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1. Introduction

For ¢ = 2" and « a primitive element in Fy, let C* be the binary cyclic code of length 2" — 1 with dual zeros «, o, o'3.
It is well known (see [1] for example) that the weights in C* are related to the number of [Fq-rational points of curves of the
form

y:+y =ax+ bx> + cx'3, (1.1)

where a, b, ¢ € F,. In[1], the second author used the supersingularity of these curves to prove that, when n is odd, all the
weights in C* are divisible by 2("~1/2, This was a very short proof of the same divisibility result that appeared in [2] with a
rather long proof.

In fact, the only information used about curves of the form (1.1) in [1] was the divisibility of their number of affine
[F4-rational points by a power of 2, which is implied by their supersingularity. However, supersingularity tells more about
the arithmetic of the curve. It implies divisibility by a certain power of the characteristic not only over the field of definition
[Fq but also over finite extensions of Fy.

The purpose of this paper is to extend the work in [1] by utilizing all the arithmetic information that comes with
supersingularity to obtain conclusions regarding a certain sequence of codes that we define. From a family of Artin-Schreier
type curves

F={/ —y=rx"+ - +Ax" A1, ..., A € Fg),
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where r is a prime power and q is a power of r, we define a sequence C; of F,-linear codes of increasing length. This
establishes a new relation between curves and codes than the ones that have been explored so far (see [3-5]). Our main
theorem (Theorem 3.1) shows that if # consists of supersingular curves, then the weights in G’s satisfy certain divisibility
conditions. In Section 4 we prove that G is quasi-cyclic of length ¢ — 1and index (¢ — 1)/(q — 1) for allj > 1. In the same
section, we also determine the algebraic structure of these quasi-cyclic codes completely by describing their constituents. In
Section 5 we give some interesting consequences of our results. The main application is elimination of weights in subcodes
of certain cyclic codes. Our results also have applications to permutation polynomials and divisibility properties of certain
exponential sums. We conclude in Section 6 by addressing the converse question. Namely, we elaborate on whether one
can conclude supersingularity of Artin-Schreier type curves from certain divisibility assumptions on codes.

2. Divisibility for supersingular curves

Let g = p™ where p is an arbitrary prime and m > 1is an integer. Let X be a curve defined over F, with L-polynomial

Ly(t) = 1+ art + apt? + - - - + agg 1571 + 8% € Z][t], (2.1)
where g is the genus of X. Let N; = N;(X) denote the number of F-rational points of X and set S; := N; — (¢ + 1) forall
j = 1.1f we factor Ly (t) as

2g

L =] -,

i=1
where the w;'s are algebraic integers with |w;| = ,/q, then we know that

2g .
Si=— Zw{ forallj > 16, Corollary 5.1.16].
i=1

Then by Newton’s identities [7, p. 245], [6, Corollary 5.1.17], we have the following relation between the coefficients of Lx (t)
and the numbers S;:

ap=1
Si+aiSiq1+---+a15—iaq;=0, forl1<i=<2g (2.2)
Sogti + A1S2g4ic1 + -+ a5 =0, fori> 1. (2.3)

Given the L-polynomial as in (2.1) of a curve X over Fg, consider the following set of points in R?
ord ,(a;
{(z”(’)) 10<i<2g, af#O},
m

where ord ,(-) denotes the p-adic valuation. The lower convex hull of these points is called the Newton polygon of X (see [8]).
Note that (0, 0) and (2g, g) are respectively the initial and the terminal points of the Newton polygon. The ith slope is defined
to be the slope of the line segment lying over the interval [i — 1, i]. The curve X is said to be supersingular if all 2g slopes of
its Newton polygon are 1/2 (see [9]). In other words, the Newton polygon is a straight line segment of slope 1/2. Another
equivalent definition is that the Jacobian of X is isogenous (over the algebraic closure of IFy) to a product of supersingular
elliptic curves. See [10] for details.

The following is an immediate consequence of the definition of supersingularity above and it will be used extensively.

Lemma 2.1. A curve X over Fy with the L-polynomial Lx (t) = 1+ leﬁ 1 a;t' is supersingular if and only if

ord p(a;) > %ordp(q), foralli=1,...,2g,

where p is the characteristic of Fq.

