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• The second issue is the generalization to an optimization problem where the weights may be random.
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a b s t r a c t

In this paper, we investigate an optimization problem related to super-replicating strate-
gies for European-type call options written on a weighted sum of asset prices, following
the initial approach in Chen et al. (2008). Three issues are investigated. The first issue is
the (non-)uniqueness of the optimal solution. The second issue is the generalization to an
optimization problem where the weights may be random. This theory is then applied to
static super-replication strategies for some exotic options in a stochastic interest rate set-
ting. The third issue is the study of the co-existence of the comonotonicity property and
the martingale property.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Self-financing portfolios play an important role in hedging, trading and valuation. When a self-financing portfolio domi-
nates an exotic option in terms of its pay-off, it is a super-replicating portfolio. In addition, when theweights of the elements
in a super-replicating portfolio are fixed from the starting time, it is a static super-replicating portfolio, and the correspond-
ing strategy is called a static super-replicating strategy.

For a given exotic option, in general, several strategies will exist which super-replicate its pay-off. One of the aims of this
paper is to investigate the problem of finding the cheapest strategy in a well-defined class of admissible super-replicating
strategies for the exotic option under consideration.
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1.1. Static super-replicating strategies

For i = 1, 2, . . . , n, the random variable Xi, defined on the probability space (Ω, F , P) denotes the price of an asset at
some future date Ti, 0 ≤ Ti ≤ T . Hereafter, we always assume that all Xi are positive r.v.’s.1 The current time-0 price of a
European call option with pay-off (Xi − K)+ at maturity Ti is denoted by Ci [K ]. We assume that these options are traded on
an options exchange and we can observe the market prices for these options.

Chen et al. [1] consider a class of European call type exotic options written on S =
n

i=1 wiXi for some deterministic
weights wi > 0, which have a pay-off at expiration time T equal to (S − K)+. The inequality

(S − K)+ =


n

i=1

wiXi − K


+

≤

n
i=1

wi(Xi − Ki)+, P-a.s., (1)

always holds for all (K1, K2, . . . , Kn) satisfying
n

i=1 wiKi ≤ K and Ki ≥ 0, i = 1, . . . , n. Static super-replicating strategies
with pay-off

n
i=1 wi(Xi − Ki)+,

n
i=1 wiKi ≤ K , are studied in [1] in a deterministic interest rate setting.

It has been proven that one can obtain an ‘optimal’ decomposition K =
n

i=1 wiK ∗

i with an explicit expression for the
optimal K ∗

i , i = 1, . . . , n; see [2] or [3]. A simplified version of it can be found in Theorem 1 of the next section in this paper.
Using the optimal decomposition K ∗

i , i = 1, . . . , n, the corresponding super-replicating strategy for the exotic call option
has the least price at time zero among a general class of super-replicating investment strategies.

For the moment, we assume that the risk-free rate r is deterministic and constant. In Section 3, we relax this assumption
and consider the case where interest rates behave stochastically. From inequality (1) and the discussion above, we find that
the optimal super-replicating strategy for an exotic call option consists of buying at time zero wie−r(T−Ti) European vanilla
call options with pay-off (Xi − K ∗

i )+ at time Ti and holding these options until they expire at time Ti. We exercise those
options with positive pay-offs and invest the eventual pay-offs at that time in the risk-free account until time T . The time-0
price of this optimal super-replicating strategy is given by

n
i=1

wie−r(T−Ti)Ci

K ∗

i


. (2)

The upper bound (2) for the time-0 price of an exotic call as well as the corresponding super-replicating strategy can be
obtained in an infinite market case, meaning that prices Ci [K ] of vanilla call options are available for all strikes K , and in
a finite market case, where only a finite number of vanilla call option prices are observed; see e.g. [4,1]. In [5] it is noticed
that in the infinite market case, the cheapest super-replicating strategy for the exotic call option derived above cannot be
improved by adding other traded derivatives to the financial market, as long as these derivatives are written on a single
asset. Remark that in the finite market case this result does not necessarily hold.

The current time-0 price of a European put optionwith pay-off (K − Xi)+ at maturity Ti is denoted by Pi [K ]. Assume now
that also vanilla put options are traded in the financial market and consider the exotic put option with pay-off (K − S)+, at
time T . The inequality

(K − S)+ =


K −

n
i=1

wiXi


+

≤

n
i=1

wi(Ki − Xi)+, P-a.s., (3)

holds for all (K1, K2, . . . , Kn) satisfying
n

i=1 wiKi ≥ K and Ki ≥ 0, i = 1, . . . , n. Similar to inequality (1), one can derive
an ‘optimal’ decomposition K =

n
i=1 wiK ∗

i with an explicit expression for the optimal K ∗

i , i = 1, . . . , n. Furthermore, we
find from (3) that the optimal super-replicating strategy for the exotic put consists of buying a portfolio of European vanilla
put options and the time-0 price is given by

n
i=1

wie−r(T−Ti)Pi

K ∗

i


. (4)

For more details we refer to Linders et al. [5].
Examples of options with a pay-off at time T equal to (S − K)+ or (K − S)+ are basket options and Asian options. In the

case of a basket option, we have that Ti = T and the random variable Xi denotes the price level of stock i at time T , while
S is a weighted sum of the stock price levels at time T . In the case of Asian options, only one asset is involved. The random
variable Xi represents the price level of this asset at time T − i+1. Theweightswi typically equal 1

n such that S is the average
price of the asset over the last n periods prior to expiration.

