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a b s t r a c t

The finite difference scheme with the shifted Grünwald formula is employed to semi-
discrete the fractional diffusion equations. This spatial discretization can reduce to the large
system of ordinary differential equations (ODEs)with initial values. Recently, the boundary
value method (BVM) was developed as a popular algorithm for solving the large systems
of ODEs. This method requires the solutions of one or more nonsymmetric and large-scale
linear systems. In this paper, the GMRESmethod with the block circulant preconditioner is
proposed to solve relevant linear systems. Some conclusions about the convergence analy-
sis and spectrum of the preconditionedmatrices are also drawn if the diffusion coefficients
are constant. Finally, extensive numerical experiments are reported to show the perfor-
mance of our method for solving the fractional diffusion equations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

During recent years, the concept of fractional derivatives, and their applications to modeling anomalous diffusion
phenomena are widely recognized by engineers and mathematicians. Fractional diffusion equations (FDEs) are useful for
applications inwhich a cloud of particles spreads faster than predicted by the classical equation. FDEs arise in research topics
including modeling chaotic dynamics of classical conservative systems [1], turbulent flow [2,3], groundwater contaminant
transport [4,5], and applications in biology [6], finance [7,8], image processing [9,10], hydrology [11] and other physics
issues [12]. For example, anomalous diffusion is a possiblemechanismunderlying plasma transport inmagnetically confined
plasmas, and the fractional order space derivative operators can be used to model such transport mechanism. As the
closed-form analytical solutions of the FDEs are unavailable in most situations, so numerical solutions for FDEs become
main ways and then have been developed intensively, such as (compact) finite difference method [13–19], finite element
method [20–23], discontinuous Galerkin method [24,25] and other numerical methods [26–31].

However, due to the nonlocality of fractional differential operator, it had proved that a naive discretization of the FDE,
even though implicit, leads to unconditionally unstable [16,17]. Moreover, most numerical methods for FDEs are liable to
generate full coefficient matrices, which typically require computational cost of O(N3) and storage of O(N2), where N is
the number of grid points [32]. It is rather different from the classical second-order diffusion equations which usually yield
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sparse coefficient matrices with O(N) nonzero entries and can be solved very efficiently via fast iterative methods with
O(N) complexity.

In order to handle the difficulty of the stability, Meerschaet and Tadjeran [16,17] proposed a shifted Grünwald
discretization to approximate FDEs. Their method has been proven to be unconditionally stable. Later, Wang, et al. [32]
discovered that the full coefficient matrix via Meerschaet–Tadjeran’s method possesses a Toeplitz-like structure. More
precisely, such a full matrix can be written as the sum of diagonal-multiply-Toeplitz matrices. Thus the storage requirement
is significantly reduced from O(N2) to O(N). It is well known that the matrix–vector multiplication for the Toeplitz matrix
can be calculated by using the fast Fourier transform (FFT) with O(N logN) operations [33,34]. With this advantage,
Wang and Wang [27] employed the conjugate gradient normal residual (CGNR) method to solve the discretized system
of the FDE by Meerschaet–Tadjeran’s method. Due to the Toeplitz-like structure, the cost per iteration by using the
CGNR method is of O(N logN). The convergence of the CGNR method is fast with smaller diffusion coefficients [27] (in
that case the discretized system is well-conditioned). Nevertheless, if the diffusion coefficient functions are not small,
the resulting system will become ill-conditioned and hence the CGNR method converges very slowly. To overtake this
shortcoming, Pang and Sun [35] proposed a multigrid method to solve the discretized system of the FDE by using the
Meerschaet–Tadjeran’s method.With the damped-Jacobimethod as the smoother, themultigrid algorithm can preserve the
computational cost per iteration as O(N logN) operations. Numerical results showed that their multigrid method converges
very fast, even for the ill-conditioned systems. However, from the theoretical point of view, the linear convergence of their
multigrid method, despite a very simple case (both diffusion coefficients are equal and constant), has not been proven,
see [35] for details. Recently, Lei and Sun [36] proposed a robust CGNR method with the circulant preconditioner to solve
FDEs by Meerschaet–Tadjeran’s method under the conditions that the diffusion coefficients are constant and the ratio
is bounded away from zero. The convergence analysis of their method can be archived more easily than the multigrid
method does.

In this paper, we firstly induce the FDEs to be a system of ODEs via using the spatial semi-discretizing method. Then
the BVM is employed to solve the ODEs system. Meanwhile, we apply the GMRES [37] with the block-circulant type
preconditioners to solve linear systems arising from the application of BVM,which is a fairly newmethod based on the linear
multistep formulae to solve ODEs. The BVMs are unconditionally stable and are high-accuracy schemes for solving initial
value problems (IVPs) based on the linear multistep formulas [38,39]. Unlike Runge–Kutta or other initial value methods
(IVMs), BVMs achieve the advantage of both good stability and high-order accuracy [39,40]. The main purpose of this paper
is to investigate the effectiveness of preconditioning on the speed of the resulting iterative processes of BVMs for solving
FDEs.

The rest of present paper is organized as follows. In Section 2, the background of the spatial discretization for the FDE
to reduce the system of ODEs is reviewed. Then we introduce that how to result in the linear systems by block-BVMs. In
Section 3, we construct the block circulant-type preconditioner and BCCB preconditioner [41]. Then the invertibility of two
different kinds of preconditioners and the convergence rate and computational cost of the preconditioned GMRES method
are also studied. In Section 4, extensive numerical results are reported to display the performance of the proposed method.