This yields the following divisibility results on the S;’s, which will be used in the next section.

Theorem 2.2. Let q = p™ and X be a supersingular curve over Fy of genus g.
(i) If mis even then pij | S, foreveryj > 1.
(ii) If mis odd, then

im

pT

Sj, forallj > 1even,
Jjm+1
p 2 ‘ Sj, forallj > 1odd.

If p = 2, then we further have Zij“ | S, forallj > 1 even.
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Proof. Assume that m is even. Then by Lemma 2.1, we have

piTm a;, foralll<i<2g. (2.4)

Then by (2.2), we have S; = ay is divisible by p%, and S, = —a;S; + 2a, is divisible by psz = p™. Continuing to use (2.2)
and (2.4), we conclude that

pJTm Sj, foralll <j<2g. (2.5)
For j = 2g + 1, we now use (2.3) to write

Sog+1 = —0A1S2g — ApSpg—1 — + -+ — G257

By (2.4) and (2.5), we conclude thatpag;l)m | So¢+1. Then, we can conclude by induction that pij | Sjforallj > 2g.
Now assume that m is odd. In this case Lemma 2.1 yields

piTﬂ1 a;, foralll <i < 2geven, (2.6)

P ‘ a;, forall1l<i < 2godd. (2.7)

Then by (2.2), we have S; = ajy is divisible byp .For S; = —a,S; + 2a; and arbitrary prime p, note that a;S; is divisible
2(m+1

v D o = p™*!, whereas 2aj, is divisible by p - = p™. Hence, S, is divisible by p™ for a general prime. However, for

p = 2, 24, is divisible by one higher power 2™*! and hence the same conclusion holds for S,. Continuing to use (2.2), (2.6)
and (2.7), we reach the conclusion in the statement of this theorem for all 1 < j < 2g and for both an arbitrary prime p and
the special case p = 2.

Forj = 2g + 1, we use (2.3) to write

Sog+1 = —A1S25 — @pSpg—1 — +++ — G2y (2.8)

For a summand involving a; with odd i on the right hand side of (2.8), the index of Sye41—; is even. By (2 7) a; is divisible by
p% . We also know that Sy 1 is divisible by p 52 foran arbitrary prime p, and it is divisible by 2 forp = 2.
Qg+1)m+1 ¢ g+12) +1

Hence, the product a;S,g.+1—; is divisible by p~ 2 for an arbitrary prime p, and it is divisible by 2 lforp = 2.

For a summand involving a; with even i on the right hand side of (2.8), the index of S,z 1_; is odd. By (2.6), g; is divisible
(2g+1—-iym+1 (2g+12)m+1

by piTm. On the other hand, Sye1—; is divisible by p 2 . Hence the product a;S,41—; is divisible by p for such
summands. Hence, S¢ 1 is divisible byp<2‘g+lz)m+1 for all primes.
Forj = 2g + 2,(2.3) yields
Sog2 = —A1S2g41 — AxSyg — -+ - — g5y, (2.9)

We analyze summands as above. For a summand involving a; with odd i on the right hand side of (2.9), we have p = | a;and
(2g+2 Hm+1 (2g+2)m+2 (2g+2)
| Sog+2—i- Hence the product a;Sy»—; is divisible byp =p

*1 for such summands. For a summand
i . e Qg+2-im
involving a; with even i on the right hand side of (2.9), we have p 7 | a;. In this case, Syg1»_; is divisible by p £ for an

(g+ 1)m+l

arbitrary prime p and it is divisible by 2 for p = 2. Hence the product ;S>> is divisible by p e for any p,

@ g+ 2)m 4 q Qg+2)m ¢ g+2)m
and it is divisible by 2 for p = 2. Therefore Sg» is divisible by p "2 in general and it is divisible by 2

for p = 2. Now an induction argument proves the claim for all §; withj > 2g. O

We next state a proposition which gathers together results showing that particular curves are supersingular. Proving
that a given explicit curve is supersingular is usually difficult. We will use these results later for our applications.

Proposition 2.3. The following curves, defined over F.« for any k, are supersingular.
()Y +y =Y d> 1,
(2) y* +y = ax + bx3 4+ cx13.

