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a b s t r a c t

Numerical integration methods for nonlinear differential-algebraic equations (DAEs) in
strangeness-free form are studied. In particular, half-explicit methods based on popular
explicit methods like one-leg methods, linear multistep methods, and Runge–Kutta meth-
ods are proposed and analyzed. Compared with well-known implicit methods for DAEs,
these half-explicit methods demonstrate their efficiency particularly for a special class of
semi-linear matrix-valued DAEs which arise in the numerical computation of spectral in-
tervals for DAEs. Numerical experiments illustrate the theoretical results.
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1. Introduction

Differential-algebraic equations are an important and convenient modeling concept in many different application areas
such as multibody mechanics, circuit design, optimal control, chemical reactions, and fluid dynamics, see [1–7] and the ref-
erences therein. In this work, we discuss efficient numerical integration methods for initial value problems associated with
differential-algebraic equations (DAEs) of the form

f (t, x(t), ẋ(t)) = 0
g(t, x(t)) = 0,

(1)

on an interval I = [t0, tf ], together with an initial condition x(t0) = x0. Here we assume that f = f (·, ·, ·) : I × Rn
× Rn

→

Rd and g = g(·, ·) : I × Rn
→ Ra, where n = d + a, are sufficiently smooth functions with bounded partial derivatives.

Furthermore, we assume that (1) is strangeness-free, see [5, Definition 4.4], which means that the combined Jacobian
fẋ(t, x(t), ẋ(t))

gx(t, x(t))


(2)

is nonsingular along the solution x(t).
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Throughout this paper, for the analysis of the numerical method we assume that the initial value problem for (1) has a
unique solution x∗(t) which is sufficiently smooth and that the derivatives of x∗ are bounded on I. Furthermore, f and g are
assumed to be sufficiently smooth with bounded partial derivatives in a neighborhood of (t, x∗(t)), t ∈ I. For the purpose of
analysis, due to the assumption (1), the state x in (1) can be reordered and partitioned as x = [xT1, x

T
2]

T , where x1 : I → Rd,
x2 : I → Ra, so that the Jacobian gx2 of g with respect to the variables x2 (or fẋ1 of f with respect to ẋ1) is invertible in
the neighborhood of the solution. If gx2 is nonsingular, then it has been shown in [5, Theorem 4.11] that (1) can be locally
transformed to a system of the form

ẋ1 = L(t, x1), x2 = R(t, x1). (3)
Strangeness-free DAEs of the form (1) have differentiation index 1 (see e.g. [1]) and they typically arise from the reduction
process described in [5, Section 4.1] applied to general implicit nonlinear DAEs

G(t, x, ẋ) = 0, t ∈ I. (4)
Linearizing (1) along x∗ yields a linear DAE with coefficient functions

E(t) =


E1(t)
0


=


fẋ(t, x∗, ẋ∗)

0


, A(t) =


A1(t)
A2(t)


=


fx(t, x∗, ẋ∗)
gx(t, x∗)


. (5)

We will frequently use this linearization in the analysis of the numerical methods presented in this paper, for consistency,
stability and convergence, see [8] or [5, Section 5.1] in the DAE framework.

The DAE (1) is more general than DAEs of differentiation index 1 in semi-explicit form, which is the special case that
fẋ1 = Id and fẋ2 = 0, since here ẋ2 is involved in the differential part, too. However, the algebraic constraint is explicitly
given and this fact can be exploited when constructing numerical methods for solving (1). Furthermore, there is an inter-
esting relationship of (1) to semi-explicit DAEs of differentiation index 2, [3]. If x is reordered and partitioned so that fẋ1 is
nonsingular, then we may introduce new variables y1 = x1, y2 = x2, z = ẋ2 and (1) is equivalent to

0 = φ(t, y(t), z(t), ẏ(t)),
0 = γ (t, y(t)),

(6)

where

φ(t, y(t), z(t), ẏ(t)) =


f (t, y1(t), y2(t), ẏ1(t), z(t))

ẏ2(t) − z(t)


, γ (t, y(t)) = g(t, y(t)).

Condition (2) together with the nonsingularity of fẋ1 implies that γy(φy)
−1φz(t, y(t), z(t), ẏ(t)) is nonsingular along the

solution. Invoking the Implicit Function Theorem, there exists a function ϕ such that (6) can be rewritten as

ẏ(t) = ϕ(t, y(t), z(t)),
0 = γ (t, y(t)),

(7)

with nonsingular Jacobian [γyϕz](t, y(t), z(t)). In the literature, (7) is called an index-2 DAE in semi-explicit form.
Numerical methods for DAEs of index at most two, including those in semi-explicit form, are analyzed in [1,9,3,4] and

several software packages for DAEs are available, see [5, Chapter 8]. In particular, it has been shown, see [5, Chapter 5], that
for regular strangeness-free DAEs of the form (1), well-known implicit methods like Runge–Kutta collocation methods and
BDF methods are convergent of the same order as for ordinary differential equations (ODEs).

In this paper we study half-explicit methods (HEMs) for strangeness-free DAEs of the form (1). Such methods based
on explicit Runge–Kutta methods have been suggested in [10–12,4,13] for the efficient integration of semi-explicit DAEs
ẋ = f (t, x, y), 0 = g(t, x, y) of differentiation index less than or equal to two. One applies an explicit integration scheme to
the differential part and an implicit scheme (even simply the implicit Euler scheme) to the algebraic part. In every integration
step this combination yields an algebraic system which uniquely determines the numerical solution. In general, the
complexity of suchmethods is smaller than that of fully implicit schemes and the implementation is less complicated aswell.

Here we propose and analyze half-explicit methods for the systems of the form (1) for which the convergence analysis
has not been discussed yet in the literature.

Ourmainmotivation to study half-explicit methods for problems of the form (1) arises from a special class of semi-linear
matrix-valued DAEs of the form

E1(t)Ẋ(t) = F(t, X(t)),
0 = A2(t)X(t),

(8)

where E1 : I → Rd×n, A2 : I → Ra×n are continuous matrix valued functions, and X : I → Rn×ℓ (1 ≤ ℓ ≤ d) and
F : I × Rn×ℓ

→ Rd×ℓ are (nonlinear) matrix-valued functions as well.
Matrix-valued DAEs of the form (8) arise in the stability analysis of DAEs via the numerical approximation of Lyapunov or

Sacker–Sell spectral intervals by methods as developed recently in [14,15]. In this application one has to solve strangeness-
free DAEs of the form (8), i.e., with nonsingular Ē(t) =


E1(t)T A2(t)T

T , on a very long interval [0, tf ] with tf = O(103) −

O(106). Furthermore, the exact solution has to satisfy some orthogonality condition in addition to the algebraic constraint
explicitly given in (8), i.e., it is a DAE operating on the set of n×ℓ isometries. In order to approximate the spectral quantities
accurately, the numerical solution must satisfy both conditions within machine precision [15].
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Solving (8) by a well-known implicit scheme like BDF or Runge–Kutta methods requires in every step the solution of a
nonlinear n × ℓ matrix equation instead of the usual vector equation, and if one uses Newton’s method, then the Jacobian
of the vectorized matrix function with respect to the components of X must be (approximately) available. In general,
unfortunately, the (numerical) approximation of this Jacobian is very complicated and costly; since in the computation of
spectral intervals no explicit formula of F is available, the values of F at given points (ti, Xi) are given only via a subroutine. If
a good approximation to the Jacobian is not available, then a fixed-point iteration or a modified Newton iteration, see [14],
must be used instead, which typically is slow and thus increases the computational cost significantly.