2. Semi-discretization of FDEs and boundary value methods

In this paper, we study an initial–boundary value problem of the FDEs as follows,
∂u(x, t)
∂t

= d+(x, t)
∂αu(x, t)
∂+xα

+ d−(x, t)
∂αu(x, t)
∂−xα

+ f (x, t),

x ∈ (xL, xR), t ∈ (t0, T ],
u(xL, t) = u(xR, t) = 0, 0 ≤ t ≤ T ,
u(x, t0) = u0(x), x ∈ [xL, xR],

(1)

where α ∈ (1, 2) is the order of the fractional derivative, f (x, t) is the source (or sinks) term, and diffusion coefficient
functions d±(x, t) are nonnegative; i.e., d±(x, t) ≥ 0, d+(x, t) + d−(x, t) ≠ 0. The function u(x, t) can be interpreted as
representing the concentration of a particle plume undergoing anomalous diffusion.

2.1. Semi-discretization of FDEs via finite difference method

Meerschaert and Tadjeran [17] have shown that using the shifted Grünwald formula to approximate the two-sided
fractional derivatives of order α ∈ (1, 2) leads to stable numerical schemes. We begin this method, it is known
that the left-sided and the right-sided fractional derivatives ∂αu(x,t)

∂+xα and ∂αu(x,t)
∂−xα are defined in the Grünwald–Letnikov

form [42]

∂αu(x, t)
∂+xα

= lim
∆x→0+

1
∆xα

⌊(x−xL)/∆x⌋
k=0

g(α)k u(x − k∆x, t),

∂αu(x, t)
∂−xα

= lim
∆x→0+

1
∆xα

⌊(xR−x)/∆x⌋
k=0

g(α)k u(x + k∆x, t),
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where ⌊·⌋ denotes the floor function, and g(α)k is the alternating fractional binomial coefficient given asg(α)0 = 1,

g(α)k =
(−1)k

k!
α(α − 1) · · · (α − k + 1), k = 1, 2, 3, . . . ,

(2)

which can be evaluated by applying the recurrence relation

g(α)k+1 =


1 −

α + 1
k + 1


g(α)k , k = 0, 1, 2, . . . .

Let N be a positive integer and ∆x =
xR−xL
N+1 be the size of spatial grid. We define a spatial partition xi = xL + i∆x for

i = 0, 1, . . . ,N + 1. Let ui = u(xi, t), d±,i = d±(xi, t), and fi = f (xi, t). The shifted Grünwald approximation in [16,17] is
written as follows,

∂αu(xi, t)
∂+xα

=
1
∆xα

i+1
k=0

g(α)k ui−k+1 + O(∆x),

∂αu(xi, t)
∂−xα

=
1
∆xα

N−i+2
k=0

g(α)k ui+k−1 + O(∆x),

where g(α)k is defined in (2), and the spatial semi-discretization, i.e., its corresponding system of ODEs for the (1) is given as
follows,du(t)

dt
= JNu(t)+ f (t), t ∈ (t0, T ],

u(t0) = [u0(x1), u0(x2), . . . , u0(xN)]T = u0,
(3)

whereu(t) = [u1, u2, . . . , uN ]
T, f (t) = [f1, f2, . . . , fN ]

T, ∆xα =
(xR−xL)α

(N+1)α , and JN is the coefficientmatrixwith an appropriate
size and can be given in the following

JN =
1
∆xα


D+Gα + D−GT

α


, (4)

with D± = diag(d±,1, d±,2, . . . , d±,N) and

Gα =



g(α)1 g(α)0 0 · · · 0 0

g(α)2 g(α)1 g(α)0 0 · · · 0
... g(α)2 g(α)1

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

g(α)N−1
. . .

. . .
. . . g(α)1 g(α)0

g(α)N g(α)N−1 · · · · · · g(α)2 g(α)1


N×N

. (5)

It is obvious that Gα is a Toeplitz matrix (see [34,43]). Therefore, it can be stored with N + 1 entries [32]. Furthermore, the
matrix–vector multiplication for the Toeplitz-like matrix JN in (4) can be computed in O(N logN) operations by the FFT;
see [33,35]. The alternating fractional binomial coefficient g(α)k have some useful properties, that are observed in [16,17,32],
and are summarized in the following proposition.

Proposition 1 ([36]). Let 1 < α < 2 and g(α)k be defined in (2). We have
g(α)0 = 1, g(α)1 = −α < 0, g(α)2 > g(α)3 > · · · > 0,
∞
k=0

g(α)k = 0,
n

k=0

g(α)k < 0, ∀n ≥ 1.
(6)

Also, we give the following conclusion which is very helpful for theoretical analysis,
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Proposition 2. Let 1 < α < 2 and g(α)k be defined in (2). All eigenvalues of JN fall inside the open disc

{z ∈ C : |z − γi| < −γi}, i = 1, . . . ,N,

where γi = (r+,i + r−,i)g
(α)
1 < 0 are constants.