The first of these is proved in [3], the second in [11] which gives an argument due to Elkies. We remark that y*> +y =
ax + bx3 4+ cx'3 is a curve of genus 6, and that genus 6 is the smallest genus in characteristic 2 that cannot be proved to be
supersingular using the family (1).
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3. Divisibility for codes

We wish to consider the most general case of Artin-Schreier curves, see (3.1), so we let r = p* and q = r* throughout,
where p is a prime number and u, v > 1 are integers. Usually v = 1in our examples. Assume that1 <i; < --- < is < qare
integers such that gcd(p, i;) = 1, for all j, and i;’s lie in distinct r-cyclotomic cosets modulo g — 1 (see Remark 3.3). Consider
the family of Artin-Schreier type curves over Fy:

F =y —y=rxT 4+ AX5 A, As € Fy) (3.1)

Since the i;’s are relatively prime to the characteristic, each equation, except the “trivial” one with A, = 0 for all k, defines
an absolutely irreducible curve over I,.
For eachj > 1, we denote the trace map from F,; to I, as follows:

Ty :Fy — F;
ju—1 .
ar— Zar .
t=0
Let X = X,,,...», be an arbitrary nontrivial member of # which is described by A4, ..., A; € Fy. Note that X has r points

with x = 0 and one point at infinity over the base field F; or any extension of F;. Moreover, if there is an affine rational
point (xg, yo) on X over Fq or an extension of Fy, then there are r rational points over the same field whose x-coordinate is
Xo (namely, (xq, yo + B) forany 8 € F;).

We associate with X the following vector of length ¢ — 1 for everyj > 1:

G =Gy .o hs) = (Trj (AgX 4 - 4 Ax5)) (32)

xeF* *
¢

The vector ¢; has entries in Fr, and the entry in coordinate x € F¥; is obtained by evaluating the given trace expression at x.
By Hilbert’s Theorem 90, the Hamming weight of ¢; is related to the number N; of IF;-rational points on X, for every j > 1:

; Ni—(r+1
wig) = —1-NDZUHD
r
Equivalently, we have
rw(c) =r(r—1) =S, (3.3)

where S; = N; — (P + 1) as in Section 2.
Based on the discussion above, the following relates the family & to a sequence of F,-linear codes and yields conclusions
on the weights of these codes when ¥ consists of supersingular curves.

Theorem 3.1. Assume that the family ¥ in (3.1) consists of supersingular curves over Fq = Fpuw. For each j > 1, define the
IF,-linear code of length ¢ — 1 = p/** — 1 as follows:

G = {(Trj(qx't + -+ + Asxis))X€F; D A1y, ks € Byl (3.4)

(i) If uv is even, then pjuTU’" divides all the weights in C; for every j.
(ii) If uv is odd, then

pjuTu‘” divides all the weights in G; for j even,

Jjuv+1

p 2 ' divides all the weights in C; for j odd.

If p = 2, then we further have that ZjuTv’”H divides all the weights in G for j even.

Proof. By (3.3) and the definition of (j, the quantities S; (for all j > 1) attached to every curve X € ¥ determine the weight
of one codeword in C;. Moreover, this is a one-to-one correspondence between the members of # and all the codewords in
these codes. Rewriting (3.3) as

p'w() =p" @' —1) -5, (3.5)
we obtain the conclusions of this theorem from Theorem 2.2. O

Remark 3.2. Note that the sequence ; of codes can be defined for any family # of Artin-Schreier type curves in (3.1). The
supersingularity assumption on ¥ yields the weight divisibility result in Theorem 3.1 for G;.
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Remark 3.3. For eachj > 1, consider the F,-linear code of length ¢ — 1
G = {(Tr;(mx 4 - + Asx"s))xe% A, .., As € Ryl

Since the ij’s lie in distinct r-cyclotomic cosets mod g — 1, they also lie in distinct r-cyclotomic cosets mod ¢ — 1. Hence,

G is the cyclic code with dual zeros oz}l, ceey oc}s, where o is a primitive element of FF;. Our codes ; are subcodes of these
cyclic codes.

4. Algebraic structure of the codes

Our aim in this section is to understand the algebraic structure of the codes C; in Theorem 3.1.