We will show that, by using half-explicit methods, these challenges can be mastered, since only the solution of a linear
matrix equation in every time step is required.

The outline of the paper is as follows. In the following section,we propose half-explicit one-legmethods and analyze their
convergence. Sections 3 and 4 contain the realization and the analysis of half-explicit variants of linear multistep methods
and Runge–Kutta methods, respectively. It will be shown that, using the relation between the strangeness-free DAE (1) and
the semi-explicit index-2 DAE (7), the half-explicit Runge–Kutta schemes proposed in this paper for (1) and those for (7)
in [12] are equivalent. In Section 5, some numerical experiments illustrate the convergence results.We finish the paper with
some conclusions.

2. Half-explicit one-leg (HEOL) methods for strangeness-free DAEs

In this section we discuss half-explicit one-leg (HEOL) methods which are special multistep methods. At time t = tN ,
we use k previous approximations xN−1, . . . , xN−k for the computation of the approximation xN to the solution value x(tN).
Given real parameters αj, βj for j = 0, 1, . . . , k, α0 ≠ 0, a one-leg method for the numerical solution of an initial value
problem associated with the ODE

ẋ = f (t, x) (9)

is given by

k
j=0

αjxN−j = hf


k

j=0

βjtN−j,

k
j=0

βjxN−j


. (10)

Here, if β0 = 0, then we have an explicit method, otherwise an implicit method, and only one function evaluation of f per
step is needed. Throughout this section, we suppose that β0 = 0.

In order to have consistency for the scheme (10), we assume as in [16] that
k

j=0 αj = 0, −
k

j=0 jαj = 1, andk
j=1 βj = 1. Note that the last identity can always be achieved by a proper scaling of the coefficients βi. The scheme

(10) is stable if the associated characteristic polynomial ρ(λ) =
k

j=0 αjλ
k−j is stable, i.e., all the roots of ρ(λ) lie in the

closed unit disk and the roots of modulus one are simple. Then the stability and consistency of order p ≥ 1 implies the
convergence of order p, see e.g. [5, Theorem 5.4].

The parameter set of a one-leg method can be adopted from that of linear multistep methods such as Euler methods,
Adams methods, or BDF (backward differentiation formula) methods. The analysis of explicit one-leg methods applied to
ODEs is presented, e.g., in [17,18]. For stiff ODEs and DAEs, however, one has to use implicit one-leg methods such as the
implicit midpoint rule or BDF methods, see e.g. [1,4,5,19,16].

Here we adapt explicit one-leg methods in order to solve the strangeness-free DAE (1). For simplicity, in the analysis we
assume that the mesh is uniform, i.e., that we have constant step-size. Using the concepts in [8, Section III.5], the analysis
can be extended to the case of variable step-sizes as well.

If for (1) we apply an explicit one-leg discretization scheme to the differential part, which is scaled by h/α0, and evaluate
the algebraic equation at t = tN , then in each time stepwe have to solve a nonlinear systemHN(tN , xN , xN−1, . . . , xN−k; h) =

0 given by the equations

(a)
h
α0

f


k

j=1

βjtN−j,

k
j=1

βjxN−j,
1
h

k
j=0

αjxN−j


= 0,

(b) g(tN , xN) = 0

(11)

for xN . The Jacobian matrix of HN with respect to xN is

∂

∂xN
HN(tN , xN , xN−1, . . . , xN−k; h) =

fẋ


t̄N ,

k
j=1

βjxN−j,
1
h

k
j=0

αjxN−j


gx(tN , xN)

 .

Note that t̄N =
k

j=1 βjtN−j is usually different from tN , but it remains close to tN for sufficiently small h. Since the system
is strangeness-free and f , g are assumed to be sufficiently smooth with bounded partial derivatives, the Jacobian matrix is
boundedly invertible in the neighborhood of the exact solution for sufficiently small h. Then the system (11) has a locally
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unique solution xN , which can be approximated by Newton’s method, see e.g. [20]. The detailed analysis of the existence
and uniqueness of the numerical solution by (11) is given in the proof of Theorem 1 below.

Note that, unlike the case of implicit methods (β0 ≠ 0), when we use the scheme (11), then the evaluation of ∂ f /∂x at
each step is avoided. Hence, if f and g are linear functions in ẋ and x, respectively, as in (8), then (11) is a linear system for xN .

For the semi-linear matrix-valued DAE (8), we then obtain

1
α0

E1(t̄N)

k
j=0

αjXN−j =
h
α0

F


t̄N ,

k
j=1

βjXN−j


,

A2(tN)XN = 0,
which we write as the linear system for XN ,

E1(t̄N)
A2(tN)


XN =

−
1
α0

E1(t̄N)

k
j=1

αjXN−j +
h
α0

F


t̄N ,

k
j=1

βjXN−j


0

 . (12)

If one uses a direct solutionmethod such as Gaussian elimination, then in eachmesh-point t = tN , only one LU factorization
is needed to solve the linear matrix equation (12) instead of using Newton’s method for a nonlinear system of essentially
squared dimension.

In the following, we prove that the one-leg method (11) applied to (1) is convergent of order p provided that it is of order
p ≥ 2 and stable in the case of ODEs. For DAEs of the semi-linear form (8), we show convergence with p = 1, as well.

Theorem 1. Suppose that the explicit one-leg method (10) as applied to ODEs (9) is convergent of order p ≥ 2 (with starting
values that are correct of order O(hp)). Then, the half-explicit scheme (11) applied to DAEs of the form (1) is convergent of order
p as well, provided that the initial values are consistent. In the case of semi-linear DAEs (8), the scheme (12) is convergent with
p = 1, as well.