Proof. Here the entries of the matrix JN are given by

pij =



(r+,i + r−,i)g
(α)
1 , j = i,

r+,ig
(α)
2 + r−,ig

(α)
0 , j = i − 1,

r+,ig
(α)
0 + r−,ig

(α)
2 , j = i + 1,

r+,ig
(α)
i−j+1, j < i − 1,

r−,ig
(α)
j−i+1, j > i + 1,

(7)

where r±,i =
d±,i
∆xα ≥ 0. It is not hard to find that pij ≤ 0 for all i ≠ j, then all the Gershgorin discs of the matrix are centered

at γi = (r+,i + r−,i)g
(α)
1 < 0 with radius

Ri =

N
j=1,j≠i

|pij| = r+,i
i

k=0,k≠1

g(α)k + r−,i
N−i+1
k=0,k≠1

g(α)k (r+,i + r−,i ≠ 0)

< (r+,i + r−,i)
∞

k=0,k≠1

g(α)k = −(r+,i + r−,i)g
(α)
1 = −γi,

by applying the properties of the sequence g(α)k ; see Proposition 1.

Remark 1. It is worth noting that:

(i) The real parts of all eigenvalues of the matrix JN are strictly negative for all N .
(ii) The absolute values of all eigenvalues of the matrix JN are bounded above by max1≤j≤N{2|γi|}.

2.2. Boundary value methods

Next, we consider a class of robust numerical methods called the BVMs for solving the system of ODEs, see [38,44]. Using
the µ-step block-BVM over a uniform mesh h = (T − t0)/s for the discretization of Eq. (3), we obtain

µ−ν
i=−ν

αi+νun+i = h
µ−ν
i=−ν

βi+νgn+i, n = ν, . . . , s − µ+ ν. (8)

Here un is the discrete approximation to u(tn), gn = JNun + fn, and fn = f (tn). Also, Eq. (8) requires ν initial conditions and
µ− ν final conditions which are provided by the following µ− 1 additional equations:

µ
i=0

α
(j)
i ui = h

µ
i=0

β
(j)
i gi, j = 1, 2, . . . , ν − 1, (9)

and
µ
i=0

α
(j)
µ−iun−i = h

µ
i=0

β
(j)
µ−ign−i, j = s − µ+ ν + 1, . . . , s. (10)

The coefficients {α
(j)
k } and {β

(j)
k } in Eqs. (9) and (10) should be selected such that truncation errors in theseµ−1 equations

are of the same order as that in Eq. (8). We combine Eqs. (8)–(10) and the initial condition u(t0) = u0, a discrete system of
linear equations for Eq. (3) is obtained by the following block matrix form,

Mu ≡ (A ⊗ IN − hB ⊗ JN)u = e1 ⊗ u0 + h(B ⊗ IN)f . (11)

Here e1 = (1, 0, . . . , 0)T ∈ Rs+1 and

u = (uT
0, . . . , u

T
s )

T
∈ R(s+1)N , f = (f T0 , . . . , f

T
s )

T
∈ R(s+1)N .
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In (11), the matrix A ∈ R(s+1)×(s+1) is given by:

A =



1 · · · 0
α
(1)
0 · · · α(1)µ
...

...
...

α
(ν−1)
0 · · · α(ν−1)

µ

α0 · · · αµ
α0 · · · αµ

. . .
. . .

. . .

. . .
. . .

. . .

α0 · · · αµ

α
(s−µ+ν+1)
0 · · · α(s−µ+ν+1)

µ

...
...

...

α
(s)
0 · · · α(s)µ



,

and B ∈ R(s+1)×(s+1) is defined similarly by using β ’s instead of α’s in A and the first row of B is zeros.
Usually the resulting linear system (11) is large and ill-conditioned, and solving it is a core problem in the application of

BVMs. If a direct method is employed to solve the system (11), the operation cost can be very high for practical application.
Therefore interest has been turned to iterative solvers, such as GMRES method. As we know that a clustered spectrum
often translates in rapid convergence of GMRES method [45], so we use the GMRES method for solving the resulting
linear system (11). In order to accelerate the convergence of GMRES iterations, we construct some block circulant-type
preconditioners.

3. Construction of preconditioners and convergence analysis

In this section,wewill showhow to construct the block circulant-typepreconditioners for accelerating the iterative solver
and show that these preconditioners are invertible if an Aν1,ν2-stable BVM is used. Meanwhile, some theoretical analyses on
both the convergence rate of iterative solver and operation cost for each iteration are also investigated.

3.1. Construction of preconditioners

To mimic the terminology of [46] and neglect the perturbations in the upper left and low right corners of A and B, we
give the first preconditioner for Eq. (11):

S = s(A)⊗ IN − hs(B)⊗ JN , (12)

where

s(A) =



αν · · · αµ α0 . . . αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0
. . .

. . .
. . . 0

. . .
. . .

. . .

0
. . .

. . .
. . .

αµ
. . .

. . . αµ
...

. . .
. . .

. . .
...

αν+1 · · ·αµ α0 · · · αν


and s(B) is defined similarly by using {βi}

µ

i=0 instead of {αi}
µ

i=0 in s(A). The {αi}
µ

i=0 and {βi}
µ

i=0 here are the coefficients in
Eq. (8). We note that s(A) and s(B) are the generalized Strang-type circulant preconditioners of A and B respectively,
see [34].

Moreover, we also can propose the Strang-type BCCB preconditioner, which can be constructed as follow for solving
Eq. (11)

S(2) = s(A)⊗ IN − hs(B)⊗ s(JN) (13)
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with JN being mentioned in (4). Here we define the s(JN) as following matrix form

s(JN) =
1
∆xα


d+s(Gα)+ d−s(GT

α)


(14)

with d± =
1
N

N
i=1 d±,i. More precisely, the first columns of s(Gα) and s(GT

α) are given by

g(α)1
...

g(α)
⌊
N+1
2 ⌋

0
...
0

g(α)0


and



g(α)1

g(α)0
0
...
0

g(α)
⌊
N+1
2 ⌋

g(α)0


.