4.1. Background on quasi-cyclic codes

We follow [12] for the basics on quasi-cyclic codes. A linear code which is invariant under the shift of codewords by £ units
is called a quasi-cyclic (QC) code of index ¢, if £ is the smallest positive number with this property. This is a generalization
of classical cyclic codes since index 1 QC codes are cyclic.

Let C be a QC code over F, of length m¢ and index ¢, where m is relatively prime to r. We can think of the codewords of
C asm x £ arrays

Coo, - -+ Co,e—1
€105 -+ -5 C1,0—1
Cm—1,0 - -+ » Cm—1,6-1

It is clear that being closed under the shift by ¢ units amounts to being closed under row shift.
Let us set R := F,[x]/(x™ — 1). To c as in (4.1), we associate an element of R’

(co(®), c1(x), ..., c_1(x)) € R, (4.2)
where foreach0 <j< ¢ —1,
(%) = cop +cyx + e + -+ o1 X" ER

Then we can think of C as an additive subgroup of R’. Note that being closed under row shift amounts to being closed under
coordinatewise multiplication by x in R. Hence, a QC code C is an R-submodule of R’.
Since m is relatively prime to r, the polynomial x™ — 1 factors into distinct irreducible polynomials in F,[x] as

X" —1=bi(x)by(x) - - - by (x). (4.3)
Roots of b;(x)’s are powers of a fixed primitive mth root of unity &. Let us choose nonnegative integers u; so that b;(§"') = O u;
foreachi =1, 2, ..., n.Hence by the Chinese Remainder Theorem we have a ring isomorphism

n

R= P, (4.4)

i=1

where E; := F.[x]/(bi(x)) = F,(£") is an extension field of F, for each i. This implies that

RR=ZE @ . -©F. (4.5)
Hence, a QC code C C R’ can be viewed as an (E; @ - - - ® E,)-submodule of E & - - - @ E and as such let us suppose C
decomposes as

C=D:® - -®D,, (4.6)

where D; is a linear code of length ¢ over E;, for each i. These length £ linear codes over various extensions of IF, are called
the constituents (see [13]) of C.
The next result gives a trace representation for QC codes.

Theorem 4.1 ([12, Theorem 5.1]). Assume that X™ — 1 factors into irreducibles as in (4.3) and adopt all the notation above. Let
U; denote the r-cyclotomic coset mod m corresponding to E; foralli = 1, ..., n (i.e. corresponding to the powers of & among the
roots of b;(x)). Fix representatives u; € U; from each cyclotomic coset.

Let D; over E; be a linear code of length £ for all i. For codewords B; € D; and foreach0 < g <m — 1, let

g =Cg(Brr s ) =) Trigym, (BiE "), (4.7)
i=1



C. Giineri, G. McGuire / Journal of Computational and Applied Mathematics 259 (2014) 474-484 479

where the traces are applied to vectors coordinatewise so that cg is a vector of length £ over F, for all 0 < g < m — 1. Then the
code

CO(IB17 "'!IBH)
C](,B], -"31371)
C=q@B - B tmaa By, Bn)) = : : Bi € Dy, (4.8)
Cm—l(,Bl’ . "7:311)

is a QC code over I, of length m¢ and index £.
Conversely, every QC code of length m¢ and index £ is obtained through this construction.

4.2. Our codes are quasi-cyclic
Next, we observe that the linear codes G in Theorem 3.1 are QC codes.

Theorem 4.2. For each j > 1, the code C; defined in (3.4) is a length ¢ — 1QC code over F, of index £; := (¢ — 1)/(q — 1).

Proof. Let o; € Fy; be a primitive element. Then we can write G as follows:

G = (T + - + 2sof™)gciag 2 Ao As € Byl

If Nrj denotes the norm map from Fy; to Fy, then it is easy to see that Nrj(oj) = o;’ is a primitive element of Fg,

and the number ¢; is the smallest exponent of «; such that afj lies in F,. Let T denote the shift operator on vectors
(i.e.T(vo, ..., n) = (Un, Vo, ..., Un—1)). If c = c(Aq, ..., A;) denotes the following codeword in G

€= (Tr’ (A‘O‘Jkil A +)‘S“Jkis))o kg2 (49
<k=¢—

then we have

Tc = (Trj (Maj(k_l)“ +"'+)»saj<k_1)i5>> .
0<k=g¢ -2

_ . —i1 _kiq . —is ki,
= (Tr] (Alaj o+ + Asaj saj 5>>05k§qj72.