Proof. We use the same framework as in the proof for the convergence of BDF methods in [5, Theorem 5.27], but avoid the
splitting of variables as we did in [21]. This in fact generalizes the state space form approach for the convergence analysis
of numerical methods for semi-explicit DAEs of index 1, see [4, Chapter 6.1-2] and [5, p. 238]. Since the derivative of the
algebraic variables is implicitly involved in the differential part, the convergence analysis for (1) is more complicated than
in the semi-explicit case.
(a) Existence and uniqueness of the numerical solution. First, we prove the existence and the uniqueness of the numerical
solution. We will prove that for all N ≥ k with t0 + Nh ≤ tf , if xN−j = x∗(tN−j) + O(hp) holds for j = 1, . . . , k, then for
sufficiently small h the nonlinear system (11) has a locally unique solution xN that also satisfies xN = x∗(tN) + O(hp).

The accuracy order of the one-leg method implies
k

j=1 βjx∗(tN−j) = x∗(t̄N) + O(hp) and 1
h

k
j=0 αjx∗(tN−j) = ẋ∗(t̄N) +

O(hp), where t̄N =
k

j=1 βjtN−j. Consider the function HN defined in (11) and consider a neighborhood of the exact solution
defined by

Γ (h) =

(ξN , . . . , ξN−k), ξN−j ∈ Rn, ∥ξN−j − x∗(tN−j)∥ ≤ Chp, j = 0, 1, . . . , k


with some positive constant C and p ≥ 2. Then, for (ξN , . . . , ξN−k) ∈ Γ (h), we have

∂

∂ξN
HN(tN , ξN , . . . , ξN−k; h) =

fẋ


t̄N ,

k
j=1

βjξN−j,
1
h

k
j=0

αjξN−j


gx(tN , ξN)


=


fẋ(t̄N , x∗(t̄N) + O(hp), ẋ∗(t̄N) + O(hp−1))

gx(tN , x∗(tN) + O(hp))


=


fẋ(tN , x∗(tN), ẋ∗(tN))

gx(tN , x∗(tN))


+ O(h).

Due to (2), there exists h0 > 0 such that if h ≤ h0 then ∂
∂ξN

HN(tN , ξN , . . . , ξN−k; h) is nonsingular and its inverse is bounded
by a constant independent of h. Due to the order assumption of the one-leg method, the exact solution x∗(t) satisfies the
equation

HN(tN , x∗(tN), . . . , x∗(tN−k); h) = O(hp+1). (13)

Thus, by the Implicit Function Theorem, the system (11) has a locally unique solution xN . Furthermore, by linearizing
HN(tN , ξN , . . . , ξN−k; h) about (tN , x∗(tN), . . . , x∗(tN−k); h), it follows that there exists a constant K0 > 0 such that

∥xN − x∗(tN)∥ ≤ K0

∥xN−1 − x∗(tN−1)∥ + · · · + ∥xN−k − x∗(tN−k)∥


+ O(hp+1) (14)

holds. Thus, we immediately obtain that the numerical solution xN also satisfies xN − x∗(tN) = O(hp).
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In thisway,we have shown that (11) locally determines the numerical solution xN , provided that the preceding numerical
approximations xN−j, j = 1, . . . , k, are sufficiently close to the exact solution. Let the unique solution xN be defined by

xN = S(tN , xN−1, . . . , xN−k; h), (15)

then it follows from (11) that

HN(tN , S(tN , xN−1, . . . , xN−k; h), xN−1, . . . , xN−k; h) ≡ 0. (16)

(b) Consistency. As second step, we show that (11), or equivalently (15), indeed gives a consistent numerical method. To this
end, we define

XN =


xN−1
xN−2

...
xN−k

 , X(tN) =


x∗(tN−1)
x∗(tN−2)

...
x∗(tN−k)

 ,

together with

F (tN , XN; h) =


S(tN , xN−1, . . . , xN−k; h)

xN−1
...

xN−k+1

 .

For consistency, we must study X(tN+1) − F (tN , X(tN); h) and, therefore, consider

x∗(tN) − S(tN , x∗(tN−1), . . . , x∗(tN−k); h).

By substituting xN−j = x∗(tN−j) for j = 1, 2, . . . , k, into the estimate (14) in Part (a), it immediately follows that this
difference is of order O(hp+1), i.e.,x∗(tN) − S(tN , x∗(tN−1), . . . , x∗(tN−k); h)

 = O(hp+1). (17)

This means that the discretization method (11) is consistent of order p.
(c) Stability. As the last step, we prove the stability of the method. For this, we must study F (tN , X(tN); h) − F (tN , XN; h).
Similar to the proof of [4, TheoremVII.3.5], we choose a sufficiently large constant C0 and assume that the numerical solution
satisfies the global estimates

(i)
xN − x∗(tN)

 ≤ C0h and (ii)

1h
k

j=0

αjxN−j − ẋ∗(t̄N)

 ≤ C0h (18)

for all N with t0 + Nh ≤ tf and all sufficiently small h. These estimates will be justified at the end of the proof. We again
consider the first block

S(tN , x∗(tN−1), . . . , x∗(tN−k); h) − S(tN , xN−1, . . . , xN−k; h)

and determine the derivatives SxN−j of S with respect to xN−j for j = 1, 2, . . . , k. Instead of (11), replacing the algebraic
equation g(tN , xN) = 0 by

N
j=0

αj
α0

g(tN−j, xN−j) = 0, we obtain
h
α0

f


t̄N ,

k
j=1

βjxN−j,
1
h


k

j=1

αjxN−j + α0S(tN , xN−1, . . . , xN−k; h)


N
j=1

αj

α0
g(tN−j, xN−j) + g(tN , S(tN , xN−1, . . . , xN−k; h))

 = 0. (19)

Differentiating (19) with respect to xN−j for j = 1, 2, . . . , k, we get αj

α0
fẋ + fẋSxN−j + h

βj

α0
fx

αj

α0
gx + gxSxN−j

 = 0,

where the Jacobian matrices fẋ, fx are evaluated at (t̄N ,
k

j=1 βjxN−j,
1
h

k
j=0 αjxN−j) and the Jacobians gx at (tN , xN) and

(tN−j, xN−j), respectively. Due to the assumptions (2) and (18), for sufficiently small h, thematrix

fẋ
gx


is boundedly invertible
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and gx(tN−j, xN−j) = gx(tN , xN) + O(h). Hence we have SxN−j = −
αj
α0

In + O(h), and it follows that

S(tN , x∗(tN−1), . . . , x∗(tN−k); h) − S(tN , xN−1, . . . , xN−k; h) =

k
j=1


−

αj

α0
In + O(h)


(x∗(tN−j) − xN−j). (20)

Thus,

F (tN , X(tN); h) − F (tN , XN; h) =


k

j=1


−

αj

α0
In + O(h)


(x∗(tN−j) − xN−j)

x∗(tN−1) − xN−1
...

x∗(tN−k+1) − xN−k+1

 ,

and we obtain the estimate

∥F (tN , X(tN); h) − F (tN , XN; h)∥ ≤ (∥Cα ⊗ In∥ + K1h) ∥X(tN) − XN∥ ,

where

Cα =


−

α1

α0
· · · −

αk−1

α0
−

αk

α0

1
. . . 0 0

...
. . .