Aswe know, Lei and Sun [36] proposed Strang circulant preconditioner to approximate the coefficientmatrix with structure
as the sum of diagonal-multiply-Toeplitz matrices. The convergent behavior of this method are very efficient and robust
in numerical experiments. So we take the similar strategy to construct the preconditioner S(2). The advantage of BCCB
preconditioners is that the operation cost in each iteration of the GMRES method for the preconditioned systems is much
less than that required by using any block-circulant preconditioners.

Next, we will demonstrate that the preconditioner S is invertible provided that the given BVM is stable and the
eigenvalues of JN are in the negative half of the complex plane C. Also the invertibility of the preconditioner S(2) will be
analyzed and improved. The stability of a BVM is related to two characteristic polynomials of degree µ, defined as follows:

ρ(z) = zν
µ−ν
j=−ν

αj+νz j and σ(z) = zν
µ−ν
j=−ν

βj+νz j. (15)

Definition 1 ([38, p. 101]). Consider a BVM with the characteristic polynomials ρ(z) and σ(z) given by (12). The region

Dν,µ−ν =


q ∈ C : ρ(z)− qσ(z) has ν zeros inside |z| = 1 and µ− ν zeros outside |z| = 1


is called the region of Aν,µ−ν-stability of the given BVM. Moreover, the BVM is said to be Aν,µ−ν-stable if

C−
≡ {q ∈ C : Re(q) < 0} ⊆ Dν,µ−ν .

Theorem 1 ([46]). If the BVM for (3) is Aν,µ−ν-stable and hλk(JN) ∈ Dν,µ−ν where λk(JN) (k = 1, . . . ,N) are the eigenvalues
of JN , then the preconditioner S in (12) is invertible.

In particular, we have

Corollary 1 ([46]). If the BVM for (3) is Aν,µ−ν-stable and hλk(JN) ∈ C−, then the preconditioner S is invertible.

In fact, we note that the eigenvalues of JN are indeed in the negative half of the complex plane C− via Proposition 2 and
Remark 1. So if we add the condition that the given BVM is stable, we can immediately conclude that the preconditioner S
is invertible. It implies that this preconditioner can be expected to be robust and efficient.

Similar to Theorem 1, we can show that if the BVM for (4) is Aν,µ−ν-stable and the eigenvalues of s(JN) satisfy

λk(s(JN)) ∈ C−

for k = 1, . . . ,N , then the preconditioner S(2) is invertible.
However, for some special FDE problems, the matrix JN is usually the complete Toeplitz-like structure, but s(JN)may be

singular. Note that the eigenvalues of S(2) are defined by

λjk(S(2)) = φj − hψjλk(s(JN)), j = 0, . . . , s, k = 1, . . . ,N, (16)

where φj and ψj are the eigenvalues of s(A) and s(B) respectively. When some eigenvalues of s(JN) are zero, then some
eigenvalues of S(2) is the same as the eigenvalues of the matrix s(A). It is well-known that the eigenvalues of the circulant
matrix s(A) can be expressed as the following sum, see [47],

φj =

µ−ν
r=−ν

αr+νω
rj, ω = e2π i/(s+1), j = 0, . . . , s,

where α0, . . . , αn are the coefficients of the first characteristic polynomial in (15).
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From the characteristic polynomials defined in (15), the coefficients must satisfy the consistent conditions,

ρ(1) = 0 and ρ ′(1) = σ(1).

Thus, we have

φ0 = ρ(1) = 0

for any consistent BVM. From (16), we know that S(2) is singular when some eigenvalues of s(JN) are zero. In this case, we
move the zero eigenvalue of s(A) to a nonzero value. More precisely, we change the matrix s(A) = Fdiag(φ0, . . . , φs)F∗ tos(A) ≡ Fdiag(φ0, . . . , φs)F∗,

whereφ0 ≡ Re(φs) and F is the Fourier matrix. DefineS(2) ≡s(A)⊗ IN − hs(B)⊗ s(JN), (17)

we can also prove thatS(2) is invertible, see [41] for details.
From the conclusions of [36], we can obtain the following theorem,

Theorem 2. All eigenvalues of circulant matrices s(Gα) and s(GT
α) fall inside the open disc

{z ∈ C : |z + α| < α}.

By Theorem 2, we can find that the parts of all eigenvalues of s(Gα) and s(GT
α) are strictly negative for all N . Moreover,

we know that d± ≥ 0, d+ + d− ≠ 0. So we can conclude that

Re(λk(s(JN))) =
1
∆xα


d+Re(s(Gα))+ d−Re(s(GT

α))

< 0.

It means that the eigenvalues of s(JN) are in the negative half of the complex plane C− and then both the preconditioners
S(2) andS(2) are invertible provided that the given BVM is stable, refer to [41, Theorem 2, p. 32].

3.2. Convergence rate and operation cost

Following the conclusions in [46], we have the following theorems for the convergence rates.

Theorem 3 ([46]). We have

S−1M = I + L

where I is the identity matrix and the rank of L is at most 2Nµ. Therefore, when the GMRES method is applied to solve
S−1My = S−1b, the method will converge in at most 2Nµ+ 1 iterations in exact arithmetic.