Hence,

rc = (T (e " e )
0<k<gi—2

—4jiy ki —Ljis ki
= Tr~<)\oc-’oz-1 Aa-’a-5>)
( J\ MY it + Asq j 0<k<gi—2

s —ti
Jjh J's
_C<A1aj ,...,Asocj )

—i —ji . . G, . .
Note that A mo Asj 75 alllie in Fq since o;” lies in Fy. Hence, TYc € C;. Moreover, ¢; is the smallest power of oj such

that ozfj € F,. Therefore, ¢; is the minimal number such that the ¢; shift of ¢ € (; lies again in ;. This proves the claim. O

4.3. Identifying the constituent codes

We start with realizing a codeword ¢ € (jin(4.9)asa (q—1) x ¢; array. As noted in the proof of Theorem 4.2, Nr;j(cj) = afj

. o —¢ o o .
is a primitive element of F,. We set § := « ’, which is also a primitive element in F,. Then,

S S S
2 : 0i¢ 2 : it 2 : (=it
A.[ij B A.[Of~ ey )\.tO[]
t=1 t=1 t=1
> £ji > €j+1)i S (2¢;—1)i
it i+ 1)t =it
E )\.[Otj . E )\.[Otj sy E }\.[(xj
t=1 t=1 t=1

c =Ty

s s s
(g—2)¢jir ((q—2)¢j+Die ((q—1¢—Dit
E ktaj s E )»[ozj e E ktaj
t=1 t=1 t=1
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s s s -1

—0i it \ & —O0i j— Dty . —0i
D UrETY o ETL DY ey g0
t=1 t=1 t=1

s s S . .
SUhETEY heafE T Y e e
t=1 t=1 t=1

:Trj
S . S . ., S (47’1” .
Do MET I (e )5 LY ey g
t=1 t=1 t=1
L\ NN ; =i ;
D TIO0ET D TG )E 0, LY T (e )ETO
t=1 t=1 t=1
DTPCET Y T e L D TGy TET
= Try =1 t=1 t=1 ,

s s S ; .
S TIGE @V S T e gD Y T (et gD
t=1 t=1 t=1

where TP denotes the trace map from g to IFy. Note that we use Fy-linearity of TF and the fact that Tr; = Tr; o T above.
Now, set

pr = (T0uef™) B = (T8 0a0]™) = (W)

0<e<tj—1 o<e<tj—1’ 0<e<tj—1
N . . .
Observe that each g; lies in ]P‘qj . Then, with the notation of Theorem 4.1 we can write ¢ as
co(Bis - Bs)
(B, -y Bs)

CozBrr o B

where forallg =0, 1,...,q — 2, we have
N
g =Cg(Br, ... B = Y Tri(Bi&™*").
t=1

Note that m = g — 1 for all of the codes C;. The polynomial x?~! — 1 splits in IF,. Therefore, each field E; is an intermediate
field of the extension IF, /F,. If for some k € {1, ..., s}, the r-cyclotomic coset mod q — 1 for i, has length strictly less than
u = [Fq : F;] (i.e. Ex € Fy), then we can write the corresponding summand above as

=

Tl‘] (ﬁkgigik) = Tr]Ek/]Fr (ﬂlggigik)’

where

B = (Tr]Fqi/]Ek ()»kaj?lk)) €E/.

Ogegzj—l

Hence, we obtain the following result from Theorem 4.1.

Theorem 4.3. Let j > 2 and C; be the QC code defined in (3.4). For k € {1, ..., s},

o . . g
(i) if Ex = Fq, then the corresponding constituent Dy C F/ is

D = {(TP (Ao} ) )oze<t;—1 : & € Fy).
(ii) if Ex ¢ Fq, then the corresponding constituent D, C E, is

Dy = {(Trmqi/mk()»Ol;'k))OSegejq i A e Fgl.