. . .
...

0 · · · 1 0

 (21)

and the positive constant K1 is independent of h. If the underlying one-leg method is stable, then there exists a vector norm
such that with the associated matrix norm, the inequality ∥Cα ⊗ Id∥ ≤ 1 is satisfied. Hence, the discretization method (11)
is stable as well.

Combining the three parts of the proof, we conclude that the numerical solution xN by (11) converges to the exact solution
x∗ with order p, i.e., there exists a positive constant C1 such thatxN − x∗(tN)

 ≤ C1hp

for all N = 0, 1, . . . , with t0 + Nh ≤ tf . In addition, combining the estimates (17) and (20) yields

N
j=0

αj(x∗(tN−j) − xN−j) =

N
j=1

O(h)(x∗(tN−j) − xN−j) + O(hp+1).

Let us recall that 1
h

N
j=0 αjx∗(tN−j) = ẋ(t̄N) + O(hp). Thus, there exists a positive constant C2 such that1h

N
j=0

αjxN−j − ẋ∗(t̄N)

 ≤ C2hp.

We note that the stability constant K1 and thus both C1 and C2 may depend on C0. For p ≥ 2, we can ensure the global
estimates (18) by choosing h sufficiently small such that

C1hp−1
≤ C0 and C2hp−1

≤ C0.

Then, together with the assumption on the starting values, the global estimate (18) follows by induction. This finishes the
proof of the convergence of the one-leg method (11) for the general strangeness-free nonlinear DAE (1).

Finally, we discuss the convergence of half-explicit one-leg methods as applied to strangeness-free semi-linear DAEs of
the form (8). We need to solve a linear system (12) instead of a nonlinear system as in the general case. The coefficient of xN
(or XN in the matrix-valued case) is


E1(t̄N )
A2(t)


,which is nonsingular for all sufficiently small h due to (2). Thus, the existence of

a globally unique numerical solution xN for h ≤ h0 with a sufficiently small h0 > 0 holds without any preliminary assump-
tion on the preceding approximates xN−j, j = 1, 2, . . . , k. Similarly, the system (19) inherits the semi-linear structure and
therefore, the stability estimate (20) is obtained without the global assumption (18). This means that the restriction on p
can be relaxed and the convergence of half-explicit one-leg methods holds for p = 1 as well. �

Remark 2. In the general case, because of the assumption (18), the above proof is valid only for p ≥ 2. The only one-leg
method with k = p = 1 is the half-explicit Euler method which is in fact the simplest method of the class of half-explicit
Runge–Kuttamethods discussed in Section 4. By exploiting the one-step property, the stability of thismethod holdswithout
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assuming (18). The convergence of half-explicit one-legmethods with k ≥ 2 and p = 1 is still open, in general. However, for
special cases such as for semi-linear strangeness-free DAEs of the form (8), which is just discussed here, and for semi-explicit
DAEs of index 1, which is considered in [4], the convergence is established in the case p = 1 as well.

Remark 3. The stability condition for implicit one-leg methods applied to fully implicit DAEs of differentiation index 1,
see [16, Theorem 1], is more restrictive, since the strict stability of the second characteristic polynomial is required in
addition. See also the stability condition for half-explicit multistep methods given in the next section. Here, we have seen
that, because of the special structure of (1) and the appropriate discretization of the algebraic part ((11)b), the half-explicit
one-leg methods behave rather like BDF methods. Furthermore, instead of the discretization (11), one can use (provided
that the starting values are consistent) the following equivalent discretization

h
α0

f


t̄N ,

k
j=1

βjxN−j,
1
h

k
j=0

αjxN−j


N
j=0

αj

α0
g(tN−j, xN−j)

 = 0.

Note that the second equation is exactly the direct discretization of the equation d
dt g(t, x(t)) = 0 by the one-leg method.

Example 4. The simplest example of a one-leg method is the explicit Euler method with α0 = 1, α1 = −1 and β1 = 1,
which is of order 1. If we apply the resulting half-explicit method to the test DAE [22]

1 −ωt
0 0


ẋ =


λ ω(1 − λt)

−1 1 + ωt


x, (22)

then with stepsize hwe obtain the generalized stability function

R(z, w) =
1 + z + w

1 + w
,

where z = λh and w = ωh. Comparing this with the stability function of the implicit Euler method, see [22],

R(z, w) =
1 − w

1 − z − w
,

wemay conclude that the half-explicit method is feasible for non-stiff DAEs of the form (1), i.e., DAEs where the underlying
ODE is non-stiff. For the test equation (22), this means that λ has negative, but not too large real part.

Example 5. A family of second order two-step methods introduced in [17] is defined by the coefficients

α0 =
1
ξ
, α1 = 1 −

2
ξ
, α2 =

1
ξ

− 1, β1 =
1
2

+
1
ξ
, β2 =

1
2

−
1
ξ
,

where ξ is a parameter, 0 < ξ ≤ 2. If ξ = 1, thenwe have the one-leg variant of thewell-known two-step Adams–Bashforth
scheme.

3. Half-explicit linear multistep methods

In this section we consider explicit linear multistep methods applied to (9) as basis for the construction of half-explicit
linear multistep (HELM) methods. These take the form

k
j=0

αjxN−j = h
k

j=1

βjfN−j, fN−j = f (tN−j, xN−j). (23)

Without loss of generality, we assume that α0 = 1 and β1 ≠ 0 (if β1 is not zero, then we use the first non-zero parameter
among the βj instead). To construct a half-explicit method for (1), the only question is how to implement thismethod for the
differential part. Using the idea introduced for implicit multistepmethods for DAEs in [19], we proceed as follows. Let xN and
wN be approximations of the exact solution x(tN) and its derivativew(tN) := ẋ(tN), respectively. Now, suppose that we have
already determined xN−k, . . . , xN−1 and wN−k, . . . , wN−2. The scheme (23) is equivalent to

k
j=0 αjxN−j = h

k
j=1 βjwN−j,

from which we get

wN−1 =
1
β1


1
h

k
j=0

αjxN−j −

k
j=2

βjwN−j


. (24)



V.H. Linh, V. Mehrmann / Journal of Computational and Applied Mathematics 262 (2014) 346–360 353

Using this approximate formula for wN−1, we approximate the differential part at t = tN−1 and the algebraic part at t = tN .
This results in a nonlinear system for xN given by

f (tN−1, xN−1, wN−1) = 0,

g(tN , xN) = 0,

or equivalently

(a) hβ1f


tN−1, xN−1,

1
β1


1
h

k
j=0

αjxN−j −

k
j=2

βjwN−j


= 0,

(b) g(tN , xN) = 0.

