr1



s
t=1

Trj(λt)ξ
−0it ,

s
t=1

Trj(λtα
it
j )ξ−0it , . . . ,

s
t=1

Trj(λtα
(ℓj−1)it
j )ξ−0it

s
t=1

Trj(λt)ξ
−it ,

s
t=1

Trj(λtα
it
j )ξ−it , . . . ,

s
t=1

Trj(λtα
(ℓj−1)it
j )ξ−it

...
s

t=1

Trj(λt)ξ
−(q−2)it ,

s
t=1

Trj(λtα
it
j )ξ−(q−2)it , . . . ,

s
t=1

Trj(λtα
(ℓj−1)it
j )ξ−(q−2)it


,

where Trj denotes the trace map from Fqj to Fq. Note that we use Fq-linearity of Trj and the fact that Trj = Tr1 ◦ Trj above.
Now, set

β1 =


Trj(λ1α

ei1
j )

0≤e≤ℓj−1

, β2 =


Trj(λ2α

ei2
j )

0≤e≤ℓj−1

, . . . , βs =


Trj(λsα

eis
j )

0≤e≤ℓj−1

.

Observe that each βi lies in F
ℓj
q . Then, with the notation of Theorem 4.1 we can write c as

c0(β1, . . . , βs)
c1(β1, . . . , βs)

...
cq−2(β1, . . . , βs)

 ,

where for all g = 0, 1, . . . , q − 2, we have

cg = cg(β1, . . . , βs) =

s
t=1

Tr1

βtξ

−git

.

Note that m = q − 1 for all of the codes Cj. The polynomial xq−1
− 1 splits in Fq. Therefore, each field Ei is an intermediate

field of the extension Fq/Fr . If for some k ∈ {1, . . . , s}, the r-cyclotomic coset mod q − 1 for ik has length strictly less than
u = [Fq : Fr ] (i.e. Ek ( Fq), then we can write the corresponding summand above as

Tr1

βkξ

−gik


= TrEk/Fr


β ′

kξ
−gik


,

where

β ′

k =


TrFqj /Ek


λkα

eik
j


0≤e≤ℓj−1

∈ E
ℓj
k .

Hence, we obtain the following result from Theorem 4.1.

Theorem 4.3. Let j ≥ 2 and Cj be the QC code defined in (3.4). For k ∈ {1, . . . , s},

(i) if Ek = Fq, then the corresponding constituent Dk ⊂ F
ℓj
q is

Dk = {(Trj(λα
eik
j ))0≤e≤ℓj−1 : λ ∈ Fq}.

(ii) if Ek ( Fq, then the corresponding constituent Dk ⊂ E
ℓj
k is

Dk = {(TrFqj /Ek(λα
eik
j ))0≤e≤ℓj−1 : λ ∈ Fq}.

We note that those constituents which are defined over Fq have dimension 0 or 1.
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5. Applications

We present some applications of Theorem 3.1 to some specific codes here, and one application to permutation
polynomials. Note that Oort (see [10]) has shown that there are no hyperelliptic supersingular curves of genus 3 in
characteristic 2. So our first two applications concern genus 2 and 4. Let us also note that if we choose q = ru big enough,
then r-cyclotomic cosets modulo q − 1 have cardinality u. This fact will be used below.

5.1. BCH codes and subcodes

Let α be a primitive element in the finite field Fq, where q = 2u. The binary cyclic code of length 2u
− 1 with three zeros

α, α3, α5 has dimension 2u
− 1 − 3u, and minimum distance 7, and is called the binary 3-error-correcting BCH code. If u is

odd, the dual code of this BCH code is known to have five nonzero weights, which are

2u−1, 2u−1
± 2(u−1)/2, 2u−1

± 2(u+1)/2, (5.1)

and the weight distribution is determined. If u is even, the dual code of this BCH code is known to have seven nonzero
weights, which are