We note that those constituents which are defined over F; have dimension 0 or 1.
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5. Applications

We present some applications of Theorem 3.1 to some specific codes here, and one application to permutation
polynomials. Note that Oort (see [10]) has shown that there are no hyperelliptic supersingular curves of genus 3 in
characteristic 2. So our first two applications concern genus 2 and 4. Let us also note that if we choose ¢ = r* big enough,
then r-cyclotomic cosets modulo g — 1 have cardinality u. This fact will be used below.

5.1. BCH codes and subcodes

Let o be a primitive element in the finite field Fy, where g = 2. The binary cyclic code of length 2" — 1 with three zeros
a, a3, o® has dimension 2¥ — 1 — 3u, and minimum distance 7, and is called the binary 3-error-correcting BCH code. If u is
odd, the dual code of this BCH code is known to have five nonzero weights, which are

2u=1 Qu=1 4 p=1)/2 Ju=1 4 Hu+D/2, (5.1)

and the weight distribution is determined. If u is even, the dual code of this BCH code is known to have seven nonzero
weights, which are

Zu—l’ 2u—1 + 2u/2—1’ Zu—l + 2u/2’ zu—l + 2u/2+1’ (52)

and the weight distribution is known here too (see [7, Chapter 21]).
The trace description of the dual code of this BCH code of length g — 1 states that all codewords have the form

c(h1, Az, A3) = (Tri(Aix + 42X 4 A3X°))

*
xeFy

for A; € Fq. As we described in Section 3, this code is the first in a sequence of binary quasi-cyclic codes C; of lengths d -1,
defined by

G = {(Tr; (Mx + 2x° + A3x5))X€F;_ D hi € Tl (5.3)

These codes correspond to the hyperelliptic curves
y2 +y=rx+ A2x3 + A3x5

which are known to be supersingular, and have genus 2 provided A3 # 0 (see Proposition 2.3). Moreover by Remark 3.3, G

is a subcode in the dual 6, of the binary 3-error correcting BCH code of length ¢ — 1.
We wish to point out an interesting consequence of Theorem 3.1.

Theorem 5.1. Let g = 2%, where u is odd. Continuing with the notation of this subsection, the code C; (for any even j) does not
contain a codeword of weight 2/t—1 4 2it/2=1,

Proof. Note again that G is a subcode of fj which is the dual of the BCH code of length 2/* — 1. By (5.2), possible weights in
G are

zju—l’ 2ju—l + 2ju/2—1, zju—l + 2ju/2, 2ju—1 + 2ju/2+1.

However, by Theorem 3.1, all weights in the subcode G are divisible by 2*/2. It follows that the weights 2~ & 2//2=1 do
notoccurinG. 0O

Theorem 3.1 has therefore shown that for even j, the quasi-cyclic subcode C; of the length 2% — 1 dual-BCH code has a
higher weight divisibility than one might expect, and this divisibility eliminates certain weights. We do not know any other
way of proving this. We note that weights are not eliminated in C; when j is odd. We also remark that the minimum weight
is not among the eliminated weights, so the subcode does not have a higher minimum weight than the original cyclic code.

5.2. Genus 4 curves and subcodes

Let o be a primitive element in the finite field Fq, where g = 2". The binary cyclic code of length 2" — 1 with four zeros

o, a3, a® o has dimension 2¥ — 1 — 4u. If u is odd, the dual code of this code is known to have seven nonzero weights

[14, Theorem 4] and (3.3), which are
2u—1’ 2u—l + 2(u—l)/2! 2u—l + 2(u+l)/2’ 2u—l + 2(u+3)/2' (54)
By a similar argument to [14], one can show that if u is even, the dual code has weights

zufl’ zufl + 2u/271’ 2”,1 + 2u/2’ zufl + 2u/2+1, 2u71 + 2u/2+2. (5‘5)
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Following Section 3, these codes correspond to the curves

Y2y = Ax 4 Aox3 + Agx® + Aax®
which are known to be supersingular, (see Proposition 2.3). Therefore we can apply Theorem 3.1, and we conclude that if
q = 2" with u odd, then the quasi-cyclic codes ; for j even have all weights divisible by ¢/?. Therefore they do not have the
weights ¢~1 + ¢/>~1 that one might expect from (5.5).