(25)

This system has a locally unique solution xN for sufficiently small h which can be approximated by Newton’s method.
Applying (25) to the semi-linear DAE (8), we obtain the linear system


E1(tN−1)
A2(tN)


XN =

−E1(tN−1)


k

j=1

αjXN−j − h
k

j=2

βjWN−j


+ hβ1F(tN−1, XN−1)

0

 . (26)

So, similar as for the half-explicit one-legmethods,we need to performonly one LU factorization per step to solve the system
(26) for XN . The derivative approximationWN−1 that is needed for the next step is obtained by (24).

Let us introduce the second characteristic polynomial σ(λ) =
k

j=1 βjλ
k−j, which is associated with the formula (24). We

will see below that, to ensure the stability of the numerical scheme, this polynomial has to be strictly stable, i.e., all the roots
must be inside the open unit disk, in addition to the stability of ρ. Furthermore, to initialize the scheme (25), we need not
only the starting values xj, j = 0, . . . , k − 1, but also the starting values wj, j = 0, . . . , k − 2.

We have the following convergence result for half-explicit linear multistep methods.

Theorem 6. Suppose that the explicit linear multistep method (23) applied to an ODE of the form (9) is convergent of order p ≥ 2
and that the second characteristic polynomialσ(λ) is strictly stable. In addition, we assume that all the starting values are accurate
of order p and consistent, i.e., they satisfy g(tj, xj) = 0 for j = 0, . . . , k − 1 and f (tj, xj, wj) = 0 for j = 0, . . . , k − 2. Then,
the half-explicit scheme (25) applied to the DAE (1) is convergent of order p as well. For semi-linear strangeness-free DAEs of the
form (8), the convergence holds for p = 1 as well.

Proof. Weproceed in the sameway as in the convergence analysis for half-explicit one-legmethods. Consider the nonlinear
system (25). All the arguments for proving the existence of a locally unique numerical solution xN and the consistency are
similar but with some slight differences due to the appearance of the derivative approximations wN−j, j = 2, . . . , k. Let
us introduce xN = S(tN , xN−1, . . . , xN−k, wN−2, . . . , wN−k; h) and wN−1 = Q(tN , xN−1, . . . , xN−k, wN−2, . . . , wN−k; h) with
solution operators S and Q, respectively. The consistency analysis shows that, if xN−j = x∗(tN−j) for j = 1, 2, . . . , k, and
wN−j = ẋ∗(tN−j) for j = 2, . . . , k, then

x∗(tN) − S(tN , xN−1, . . . , xN−k, wN−2, . . . , wN−k; h) = O(hp+1) (27)

and

ẋ∗(tN−1) − Q(tN , xN−1, . . . , xN−k, wN−2, . . . , wN−k; h) = O(hp). (28)

We also define

ZN =



xN−1

xN−2

...

xN−k

wN−2

...

wN−k


, Z(tN) =



x∗(tN−1)

x∗(tN−2)

...

x∗(tN−k)

w∗(tN−2)

...

w∗(tN−k)


,



354 V.H. Linh, V. Mehrmann / Journal of Computational and Applied Mathematics 262 (2014) 346–360

where w∗ denotes the derivative of x∗, and

G(tN , ZN; h) =



S(tN , xN−1, . . . , xN−k; h)
xN−1

...
xN−k+1

Q(tN , xN−1, . . . , xN−k, wN−2, . . . , wN−k; h)
wN−2

...
wN−k+1


.

We focus on proving the stability of the scheme (24), (25). Let us assume the global estimates

(i)
xN − x∗(tN)

 ≤ C3h and (ii)
wN − ẋ∗(tN)

 ≤ C3h (29)

for all N = 0, 1, . . . , with t0 + Nh ≤ tf , with some constant C3, and for all sufficiently small h. Instead of (25), we consider
the equivalent nonlinear system

(a) hβ1f


tN−1, xN−1,

1
β1


1
h

k
j=0

αjxN−j −

k
j=2

βjwN−j


= 0,

(b)
k

j=0

αjg(tN−j, xN−j) = 0.

(30)

Recall that here α0 = 1 is already assumed. Then, by differentiating (30), elementary calculations show that, under the
global assumption (29), the Jacobians of S satisfy

fẋSxN−j + αjfẋ
gxSxN−j + αjgx


= O(h), hence SxN−j = −αjIn + O(h), 1 ≤ j ≤ k,

and 
fẋSwN−j − hβjfẋ

gxSwN−j


= 0, hence SwN−j =


fẋ
gx

−1 
hβjfẋ
0


= O(h), 2 ≤ j ≤ k. (31)

Consequently, we obtain the estimate

S(tN , x∗(tN−1), . . . , w
∗(tN−k); h) − S(tN , xN−1, . . . , wN−k; h)

=

k
j=1

(−αjIn + O(h))(x∗(tN−j) − xN−j) +

k
j=2

O(h)(w∗(tN−j) − wN−j). (32)

The estimates for QxN−j and QwN−j are obtained as follows. Substituting xN = S(tN , xN−1, . . . , wN−k; h) into (24) and differ-
entiating with respect to xN−j and wN−j, we have

QxN−j =
1

β1h
(SxN−j + αjIn) =

1
β1h

(−αjIn + O(h) + αjIn) = O(1)

for 1 ≤ j ≤ k and

QwN−j =
1

β1h
SwN−j −

βj

β1
In

for 2 ≤ j ≤ k. Then (31) implies that

1
β1h

SwN−j =


fẋ
gx

−1
 βj

β1
fẋ

0

 .

On the other hand, by linearizing f (tN−j, xN−j, wN−j) = 0 at (tN−j, x∗(tN−j), w
∗(tN−j)) for j ≥ 2, and again making use of

(29), we obtain

(fẋ + O(h))(w∗(tN−j) − wN−j) = −(fx + O(h))(x∗(tN−j) − xN−j).
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This leads to the estimate

Q(tN , x∗(tN−1), . . . , w
∗(tN−k); h) − Q(tN , xN−1, . . . , wN−k; h)

=

k
j=1

O(1)(x∗(tN−j) − xN−j) +

k
j=2


−

βj

β1
+ O(h)


(w∗(tN−j) − wN−j). (33)

Summarizing the estimates (32) and (33), it then follows that

G(tN , Z(tN); h) − G(tN , ZN; h)

=



k
j=1


−

αj

α0
In + O(h)


(x∗(tN−j) − xN−j) +

k
j=2

O(h)(w∗(tN−j) − wN−j)

x∗(tN−1) − xN−1
...

x∗(tN−k+1) − xN−k+1
k

j=1

O(1)(x∗(tN−j) − xN−j) +

k
j=2


−

βj

β1
IN + O(h)


(w∗(tN−j) − wN−j)

w∗(tN−2) − wN−2
...

w∗(tN−k+1) − wN−k+1



,

and equivalently, we have

G(tN , Z(tN); h) − G(tN , ZN; h) =


Cα ⊗ In + O(h) O(h)

O(1) Cβ ⊗ In + O(h)


(Z(tN) − ZN),

where Cα is defined by (21) and

Cβ =


−

β2

β1
· · · −

βk−1

β1
−

βk

β1

1
. . . 0 0

...
. . .