2u−1, 2u−1
± 2u/2−1, 2u−1

± 2u/2, 2u−1
± 2u/2+1, (5.2)

and the weight distribution is known here too (see [7, Chapter 21]).
The trace description of the dual code of this BCH code of length q − 1 states that all codewords have the form

c(λ1, λ2, λ3) =

Tr1(λ1x + λ2x3 + λ3x5)


x∈F∗

q

for λi ∈ Fq. As we described in Section 3, this code is the first in a sequence of binary quasi-cyclic codes Cj of lengths qj − 1,
defined by

Cj :=


Trj

λ1x + λ2x3 + λ3x5


x∈F∗

qj
: λi ∈ Fq


. (5.3)

These codes correspond to the hyperelliptic curves

y2 + y = λ1x + λ2x3 + λ3x5

which are known to be supersingular, and have genus 2 provided λ3 ≠ 0 (see Proposition 2.3). Moreover by Remark 3.3, Cj

is a subcode in the dual C̃j of the binary 3-error correcting BCH code of length qj − 1.
We wish to point out an interesting consequence of Theorem 3.1.

Theorem 5.1. Let q = 2u, where u is odd. Continuing with the notation of this subsection, the code Cj (for any even j) does not
contain a codeword of weight 2ju−1

± 2ju/2−1.

Proof. Note again that Cj is a subcode of C̃j, which is the dual of the BCH code of length 2ju
− 1. By (5.2), possible weights in

Cj are

2ju−1, 2ju−1
± 2ju/2−1, 2ju−1

± 2ju/2, 2ju−1
± 2ju/2+1.

However, by Theorem 3.1, all weights in the subcode Cj are divisible by 2ju/2. It follows that the weights 2ju−1
± 2ju/2−1 do

not occur in Cj. �

Theorem 3.1 has therefore shown that for even j, the quasi-cyclic subcode Cj of the length 2ju
− 1 dual-BCH code has a

higher weight divisibility than one might expect, and this divisibility eliminates certain weights. We do not know any other
way of proving this. We note that weights are not eliminated in Cj when j is odd. We also remark that the minimumweight
is not among the eliminated weights, so the subcode does not have a higher minimumweight than the original cyclic code.

5.2. Genus 4 curves and subcodes

Let α be a primitive element in the finite field Fq, where q = 2u. The binary cyclic code of length 2u
− 1 with four zeros

α, α3, α5, α9, has dimension 2u
− 1 − 4u. If u is odd, the dual code of this code is known to have seven nonzero weights

[14, Theorem 4] and (3.3), which are

2u−1, 2u−1
± 2(u−1)/2, 2u−1

± 2(u+1)/2, 2u−1
± 2(u+3)/2. (5.4)

By a similar argument to [14], one can show that if u is even, the dual code has weights

2u−1, 2u−1
± 2u/2−1, 2u−1

± 2u/2, 2u−1
± 2u/2+1, 2u−1

± 2u/2+2. (5.5)
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Following Section 3, these codes correspond to the curves
y2 + y = λ1x + λ2x3 + λ3x5 + λ4x9

which are known to be supersingular, (see Proposition 2.3). Therefore we can apply Theorem 3.1, and we conclude that if
q = 2u with u odd, then the quasi-cyclic codes Cj for j even have all weights divisible by qj/2. Therefore they do not have the
weights qj−1

± qj/2−1 that one might expect from (5.5).

5.3. Higher genus

Let α be a primitive element in the finite field Fq, where q = 2u. The binary cyclic code of length 2u
− 1 with three zeros

α, α3, α13, has dimension 2u
−1−3u. Curves (1.1) corresponding to the dual code are of genus 6 and they are supersingular

(see Proposition 2.3). This is the motivating example given in the introduction. If u is odd, it was shown in [2] that the dual
code has the same weight distribution as the 3-error-correcting BCH code. When u is even, this is still an open problem and
the weight distribution is not known. If we apply Theorem 3.1 to the sequence of codes Cj (for odd u), we conclude (as in
Sections 5.1 and 5.2) that the weights qj−1

± qj/2−1 do not occur in Cj when j is even.
For some higher genus examples, from Proposition 2.3 the curves

y2 + y =

d
i=0

λix2
i
+1

are supersingular, where the λi come from a finite field of characteristic 2. These are curves of genus 2d−1. Sections 5.1 and
5.2 are the d = 2 and d = 3 cases, respectively. For a general d, one can draw similar conclusions to those in Sections 5.1
and 5.2 from Theorem 3.1. The codes here are subcodes of the second-order Reed–Muller code, because the exponents have
the form 2i

+ 1, and the weight distributions of such codes have been studied before (see [7] for details).