Lei and Jin [41] proved that when JN is a Toeplitz matrix in theWiener class [33,34], the preconditioned matrix (S(2))−1M
can be written as the sum of the identity matrix, a matrix with rank O(N), a matrix with rank O(s) and a matrix with small
norm. Now we are going to analyze the spectrum of preconditioned matrix (S(2))−1M . In fact, for Eq. (3), when we take

d+,i = d+ ≥ 0, d−,i = d− ≥ 0 and d+ + d− ≠ 0, (18)

for all i = 1, . . . ,N . Then we obtain a nonsymmetric Toeplitz matrix as follows,

JN =
1
∆xα


d+Gα + d−GT

α


=

TN
∆xα

=
[tj−k]N×N

∆xα
, (19)

where

TN =



d+g
(α)
1 +d−g

(α)
1 d+g

(α)
0 +d−g

(α)
2 d−g

(α)
3 · · · d−g

(α)
2

d+g
(α)
2 +d−g

(α)
0 d+g

(α)
1 +d−g

(α)
1

. . .
. . .

...

d+g
(α)
3

. . .
. . .

. . .
...

...
. . .

. . .
. . . d+g

(α)
0 +d−g

(α)
2

d+g
(α)
N · · · · · · d+g

(α)
2 +d−g

(α)
0 d+g

(α)
1 +d−g

(α)
1


.

We introduce the generating function of the sequence of Toeplitz matrices {TN}
∞

N=1 [33]:

p(θ) =

∞
k=−∞

tkeikθ , (20)
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where tk is the kth diagonal of TN . The generating function p(θ) is in the Wiener class if and only if
∞

k=−∞

|tk| < ∞.

For TN defined in (19), we have

p(θ) =

∞
k=−∞

tkeikθ =

∞
k=−1

g(α)k+1(d+eikθ + d−eikθ ) (21)

and obtain the following theorem.

Theorem 4. Let p be the generating function of {TN}
∞

N=1, we conclude that p is in the Wiener class.

Proof. By using the properties of the sequence {g(α)k+1}
∞

k=0 given in (6), we have

∞
k=−∞

|tk| = (d+ + d−)

∞
k=−1

|g(α)k+1|

= (d+ + d−)

−2g(α)1 +

∞
k=0

g(α)k


= 2α(d+ + d−) < ∞.

Thus p is in the Wiener class.
Moreover, let

E ≡ M −S(2), E1 ≡ M − S, E2 ≡ S −S(2).
Then E = E1 + E2. For E1, we have the following lemma.

Lemma 1 ([48]). We have

rank ≤ 2Nµ = O(N),

where µ is given by the BVMs used for (3).

For the matrix E2, by Eqs. (12) and (17), we have

E2 = (s(A)−s(A))⊗ IN − hs(B)⊗ (JN − s(JN))
= LA ⊗ IN − hs(B)⊗ LJ ,

where LA = s(A)−s(A) and LJ = JN − s(JN). Applying the conclusion of [41], we have

rank(LA ⊗ IN) ≤ N = O(N). (22)

From the Eqs. (14), (18) and (19), we can obtain

s(JN) =
s(TN)
∆xα

with s(TN) = d+s(Gα)+ d−s(GT
α).

For the term s(B)⊗ LJ in E2, since TN is a Toeplitz in theWiner class (see Theorem 4), thematrix∆xαLJ = (TN − s(TN)) can be
expressed as a sum of a matrix with low rank and a matrix with small norm, see [41]. More precisely, for any given ε > 0,
there exists a constant C(ε) such that

(TN − s(TN)) = ∆xαLJ = U + V with rank (U) ≤ C(ε) and ∥V∥2 ≤ ε, (23)

when N is sufficiently large. Then we have

s(B)⊗ LJ = s(B)⊗ U ′
+ s(B)⊗ (V/∆xα), U ′

= U/∆xα, (24)

with

rank(s(B)⊗ U ′) ≤ s · C(ε) = O(s). (25)

For ∥s(B)⊗ (V/∆xα)∥2, we note that

∥s(B)∥1 = N1 < ∞, ∥s(B)∥∞ = N2 < ∞, ∥s(B)∥2 = N3 < ∞, (26)
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where N1 and N2 are two constants independent of the size of matrices, and N3 =
√
N1N2, see [41]. Furthermore, we have

by (23) and (26)

∥s(B)⊗ (V/∆xα)∥2 = ∥s(B)∥2∥(V/∆xα)∥2 ≤
εN3

∆xα
. (27)

By using (22), (24), (25) and (27), we know that for any ε > 0, the matrix E2 can be decomposed as

E2 = LO(N) + hLO(s) + hW (28)

with rank(LO(N)) = O(N), rank(LO(s)) = O(s), ∥W∥2 ≤ ε/∆xα . In conclusion, we then have the following theorem for the
spectrum of (S(2))−1M .

Theorem 5. Under the conditions of (18) and Theorem 4, then the preconditioned matrix (S(2))−1M can be written as the sum of
the identity matrix, a matrix with rank O(N), a matrix with rank O(s) and a matrix with the norm ε

∆xα (ε > 0 is usually small).