. . .
...

0 · · · 1 0

 .

Because of the stability of ρ(λ) and the strict stability of σ(λ), there exists a norm such that ∥Cα ⊗ Id∥ = 1 andCβ ⊗ In
 = κ < 1. Let us partition G = (G(1)T , G(2)T )T according to the size of Cα ⊗ In and Cβ ⊗ In. Similarly, we partition

Z = (Z(1)T , Z(2)T )T and ZN = (Z
(1)
N

T
, Z

(2)
N

T
)T and obtainG(1)(tN , Z(tN); h) − G(1)(tN , ZN; h)
G(2)(tN , Z(tN); h) − G(2)(tN , ZN; h)
 ≤


1 + O(h) O(h)

O(1) κ + O(h)

Z(1)(tN) − Z
(1)
N

Z(2)(tN) − Z
(2)
N


 .

Using the same technique as that in the proof of [4, Lemma VI.3.9], we obtain that there exist a norm and a positive constant
K2 such that

∥G(tN , Z(tN); h) − G(tN , ZN; h)∥ ≤ (1 + K2h) ∥Z(tN) − ZN∥ .

Hence, the discretization method (24)–(25) is stable. Combining with the local error estimates (27) and (28), [4, Lemma
VI.3.9] shows that both xN and wN−1 converge to the exact values x∗(tN) and ẋ∗(tN−1), respectively, with the same order p.
In other words, there exist positive constants C4 and C5 such thatx∗(tN) − xN

 ≤ C4hp and
ẋ∗(tN−1) − wN−1

 ≤ C5hp.

Since p ≥ 2 is assumed, with sufficiently small h, the validity of the global estimates (29) follows by induction.
Finally, for semi-linear DAEs (8), the resulting system (26) that is to be solved is linear. Thus, by similar arguments as in

the proof of Theorem 1, the convergence of the discretization scheme (26) is extended to the case p = 1, too. �

Remark 7. We stress that, similar to the case of one-leg methods, the restriction p ≥ 2 can be relaxed if the half-explicit
multistep methods (25) is applied to semi-explicit DAEs of index 1 or to semi-linear strangeness-free DAEs like (8). The im-
plementations of HELMmethods in these special cases are simpler. For example, in the case of semi-explicit DAEs of index 1,
one first calculates the differential component explicitly, then solves the algebraic equation for the algebraic component.
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This means that the introduction of the auxiliary variables wN and its recursion (24) can be avoided. Furthermore, by the
state space form approach, the convergence of the numerical solution is easily verified which does not require the extra
condition on the second characteristic polynomial, see [4, pp. 376,383].

Example 8. A family of second order two-step methods, introduced in [17], is defined by

α0 = 1, α1 = ξ − 2, α2 = 1 − ξ, β1 =
ξ

2
+ 1, β2 =

ξ

2
− 1,

where ξ is a parameter, 0 < ξ ≤ 2. It is easy to verify that for each ξ ∈ (0, 2], the half-explicit methods (25) based on these
schemes satisfy the conditions of Theorem 6with convergence order p = 2. If ξ = 1, then we obtain the well-known 2-step
Adams–Bashforth formula.

Example 9. Consider the 3-step Adams–Bashforth method

α0 = 1, α1 = −1, α2 = α2 = 0, β1 = 23/12, β2 = −4/3, β3 = 5/12,

which iswell known to be convergent of order p = 3 as applied to ODEs [8]. It is easy to check that σ(λ) is strictly stable, thus
the half-explicitmethod (25) based on this scheme is convergent of order p = 3 as applied to (1). Similarly, by Theorem6, one
can verify without difficulty that the half-explicit 4- and 5-step Adams–Bashforthmethods are convergent of order p = 4, 5,
respectively. In contrast, Adams–Moulton schemes, the well-known implicit counterparts, are unstable when applied to
DAEs, since their second characteristic polynomial is not stable, see [4,23]. Thus, surprisingly, explicit Adams–Bashforth
schemes, implemented appropriately in thehalf-explicit framework (25), are feasible for solving (non-stiff) DAEs (1). It is also
straightforward to extend the half-explicit linear multistep methods proposed here to semi-explicit index-2 DAEs (7), i.e.,
they are alternative candidates for solving this class of DAEs, in addition to BDF and difference corrected multistep meth-
ods [24,4].

4. Half-explicit Runge–Kutta methods

For a given explicit Runge–Kutta method, the corresponding half-explicit Runge–Kutta (HERK) method can be con-
structed using a similar idea as in the case of half-explicit linear multistep methods. However, for the convergence analysis,
we will exploit the equivalence between (1) and (7) and make use of the well-known order conditions and convergence
results of half-explicit Runge–Kutta methods that exist for semi-explicit index-2 DAEs, [12,3]. Consider an s-stage explicit
Runge–Kutta method given by Table 1 with c1 = 0. We assume that ai+1,i ≠ 0 for i = 1, . . . , s − 1 and bs ≠ 0. Consider an
interval [tN−1, tN ] and suppose that an approximation xN−1 to x(tN−1) is given. Let Ξi ≈ x(tN−1 + cih) be the stage approxi-
mation and let Ki = Ξ̇i be the approximations to the derivatives of Ξi, i = 1, . . . , s. Then, the explicit Runge–Kutta scheme
defined by Table 1 reads

(a) Ξ1 = xN−1,

(b) Ξi = xN−1 + h
i−1
j=1

ai,jKj, i = 1, . . . , s, (34)

(c) xN = xN−1 + h
s

i=1

biKi.

We propose the following half-explicit Runge–Kutta (HERK) method based on (34) for (1). The first stage-approximation
Ξ1 = xN−1 is obviously available. The (i + 1) stage-approximation Ξi+1 is obtained successively by solving the algebraic
systems

(a) f


tN−1 + cih, Ξi,

1
ai+1,i


Ξi+1 − xN−1

h
−

i−1
j=1

ai+1,jKj


= 0,

(b) g(tN−1 + ci+1h, Ξi+1) = 0,

(35)

for i = 1, . . . , s − 1. Finally, the numerical solution xN at time step t = tN is determined by the system

(a) f


tN−1 + csh, Ξs,

1
bs


xN − xN−1

h
−

s−1
i=1

biKi


= 0,

(b) g(tN , xN) = 0.