5.3. Higher genus

Let « be a primitive element in the finite field Fy, where q = 2". The binary cyclic code of length 2" — 1 with three zeros
o, a3, a'3, has dimension 2 — 1 — 3u. Curves (1.1) corresponding to the dual code are of genus 6 and they are supersingular
(see Proposition 2.3). This is the motivating example given in the introduction. If u is odd, it was shown in [2] that the dual
code has the same weight distribution as the 3-error-correcting BCH code. When u is even, this is still an open problem and
the weight distribution is not known. If we apply Theorem 3.1 to the sequence of codes ; (for odd u), we conclude (as in
Sections 5.1 and 5.2) that the weights ¢~ + ¢/>~! do not occur in G; when j is even.

For some higher genus examples, from Proposition 2.3 the curves

d .
y2+y: ZMXZH
i=0

are supersingular, where the A; come from a finite field of characteristic 2. These are curves of genus 24!, Sections 5.1 and
5.2 are the d = 2 and d = 3 cases, respectively. For a general d, one can draw similar conclusions to those in Sections 5.1
and 5.2 from Theorem 3.1. The codes here are subcodes of the second-order Reed—Muller code, because the exponents have
the form 2/ + 1, and the weight distributions of such codes have been studied before (see [7] for details).

5.4. Linearized polynomials as permutation polynomials

We wish to point out an unusual consequence of our results for a class of linearized polynomials. Let a, b, ¢ € g, where
g = 2% and let

3 5
Sj — Z(_])Trj(ax+bx +o)
xeFd
If we let X be the curve over F, defined by the equation
y:+y=ax+bx® +cx°,
then the sum S; above is equal to N; — (¢ + 1). Hence, the notation is consistent with the notation of Section 2.
Squaring S;, and for notational purposes letting x;(t) = (—1)™ ® gives
S = Z xj(ax + bx* + ¢ +ay + by? + ¢y).
x.yeJFq,-

Substituting y = x + w and rearranging (using Galois invariance of the trace) we get

2= 3" xlaw + bw? +cw5)<z xj(stb,c(w))>, (56)

we]qu xe]Fq)-

where

Lpc(w) = cAw'® + bt + b*w? + cw.
The inner sum has the form ), . = x;j(xL), and is a character sum over a group because x; is a character of the additive group
of F. This sum is therefore 0 unless Ly . (w) = 0. Furthermore, the number of roots of L, . (w) in F; will determine the value
of Sj.
Theorem 5.2. Let ¢ = 2" with u odd. The linearized polynomial

Lpc(w) = c*w' + b*w® + b*w? + cw, b,c el
is not a permutation polynomial on F; for j even.

Proof. By Theorem 7.9 in [15] Ly (w) is a permutation of F; if and only if the only root of Ly . (w) in F; is 0. The only root
of Ly (w) in Fy; is O if and only iij2 = ¢, by (5.6). By Theorem 2.2 this is impossible because S; would not be divisible by
the required power of 2. O

Other similar theorems can be proved, where instead of using the polynomials ax + bx® 4 cx® (of Section 5.1) one can
use more general polynomials Z?:o 1ix2 1 (of Section 5.3).
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5.5. Exponential sum divisibility

For a field F, of characteristic p, exponential sums of the form

> X

xelFq

where f(x) € Fy[x] and x is an additive character on [, have been much studied (see [15] Chapter 5 for example). The
p-divisibility of such sums is closely related to the divisibility of the number of rational points on Artin-Schreier type curves
and to weight divisibility in codes. There are papers such as Moreno-Moreno [ 16] on this topic, proving that a certain power
of p will divide the values of the sums as f (x) ranges over a certain family of polynomials. Theorem 3.1 shows that for some
(supersingular) families of polynomials f (x), exponential sums of the type

> x ()

XE]qu

where f (x) € Fg[x] can have higher divisibility than they would have if f (x) € Fg[x].
As an example to illustrate this, in [16] Moreno-Moreno consider the sum

S = 2:(_1)'“0(%))7

X€Fq
where g = 23, Tr denotes the trace from Fq toF, and f (x) € Fy[x] is of the form
F) = Mx 4 2% + 13x° + ax” + 1ax’. (5.7)
Note thatS = N — (q + 1), where N denotes the number of Fy-rational points on the curve
Y4y = ax + aox® 4+ A3 4 ax’ + a0, (5.8)