Proof. The proof of this theorem is greatly similar to that of [41, Theorem 3], we omit here.
As a consequence, the most of eigenvalues of (S(2))−1M is clustered at 1 (also see Fig. 1). Moreover, the GMRES method,

when applied to solve the preconditioned linear systems

(S(2))−1My = (S(2))−1b

will converge fast. Therefore, a detailed analysis for the convergence rate could be carried out in future work.
Regarding the operation cost per iteration, the main work in each iteration for the GMRES method is the matrix–vector

multiplication

S−1Mz = (s(A)⊗ IN − hs(B)⊗ JN)−1(A ⊗ IN − hB ⊗ Jn)z

where z is a vector, see for instant Saad [37]. Since A and B are band matrices and JN is a full matrix, the matrix–vector
multiplicationMz = (A ⊗ IN − hB ⊗ Jn)z can be implemented not slowly.

To calculate S−1Mz , since s(A) and s(B) are circulant matrices, we have the following decompositions via the FFTs

s(A) = FΛAF∗ and s(B) = FΛBF∗,

whereΛA andΛB are diagonal matrices containing the eigenvalues of s(A) and s(B) respectively, see [47]. It follows that

S−1(Mz) = (F∗
⊗ IN)(ΛA ⊗ IN − hΛB ⊗ JN)−1(F ⊗ IN)(Mz).

This multiplication can be achieved by using FFTs and solving s linear systems of order N , refer to [48]. It follows that the
total number of operations per iteration is O(Ns log s + sNζ ), where ζ is the number of nonzeros of JN . For comparing
the computational cost of the method with direct solver for the linear systems (11), refer to [48]. However, in the case of
numericalmethod for FDEs, the coefficientmatrix JN is full, itmeans that ζ ismuch large.We need to takemuch time to solve
s (Toeplitz-like) linear systems of order N , this shortage will keep the preconditioner S from becoming the efficient one. In
order to overcome this shortage, we propose the preconditioners S(2) andS(2). For simplicity, we assume that s + 1 = N in
the following analysis of the operation cost of preconditioners S(2) andS(2). Regarding the operation cost in each iteration
of the GMRES method, the main work is the matrix–vector multiplication

(S(2))−1Mv ≡ (s(A)⊗ IN − hs(B)⊗ s(JN))−1Mv,

where v is a vector. Since (S(2))−1 can be diagonalized by exploiting the 2-dimensional Fourier matrix, i.e.,

(S(2))−1Mv ≡ (Fs+1 ⊗ FN)(ΛA ⊗ IN − hΛB ⊗ΛJN )
−1(F∗

s+1 ⊗ F∗

N)(Mv),

where s(JN) = F∗

NΛJN FN and ΛJN is a diagonal matrix holding the eigenvalues of s(JN). The matrix–vector multiplication
(S(2))−1Mv can be implemented within O(N2 logN) operations via FFTs. For the Strang-type block-circulant preconditioner
S defined as the form (12), in each iteration, there are N Toeplitz-like systems of order N needed to be solved. Thus, the
complexity in each iteration of the preconditioners S(2) andS(2) is much lower.

4. Numerical experiments

In this section, we solve two different FDE problems (1) numerically by employing the BVM and the GMRES method
together with the circulant-type preconditioners in Sections 2–3. We also compare the Strang-type BCCB preconditioners
S(2) andS(2) with the Strang-type block-circulant preconditioner S. The number of iterations required for convergence and
CPU time of those methods are reported. In these examples, the BVMwe used here is the fifth order GAMwhich hasµ = 4.
Its formulae and the additional initial and final conditions can be found in Ref. [38].

All experiments are performed in MATLAB 2011b and all the computations are run on an Inter(R) Pentium(R) CPU
2.80 GHz PC with 3.85G available memory. We use the MATLAB-provided M-file ‘gmres’ (see MATLAB on-line documen-
tation) to solve the preconditioned systems. We use donations ‘‘Iters’’ and ‘‘CPU’’ to represent the number of iterations and
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Fig. 1. The spectra of matrixM and different preconditioned matrices with N = 48, s = 64 for the Example 1.

CPU elapsed time (mean value from ten times repeated experiments) of implementing GMRES(20) solver, respectively. In
our tests, the initial guess is the zero vector and stopping criterion in the GMRES method is

∥rq∥2

∥r0∥2
< 10−8,

where rq is the residual after the qth iterations.

Example 1. In this example, we solve the initial–boundary value problem of FDE (1) with source term f (x, t) ≡ 0, for the
order of fractional derivativesα = 1.2 and 1.5. The spatial domain is [xL, xR] = [0, 2] and the time interval is [t0, T ] = [0, 1].
The initial condition u(x, 0) is the following Gaussian pulse

u(x, 0) = exp

−
(x − xc)2

2ξ 2


, xc = 1.2, ξ = 0.08,

and the diffusion coefficients

d+(x, t) ≡ 0.6, and d−(x, t) ≡ 0.5.

Tables 1 and 2 list the number of iterations required for convergence of theGMRESmethodwith different preconditioners
and their corresponding CPU time. In the tables, I means that no preconditioner is used, and S, S(2) andS(2) denote the
Strang-type block-circulant preconditioners, Strang-type and modified Strang-type BCCB preconditioners respectively, see
(12), (13) and (17).

For Example 1, the number of iterations of both S(2) andS(2) are larger than those of Strang-type block-circulant precondi-
tioner S. But the operation cost per iteration of both S(2) andS(2) is less than those of S. Aswe can see fromTable 1–Table 2, the
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Table 1
The number of iterations and CPU time (s) of GMRES(20) solver for Example 1 with α = 1.2.