(36)

Here

K1 =
Ξ2 − xN−1

ha21
, Ki =

1
ai+1,i


Ξi+1 − xN−1

h
−

i−1
j=1

ai+1,jKj


, i = 2, . . . , s − 1, (37)
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Table 1
Butcher tableau of explicit s-stage
Runge–Kutta method .

0 0 0 · · · 0
c2 a2,1 0 · · · 0
· · · · · · · · · · · · · · ·

cs as,1 as,2 · · · 0
b1 b2 · · · bs

and

Ks =
1
bs


xN − xN−1

h
−

s−1
i=1

biKi


. (38)

Applying this method to the special matrix-valued DAE system (8), these become a system of linear matrix equations,
E1(t

(i)
N−1)

A2(t
(i+1)
N−1 )


Ξi+1 =

E1(t
(i)
N−1)


XN−1 + h

i−1
j=1

ai+1,jKj


+ hai+1,iF(t(i)N−1, Ξi)

0

 ,

for i = 1, . . . , s − 1, and
E1(t

(s)
N−1)

A2(tN)


XN =

E1(t
(s)
N−1)


XN−1 + h

s−1
i=1

biKi


+ hbsF(t(s)N−1, Xs)

0

 ,

respectively, where t(i)N−1 = tN−1 + cih, i = 1, . . . , s.
Again, when using direct solution methods, these linear systems can be solved efficiently by one LU factorization per

system, i.e., a total of sLU factorizations is needed.
We now show that the HERKmethod (35)–(36) for (1) is exactly the HERKmethod analyzed in [12] applied to the equiva-

lent semi-explicit index-2DAE (7). Indeed, assume that now fẋ1 is nonsingular and letΞi = (Ξ T
i,1, Ξ T

i,2)
T and Ki = (K T

i,1, K
T
i,2)

T

be decomposed accordingly. Furthermore, assume that the approximation yN−1 to y(tN−1) in (7) is the same as xN−1. With
new variables Yi = Ξi and Zi = Ki,2, then we have Y1 = Ξ1 = xN−1 = yN−1. Then, consider the system (35) with i = 1 for
the next stage Ξ2 and rewrite it using the new variables as follows:

f (tN−1, Y1,1, Y1,2, K1,1, Z1) = 0,
K1,2 − Z1 = 0,
g(tN−1 + c2h, Y2) = 0.

By the definition of function ϕ and γ as in (7), we have the system

K1 = ϕ(tN−1, Y1, Z1),
0 = γ (tN−1 + c2h, Y2),

or equivalently by (37)

Y2 = yN−1 + ha2,1ϕ(tN−1, Y1, Z1),
0 = γ (tN−1 + c2h, Y2).

Similarly, the system (35) with i = 2 for Ξ3 is rewritten as

f (tN−1 + c2h, Y2,1, Y2,2, K2,1, Z2) = 0,
K2,2 − Z2 = 0,
g(tN−1 + c3h, Y3) = 0,

which reduces to

K2 = ϕ(tN−1 + c2h, Y2, Z2),
0 = γ (tN−1 + c3h, Y3).

Using the definition of K2 in (37) and inserting the preceding result K1 = ϕ(tN−1, Y1, Z1), we obtain

Y3 = yN−1 + h

a3,1ϕ(tN−1, Y1, Z1) + a3,2ϕ(tN−1 + c2h, Y2, Z2)


,

0 = γ (tN−1 + c3h, Y3).
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By induction, we obtain

(a) Yi+1 = yN−1 + h
i

j=1

ai+1,jϕ(t(j)N−1, Yj, Zj),

(b) 0 = γ (t(i+1)
N−1 , Yi+1),

(39)

for i = 1, . . . , s − 1. Finally, the numerical solution yN at time step t = tN is obtained by the system

(a) yN = yN−1 + h
s

i=1

biϕ(t(i)N−1, Yi, Zi),

(b) 0 = γ (tN , yN).

(40)

Theorem 3 in [12] states that if the scheme (39)–(40) is consistent of order p, then it is convergent of order p. Further-
more, order conditions up to p = 4 are given in [12, Table 1]. For p ≤ 2, the order conditions are the same as in the ODE
case. We thus immediately obtain the convergence result for the half-explicit Euler method and for the 2-stage half-explicit
Runge–Kutta method (35)–(36).

Theorem 10. Assume that the Runge–Kutta method given by Table 1 with s = 2 satisfies

c2 = a21, b1 + b2 = 1, c2b2 = 1/2. (41)

If the initial condition x0 is consistent, then the half-explicit Runge–Kutta (HERK) method (35)–(36) applied to (1) is convergent
of order p = 2.

Proof. As we have just shown above, the scheme (35)–(36) is equivalent to the HERK method (39)–(40) that is analyzed
in [12], and since conditions (41) are exactly the order conditions for p = 2 derived in [12, Table 1], the assertion follows
directly from [12, Theorem 3]. �

Example 11. Explicit 2-stage Runge–Kutta methods satisfying (41) are given by a one-parameter family of methods as in
the following Butcher tableau

0 0 0
α α 0

1 −
1
2α

1
2α

where α ∈ (0, 1] is a parameter. This class of methods is well-known to be of second order for ODEs. For α = 1/2, we have
the explicit midpoint rule, while for α = 1, the explicit trapezoidal rule is obtained. The generalized stability function for
the method as applied to the test DAE (22) is

R(z, w) =
1

1 + w(1 − α)


1 + z +

z2

2
+ αw


3 − 2α + 2z(1 + α) − αw(3 − 2α) + αz2


.

For w = 0, the stability function R(z) = 1 + z + z2/2 is exactly the stability function of the explicit Runge–Kutta method
(11) that is well analyzed in the numerical analysis of non-stiff ODEs, see e.g. [8].

Onemight think that the construction of high-order HERKs is similar to the ODE case. However, as pointed out in [25,12],
for order p ≥ 3, extra order conditions must be fulfilled in addition to those for ODEs. It is shown there as well that there
exists only one HERK method with p = s = 3 and no method of order p = 4 with s = 4. In [25,12], HERK methods of
order p = 4 and p = 5 are constructed with the number of stages s = 5 and s = 8, respectively. They can obviously be
adopted in (35)–(36) with the same convergence order. In [10,13], a modification of the HERK methods for index-2 DAEs
is proposed which makes high-order methods available with lower stage-number. However, this version of HERK methods
would require the initial value for the artificial algebraic variable z(0) = ẋ2(0) (using again a splitting into algebraic and
differential variables), which does not seem to be natural in the context of our original problem (1).