5.4. Linearized polynomials as permutation polynomials

Wewish to point out an unusual consequence of our results for a class of linearized polynomials. Let a, b, c ∈ Fq, where
q = 2u, and let

Sj :=


x∈Fqj

(−1)Trj(ax+bx3+cx5).

If we let X be the curve over Fq defined by the equation

y2 + y = ax + bx3 + cx5,
then the sum Sj above is equal to Nj − (qj + 1). Hence, the notation is consistent with the notation of Section 2.

Squaring Sj, and for notational purposes letting χj(t) = (−1)Trj(t), gives

S2j =


x,y∈Fqj

χj(ax + bx3 + cx5 + ay + by3 + cy5).

Substituting y = x + w and rearranging (using Galois invariance of the trace) we get

S2j =


w∈Fqj

χj(aw + bw3
+ cw5)


x∈Fqj

χj(x8Lb,c(w))


, (5.6)

where
Lb,c(w) = c4w16

+ b4w8
+ b2w2

+ cw.

The inner sum has the form


x∈Fqj
χj(xL), and is a character sum over a group because χj is a character of the additive group

of Fqj . This sum is therefore 0 unless Lb,c(w) = 0. Furthermore, the number of roots of Lb,c(w) in Fqj will determine the value
of Sj.

Theorem 5.2. Let q = 2u with u odd. The linearized polynomial

Lb,c(w) = c4w16
+ b4w8

+ b2w2
+ cw, b, c ∈ Fq

is not a permutation polynomial on Fqj for j even.
Proof. By Theorem 7.9 in [15] Lb,c(w) is a permutation of Fqj if and only if the only root of Lb,c(w) in Fqj is 0. The only root
of Lb,c(w) in Fqj is 0 if and only if S2j = qj, by (5.6). By Theorem 2.2 this is impossible because Sj would not be divisible by
the required power of 2. �

Other similar theorems can be proved, where instead of using the polynomials ax + bx3 + cx5 (of Section 5.1) one can
use more general polynomials

d
i=0 λix2

i
+1 (of Section 5.3).
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5.5. Exponential sum divisibility

For a field Fq of characteristic p, exponential sums of the form
x∈Fq

χ(f (x))

where f (x) ∈ Fq[x] and χ is an additive character on Fq, have been much studied (see [15] Chapter 5 for example). The
p-divisibility of such sums is closely related to the divisibility of the number of rational points on Artin–Schreier type curves
and to weight divisibility in codes. There are papers such asMoreno–Moreno [16] on this topic, proving that a certain power
of pwill divide the values of the sums as f (x) ranges over a certain family of polynomials. Theorem 3.1 shows that for some
(supersingular) families of polynomials f (x), exponential sums of the type

x∈Fqj

χ(f (x))

where f (x) ∈ Fq[x] can have higher divisibility than they would have if f (x) ∈ Fqj [x].
As an example to illustrate this, in [16] Moreno–Moreno consider the sum

S =


x∈Fq

(−1)Tr(f (x)),

where q = 23u, Tr denotes the trace from Fq to F2 and f (x) ∈ Fq[x] is of the form

f (x) = λ1x + λ2x3 + λ3x5 + αx7 + λ4x9. (5.7)

Note that S = N − (q + 1), where N denotes the number of Fq-rational points on the curve

y2 + y = λ1x + λ2x3 + λ3x5 + αx7 + λ4x9. (5.8)

As mentioned in Section 5.3, (5.8) defines a supersingular curve if α = 0. In that case Moreno–Moreno conclude in
[16, Theorem 3] that S is divisible by 2u+1.