N s I S S(2) S(2)
Iters CPU Iters CPU Iters CPU Iters CPU

24 16 82 0.0781 9 0.0310 15 0.0234 17 0.0263
32 130 0.1714 8 0.0475 15 0.0348 17 0.0359
64 265 0.5934 8 0.0935 15 0.0521 17 0.0588

128 457 2.1064 7 0.2291 14 0.0989 17 0.1142
48 16 174 0.1562 9 0.0783 19 0.0308 20 0.0336

32 198 0.3122 8 0.1249 18 0.0442 20 0.0485
64 260 0.8279 8 0.2988 17 0.1148 20 0.1455

128 460 2.5592 7 0.4213 17 0.1363 20 0.1948
96 16 234 0.2654 9 0.2811 23 0.0457 26 0.0532

32 262 0.6425 8 0.4654 23 0.1172 26 0.1314
64 339 1.3739 7 0.7948 21 0.1713 26 0.1901

128 393 2.8865 7 1.4978 21 0.2927 26 0.3248

Table 2
The number of iterations and CPU time (s) of GMRES(20) solver for Example 1 with α = 1.5.

N s I S S(2) S(2)
Iters CPU Iters CPU Iters CPU Iters CPU

24 16 141 0.1208 10 0.0328 19 0.0271 27 0.0341
32 201 0.2607 9 0.0558 19 0.0407 27 0.0522
64 237 0.5416 8 0.0977 19 0.0668 28 0.0918

128 378 1.8091 8 0.2038 18 0.1632 28 0.2056
48 16 259 0.2327 10 0.0782 25 0.0375 34 0.0466

32 282 0.4308 9 0.1357 25 0.0602 36 0.0803
64 313 0.9682 8 0.2703 25 0.1498 37 0.1902

128 431 2.3788 8 0.4262 24 0.2326 37 0.3042
96 16 394 0.4289 10 0.2802 23 0.0574 47 0.0807

32 428 0.9987 9 0.4838 23 0.1453 49 0.1898
64 532 2.0718 8 0.8568 23 0.2386 51 0.3118

128 632 4.6136 8 1.4922 32 0.3788 51 0.5459

CPU time of S(2) is less than those of the others especially when N and s are large. Moreover, the matrix JN is ill-conditioned
when N is large. The performance of S(2) is the best in terms of the CPU time. We strongly suggest that the preconditioner
S(2) is a good choice and we do not need to formulate the complete matrix JN in order to save storage. Especially, when JN is
the Toeplitz-like structure (d±(x, t) ≠ const). In order to further illustrate the effectiveness of the block-circulant precondi-
tioners, we list the spectra of the original matrixM and the preconditioned matrices S−1M, (S(2))−1M, (S(2))−1M in Fig. 1.

Example 2. In this example, we study the case for which the source term f (x, t) ≠ 0.We solve the FDE problem (1) of order
α = 1.5 and α = 1.8, respectively. The spatial domain is [xL, xR] = [0, 2] and the time interval is [t0, T ] = [0, 1]. The left
and right diffusion coefficients are

d+(x, t) = Γ (3 − α)xα and d−(x, t) = Γ (3 − α)(2 − x)α,

respectively. The source term is

f (x, t) = −32e−t

x2 +

1
8
(2 − x)2(8 + x2)−

3
3 − α

[x3 + (2 − x)3] +
3

(4 − α)(3 − α)
[x4 + (2 − x)4]


,

and the initial condition is

u(x, 0) = 4x2(2 − x)2, and u(0, t) = u(1, t) = 0.

The exact solution of this problem is

u(x, t) = 4e−tx2(2 − x)2,

for any α ∈ (1, 2). With the exact solution, we calculate the exact error of the numerical solution under the infinity norm.
Tables 3 and 4 list the number of iterations required for convergence of theGMRESmethodwith different preconditioners

and their corresponding CPU time for numerically solving Example 2, also including the corresponding numerical error.
In the tables, I means that no preconditioner is used, and S(2) and S(2) denote the Strang-type and modified Strang-
type BCCB preconditioners respectively, see (13) and (17). Here, the symbol ‘‘Ď’’ means that the unpreconditioned GMRES
method needs the many iterations to converge for desired error tolerance. We do not give the specific number of iterations.
From the tables, we note that the number of iterations and CPU time consuming for convergence with the Strang-type
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Table 3
The number of iterations andCPU time (s) of GMRES(20) solver for Example 2withα = 1.5.

N s Error I S(2) S(2)
Iters CPU Iters CPU Iters CPU

32 32 4.3401e−2 165 0.2529 28 0.0564 39 0.0764
64 4.0506e−2 200 0.4996 28 0.0959 40 0.1412
96 3.9623e−2 264 1.0185 29 0.1576 40 0.2348

128 3.9178e−2 272 1.5268 29 0.2328 40 0.2986
64 32 2.4662e−2 367 0.6218 37 0.0989 56 0.1245

64 2.1559e−2 401 1.3488 37 0.1984 57 0.2811
96 2.0593e−2 460 2.4864 37 0.2526 57 0.3904

128 2.0151e−2 479 3.0765 37 0.3542 57 0.4991
128 32 1.6068e−2 809 2.0743 51 0.1881 73 0.2868

64 1.2287e−2 815 3.8276 51 0.3925 76 0.4846
96 1.1230e−2 862 5.8157 51 0.5188 76 0.6874

128 1.0737e−2 872 7.4864 52 0.6459 77 0.8921
256 32 1.3177e−2 2365 9.0548 65 0.4119 95 0.5356

64 8.0302e−3 2147 14.8762 67 0.6845 98 0.9321
96 6.7131e−3 1934 19.6118 67 0.9813 100 1.3878

Table 4
The number of iterations and CPU time (s) of GMRES(20) solver for Example 2 with α = 1.8.