As mentioned in Section 5.3, (5.8) defines a supersingular curve if « = 0. In that case Moreno-Moreno conclude in
[16, Theorem 3] that S is divisible by 24+,

If we now consider the same sum (or the curve) with coefficients from the subfield Fu (i.e. f (x) € Fou[x]) and again with
o = 0, then Theorem 2.2 implies that S = S; is divisible by 23*=V/2 if u is odd and it is divisible by 23*=2/2 if u is even. This
shows a marked increase in the divisibility, from (approximately) the cube root of the field size to the square root.

More generally, following Section 5.3, the sums

PGS (£2)
xeFd

are divisible by a higher power of 2 when the A;'s are in Fy, than when the A;’s are in F;.
We are not aware of another method to obtain such conclusions on exponential sums where the coefficients of
polynomials involved come from a subfield.

6. The converse

One may ask whether the converse of Theorem 3.1 holds. In other words, is it possible to prove the supersingularity of
certain Artin-Schreier type curves by proving that the related codes C; satisfy certain divisibility conditions? This would be a
very interesting application of coding theory since proving that a certain type of curve is supersingular is usually nontrivial.
We outline some cases where the converse is true.

Theorem 6.1. For q = 2" with u odd, let the family ¥ be as in (3.1). For each j > 1, define the F,-linear code of length
¢ —1=2"—1as follows:

G = {(Trj(rx't + -+ - + Asxfs))x6F;j DAy ks € Byl (6.1)
Assume the following divisibility conditions on C;:

2j7u divides all the weights in G; for j even,
ZjUTf1 divides all the weights in G for j odd.

Assume that the family ¥ consists of curves with maximal genus 3 (i.e. iy < 7 in (3.1)). Then all curves in ¥ are supersingular.
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Proof. By (3.3), the assumptions imply the following about the S; for members in a family of Artin-Schreier type curves of
the form (3.1):

271 divides S; for j even,
2" divides S; for j odd.

We will show via (2.2) that the divisibility conditions on the coefficients of the L-polynomials (Lemma 2.1) for the members
of F are satisfied. The first four equations are

a =1

S1=m

Sy +a151 = 2a,

Sy 4+ a1S; + a;S1 = 3as.

Clearly 2+V/2 divides a, which implies that 2" divides a,. In the final equation, each term on the left is divisible 2G4+ 1/2,
which implies the same thing fora;. O

Hence, equivalence of the weight divisibility conditions in Theorem 3.1 (for the special case ¢ = 2" and u odd) and the
supersingularity of the related curve family # is established for families with genus g = 2 and g = 3. In other words, the
converse is true in those cases. However, for families which contain curves of higher genera, the divisibility conditions on
codes in Theorem 3.1 are not strong enough to yield supersingularity of the related curve families. Hence the converse is
still an open problem in general.

Remark 6.2. We point out why the proof breaks down with curves of genus 4. The next recursion is
54 + (1]53 + a252 + 035] = 4a4. (62)

The assumptions and proof of Theorem 6.1 lead to the conclusion that 22*! divides all terms on the left hand side of (6.2).
This implies that 22~ ! divides a4, whereas we require 2% dividing a4 for supersingularity.

We know that genus 4 hyperelliptic curves (5.8) are supersingular if and only if « = 0. Therefore the condition « = 0 is
somehow equivalent to the condition 2% dividing a,. This equivalence is proved in [9].

Remark 6.3. Since the converse is true for genus 3 (with ¢ = 2" and odd u), Theorem 3.1 is equivalent to supersingularity
of the related family of curves. Oort’s result says that there are no genus 3 supersingular hyperelliptic curves, so therefore
we can conclude that the related code sequence does not have the divisibilities stated in Theorem 3.1. The curves in this
case are the family

Y2 4y = X + Aox3 + Agx® + ax’

which are hyperelliptic, and have 2-rank 0, but are not supersingular if @ 7 0. The 2-rank is the dimension of the 2-torsion
subgroup in the Jacobian, and supersingularity implies that the 2-rank is 0 but the converse is not true for genus >3.
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