Remark 12. The half-explicit Runge–Kutta methods proposed here for strangeness-free DAEs (1) can be considered as a
generalization of the half-explicit Runge–Kutta methods for semi-explicit index-1 DAEs analyzed in [11,3]. However, their
implementations and convergence results are different. For semi-explicit DAEs, not only the differential and the algebraic
parts are separated, but also the derivative of the differential component is explicitly given, which is not the case with (1).
Hence, the differential component of each stage is computed first and then the algebraic component follows by solving an
algebraic system. Here, the whole stage-approximation must be evaluated once by solving a larger algebraic system. In fact,
in the case of semi-explicit systems, we have ∂ f /∂ ẋ = E1 =


I 0


, hence the Jacobian of the algebraic system (35) has a

special lower block-triangular form with the identity matrix in the left upper block. This special structure makes the use of
half-explicit Runge–Kutta methods simpler when they are applied to semi-explicit DAEs of index 1.
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Table 2
Actual errors of solutions to IVP (42) by one-leg Adams–Bashforth method in Example 5.

ξ h Error in x1 Error order in x1 Error in x2 Error order in x2

2 0.1 0.004791028 2.17 0.001762521 2.17
2 0.05 0.001067391 2.10 0.000392671 2.10
2 0.025 0.00024866 2.06 9.14768E−05 2.06
2 0.01 3.79341E−05 2.02 1.39552E−05 2.02
2 0.005 9.32463E−06 2.01 3.43034E−06 2.01
2 0.0025 2.31107E−06 2.01 8.50196E−07 2.01

1.5 0.1 0.005075127 2.25 0.001867035 2.25
1.5 0.05 0.001069938 2.16 0.000393608 2.16
1.5 0.025 0.000239792 2.09 8.82147E−05 2.09
1.5 0.01 3.55486E−05 2.04 1.30776E−05 2.04
1.5 0.005 8.64526E−06 2.02 3.18041E−06 2.02
1.5 0.0025 2.13074E−06 2.01 7.83855E−07 2.01

1 0.1 0.004108619 2.64 0.001511476 2.64
1 0.05 0.000657134 2.54 0.000241746 2.54
1 0.025 0.000112741 2.40 4.14753E−05 2.40
1 0.01 1.27928E−05 2.22 4.7062E−06 2.22
1 0.005 2.74791E−06 2.12 1.0109E−06 2.12
1 0.0025 6.30058E−07 2.07 2.31785E−07 2.07

0.5 0.1 0.004996419 0.73 0.00183808 0.73
0.5 0.05 0.003007934 1.57 0.001106557 1.57
0.5 0.025 0.001016036 1.81 0.000373779 1.81
0.5 0.01 0.000190678 1.93 7.01463E−05 1.93
0.5 0.005 5.01435E−05 1.96 1.84468E−05 1.96
0.5 0.0025 1.28518E−05 1.98 4.72791E−06 1.98

Table 3
Actual errors of solutions to IVP (42) by half-explicit Runge–Kutta method in Example 11.

α h Error in x1 Error order in x1 Error in x2 Error order in x2

1 0.1 0.009389536 1.96 0.003454217 1.96
1 0.05 0.002411295 1.98 0.000887066 1.98
1 0.025 0.000610229 1.99 0.000224491 1.99
1 0.01 9.83115E−05 2.00 3.61668E−05 2.00
1 0.005 2.46325E−05 2.00 9.06178E−06 2.00
1 0.0025 6.16487E−06 2.00 2.26793E−06 2.00

0.5 0.1 0.004037535 1.96 0.001485326 1.96
0.5 0.05 0.00103773 1.98 0.000381759 1.98
0.5 0.025 0.000262811 1.99 9.66827E−05 1.99
0.5 0.01 4.23638E−05 2.00 1.55848E−05 2.00
0.5 0.005 1.06166E−05 2.00 3.90564E−06 2.00
0.5 0.0025 2.65735E−06 2.00 9.77584E−07 2.00

5. Numerical experiments

Half-explicit methods as derived in the preceding sections have been implemented and applied to DAE examples. For
illustrationwe present results for the half-explicit versions of the one-leg Adams–Bashforthmethod (HEOL) fromExample 5,
the two-step Adams–Bashforth method (HEAB) from Example 8, and the trapezoidal and midpoint Runge–Kutta methods
(HETRA, HEMID) from Example 11.

Example 13. Our first test problem is an artificially constructed DAE with a known exact solution. We consider the DAE
1 t
0 0


ẋ =


x1x2 + et + t cos t − et sin t

e−tx1 − x2 + sin t − 1


, 0 ≤ t ≤ 1, (42)

together with the initial condition x(0) = [0, 1]T . It is easy to check that the DAE is strangeness-free and that the exact
unique solution is x1 = et , x2 = sin t . We have solved the initial value problem by the described HEOL and HERK methods
on a uniformmesh with different stepsize h. The actual errors max |xi(tN) − xi,N |, i = 1, 2, of different methods versus h are
displayed in Tables 2 and 3. In addition, based on the actual errors, we also give numerical estimates for the convergence
rate, which confirm the proved convergence orders.

Example 14. We have also tested the presented methods for matrix-valued DAEs of type (8), see [21] for tables of perfor-
mance results, which demonstrate that themethods produce numerical results of almost the same accuracy as fully implicit
methods but require much less CPU time.
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6. Conclusion

We have discussed the use of half-explicit methods for solving general nonlinear DAEs in strangeness-free form. Half-
explicit variants of explicit one-leg, linear multistep, and Runge–Kutta methods have been proposed and analyzed. These
classes of methods are more efficient in solving non-stiff DAEs than the common implicit methods like BDF and Radau5. A
particular advantage of these methods arises in the solution of some semi-linear matrix-valued DAEs systems arising in the
numerical computation of Lyapunov spectral intervals.

We have shown that for strangeness-free DAEs of the form (1) half-explicit one-leg methods behave like BDF methods,
while for half-explicit multistep methods and Runge–Kutta methods the situation is rather similar to the analysis for semi-
explicit index-2 DAEs. Either extra stability condition or extra order conditions are required.

Finally, we comment on two problems which are worth being investigated in the future. First, it would be interesting to
appropriately adapt the high-order HERK methods in [10,13] to (1). Second, the classes of half-explicit methods discussed
in this paper are suitable for non-stiff DAEs. However, many DAEs arising in applications are stiff. For strangeness-free
stiff DAEs, the half-explicit framework can be combined with Runge–Kutta–Chebyshev methods, which are explicit meth-
ods and known to efficiently solve stiff ODEs [26]. A complete analysis of half-explicit Runge–Kutta–Chebyshev methods
for stiff DAEs of the form (1) is also of great interest with respect to many applications in solving semi-discretized partial
differential(-algebraic) equations.
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