N s Error I S(2) S(2)
Iters CPU Iters CPU Iters CPU

32 32 3.7348e−2 381 0.5025 38 0.0822 91 0.1567
64 3.1716e−2 416 0.9716 37 0.1227 95 0.2967
96 2.9804e−2 480 1.7664 38 0.1972 96 0.4914

128 2.8864e−2 499 2.3748 38 0.2436 97 0.6187
64 32 2.3108e−2 875 1.3624 54 0.1218 125 0.2521

64 1.7520e−2 1027 3.4325 54 0.2418 131 0.5632
96 1.5622e−2 1133 5.3047 54 0.3449 135 0.7984

128 1.4666e−2 1154 6.9526 55 0.4834 136 1.0614
128 32 1.6867e−2 3438 8.1957 75 0.2498 167 0.5462

64 1.1300e−2 3300 14.1056 72 0.4847 180 1.0761
96 9.4078e−3 3203 19.7183 73 0.6708 186 1.5910

128 8.4549e−3 3021 24.2746 74 0.8265 188 2.0574
256 32 1.3982e−2 Ď 35.2787 95 0.5292 224 1.1217

64 8.4238e−3 Ď 68.0410 98 0.9326 245 2.1688
96 6.5356e−3 Ď 101.1632 102 1.4383 251 3.4024

and modified Strang-type BCCB preconditioners are both much less than those with no preconditioner. Moreover, the
accelerated performance of S(2) outperforms that of S(2) considerably in aspects of both iteration steps and CPU time
consuming. Meanwhile, for fixed spatial grid size N , the numerical accuracy (‘‘Error’’) can be improved by changing the
time-step size s. It suggests that our method is more flexible than classical implicity difference scheme for numerically
solving the FDEs.

Next, let us take a simple comparison in terms of the proposed method and the method in [36] (denoted as Lei–Sun’s
method) for solving Example 2 numerically. As seen from Table 5,1 the numerical accuracy by proposed method is slightly
lower than that by Lei–Sun’s method. It can be explained by saying that the spatial discretized accuracy of both method are
1-order. We try to improve the accuracy of numerical solution via the high order time-step discretized scheme and it is not
very successful. Our proposed method can be recommended as an alternative since they take less CPU time to converge in
the case of small discretized size.

However, except the cases of N = 128, our proposed method converges slightly faster than the method in [36] in
terms of the CPU time. Here it should point out that when the spatial discretized size N becomes increasingly large, the
proposedmethodwill still requiresmuch CPU time than Lei–Sun’smethod. In futurework, the high-order spatial discretized
scheme [29] should be exploited to improve the global numerical accuracy of the proposed method with comparing to the
traditional time-step scheme.

The behavior of the numerical and exact solutions of this problemwith different values of α = 1.5 and α = 1.8 are given
in Fig. 2. Where in Fig. 2, the numerical results at discretized size N = 256, s = 96 for different values of α = 1.5 and α =

1.8 and the corresponding exact solutions are plotted. From these figures, we can conclude that the numerical results ob-
tained by using the proposedmethod are in excellent agreementwith the exact solution and the numerical solutions are reli-
able. Meanwhile, our proposedmethod can be provided for a different and interesting numerical aspect for solving the FDEs.

1 Here the ‘‘Iters_2’’ denotes the average number of iterations required via the Lei-Sun’smethod and it is different from the definition of ‘‘Iters’’ in present
paper. So it cannot conclude that the recent method [36] outperforms the proposed method considerably in aspects of only iteration steps.
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Table 5
Comparison results of the proposed method and Lei–Sun’s method for Example 2 with α = 1.5.

N+1 s Proposed method Lei–Sun’s method
Error Iters CPU Error Iters_2 CPU

32 32 4.4521e−2 27 6.5674e−2 4.2309e−2 11 1.5937e−1
64 4.1793e−2 28 1.2101e−1 4.0654e−2 10 1.7560e−1
96 4.0870e−2 28 1.9217e−1 4.0101e−2 9 2.3569e−1

128 4.0405e−2 28 2.5233e−1 3.9825e−2 9 3.0965e−1
64 32 2.4937e−2 37 9.5482e−2 2.2529e−2 13 1.8001e−1

64 2.1854e−2 37 1.8389e−1 2.0763e−2 12 2.1845e−1
96 2.0907e−2 37 2.7206e−1 2.0202e−2 11 2.9512e−1

128 2.0454e−2 37 3.6357e−1 1.9922e−2 11 3.9658e−1
128 32 1.6128e−2 50 2.6879e−1 1.3186e−2 16 2.5619e−1

64 1.2358e−2 51 4.6902e−1 1.1164e−2 14 3.1798e−1
96 1.1301e−2 51 6.5108e−1 1.0566e−2 13 4.6739e−1

128 1.0811e−2 52 8.5112e−1 1.0282e−2 13 5.8103e−1

Fig. 2. Comparison of the numerical and exact solutions using the discretized size N = 256, s = 96 with different α for Example 2; Left: α = 1.5; Right:
α = 1.8.
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