If we now consider the same sum (or the curve) with coefficients from the subfield F2u (i.e. f (x) ∈ F2u [x]) and again with
α = 0, then Theorem 2.2 implies that S = S3 is divisible by 2(3u−1)/2 if u is odd and it is divisible by 2(3u−2)/2 if u is even. This
shows a marked increase in the divisibility, from (approximately) the cube root of the field size to the square root.

More generally, following Section 5.3, the sums
x∈Fqj

(−1)Trj


λix2
i
+1


are divisible by a higher power of 2 when the λi’s are in Fq, than when the λi’s are in Fqj .
We are not aware of another method to obtain such conclusions on exponential sums where the coefficients of

polynomials involved come from a subfield.

6. The converse

One may ask whether the converse of Theorem 3.1 holds. In other words, is it possible to prove the supersingularity of
certain Artin–Schreier type curves by proving that the related codes Cj satisfy certain divisibility conditions? This would be a
very interesting application of coding theory since proving that a certain type of curve is supersingular is usually nontrivial.
We outline some cases where the converse is true.

Theorem 6.1. For q = 2u with u odd, let the family F be as in (3.1). For each j ≥ 1, define the F2-linear code of length
qj − 1 = 2ju

− 1 as follows:

Cj := {(Trj(λ1xi1 + · · · + λsxis))x∈F∗

qj
: λ1, . . . , λs ∈ Fq}. (6.1)

Assume the following divisibility conditions on Cj:

2
ju
2 divides all the weights in Cj for j even,

2
ju−1
2 divides all the weights in Cj for j odd.

Assume that the family F consists of curves with maximal genus 3 (i.e. is ≤ 7 in (3.1)). Then all curves in F are supersingular.



484 C. Güneri, G. McGuire / Journal of Computational and Applied Mathematics 259 (2014) 474–484

Proof. By (3.3), the assumptions imply the following about the Sj for members in a family of Artin–Schreier type curves of
the form (3.1):

2
ju
2 +1 divides Sj for j even,

2
ju+1
2 divides Sj for j odd.

We will show via (2.2) that the divisibility conditions on the coefficients of the L-polynomials (Lemma 2.1) for the members
of F are satisfied. The first four equations are

a0 = 1
S1 = a1
S2 + a1S1 = 2a2
S2 + a1S2 + a2S1 = 3a3.

Clearly 2(u+1)/2 divides a1, which implies that 2u divides a2. In the final equation, each term on the left is divisible 2(3u+1)/2,
which implies the same thing for a3. �

Hence, equivalence of the weight divisibility conditions in Theorem 3.1 (for the special case q = 2u and u odd) and the
supersingularity of the related curve family F is established for families with genus g = 2 and g = 3. In other words, the
converse is true in those cases. However, for families which contain curves of higher genera, the divisibility conditions on
codes in Theorem 3.1 are not strong enough to yield supersingularity of the related curve families. Hence the converse is
still an open problem in general.

Remark 6.2. We point out why the proof breaks down with curves of genus 4. The next recursion is

S4 + a1S3 + a2S2 + a3S1 = 4a4. (6.2)

The assumptions and proof of Theorem 6.1 lead to the conclusion that 22u+1 divides all terms on the left hand side of (6.2).
This implies that 22u−1 divides a4, whereas we require 22u dividing a4 for supersingularity.

We know that genus 4 hyperelliptic curves (5.8) are supersingular if and only if α = 0. Therefore the condition α = 0 is
somehow equivalent to the condition 22u dividing a4. This equivalence is proved in [9].

Remark 6.3. Since the converse is true for genus 3 (with q = 2u and odd u), Theorem 3.1 is equivalent to supersingularity
of the related family of curves. Oort’s result says that there are no genus 3 supersingular hyperelliptic curves, so therefore
we can conclude that the related code sequence does not have the divisibilities stated in Theorem 3.1. The curves in this
case are the family

y2 + y = λ1x + λ2x3 + λ3x5 + αx7

which are hyperelliptic, and have 2-rank 0, but are not supersingular if α ≠ 0. The 2-rank is the dimension of the 2-torsion
subgroup in the Jacobian, and supersingularity implies that the 2-rank is 0 but the converse is not true for genus ≥3.
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