1.2. The optimization problem

Hereafter, we always assume that the financial market is arbitrage-free and that there exists a risk-neutral pricing mea-
sure Q, equivalent to the physical measure P, such that the current price of any pay-off can be represented as the discounted

1 Throughout this paper, all random variables are assumed to have finite expectations.
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expectation of this pay-off. We further assume for the moment a continuously compounded constant risk-free interest rate.
The no-arbitrage condition gives rise to the following expressions for the vanilla option prices:

Ci [K ] = e−rTiE[(Xi − K)+], (5)

Pi [K ] = e−rTiE[(K − Xi)+]. (6)
In formulae (5) and (6), as well as in the remainder of this section, expectations (distributions) of functions of (X1, . . . , Xn)
have to be understood as expectations (distributions) under the Q-measure. We will often call them risk-neutral expecta-
tions (distributions).

We will discuss and further investigate the optimization problem

min
K1,...,Kn

n
i=1

wiE

(Xi − Ki)+


, such that

n
i=1

wiKi = K . (7)

Using expression (5), we see that the solutions K ∗

1 , K ∗

2 , . . . , K ∗
n to the minimization problem (7) are related to the cheapest

super-replicating strategy for the exotic call option with pay-off (S − K)+. Taking into account that

E

(Ki − Xi)+


= E


(Xi − Ki)+


+ K − E [Xi] , for K ≥ 0, (8)

we find that the solutions K ∗

1 , K ∗

2 , . . . , K ∗
n to the minimization problem (7) are also solutions to the minimization problem

min
K1,...,Kn

n
i=1

wiE

(Ki − Xi)+


, such that

n
i=1

wiKi = K . (9)

From expression (6), we find that the solutions K ∗

1 , K ∗

2 , . . . , K ∗
n correspond to the cheapest super-replicating strategy for an

exotic put option with pay-off (K − S)+, which we considered in (3). From here on, we will solely focus on the optimization
problem (7) and, as a result, on the super-replicating strategy for an exotic call option. In [5], the authors propose an efficient
algorithm for determining the upper bounds (2) and (4). They also investigate super-replicating strategies in a unified
framework where calls as well as puts are traded.

The optimization problem (7), which has many applications in finance and insurance, is also discussed in [6]. Besides the
static super-replicating strategies, other applications are optimal capital allocations, see e.g. [7], and premium calculation
from top down, see e.g. [8]. In [9], the super-replicating strategies prove to be useful to derive a model-free and forward
looking index for the option-implied strength of the co-movement of stock prices.

In this paper, we will investigate three issues. The first issue is the (non-)uniqueness of the optimal solution to (7) and
hence to the related static super-replicating strategy. It will be shown that the solution to this problem is not always unique.
In the context of capital allocation, the non-uniqueness of the solution to (7), using Lagrange optimization techniques, is
investigated in [10].

The second issue that we will investigate is the generalization to a minimization problem with randomweights, namely

min
K1,...,Kn

n
i=1

wiE

ζi (Xi − Ki)+


, such that

n
i=1

wiKi = K , (10)

where the ζi are non-negative random variables with E[ζi] = 1, i = 1, . . . , n. We further apply these results to the
derivation of static super-replicating strategies in a stochastic interest rate setting, in thisway generalizing the deterministic
interest rate setting of the previous papers.

The third issue that we will investigate is the co-existence of no-arbitrage and comonotonicity of underlying prices.
In [1], the price of the optimal static super-replicating strategy equals the exotic option price when the underlying random
variables are comonotonic. An interesting question arises whether or not the comonotonicity property and the no-arbitrage
property can co-exist, i.e. does there exist a market situation which is consistent with the observed vanilla option prices and
where the price of the exotic option with pay-off (S − K)+ at maturity T equals the upper bound

n
i=1 wie−r(T−Ti)Ci


K ∗

i


.

It will be shown, for example, that for Asian options, the upper bound is reachable in some cases, but not in general. The
problem of the multi-asset case, as considered in [11], will also be discussed.

The rest of this paper is organized as follows. In Section 2, the (non-)uniqueness of the optimal solution to the optimiza-
tion problem (7), and hence of the optimal super-replicating strategy, is discussed. In Section 3, we study the generalized
optimization problem (10). As an illustration, we apply the theory to static super-replicating strategies for exotic options
in a stochastic interest rate setting. In Section 4, the co-existence of the no-arbitrage assumption and the comonotonicity of
the underlying prices is investigated. Section 5 concludes the paper.

2. (Non-)uniqueness of the optimal solution

2.1. Basic ideas and the infinite market case

In this section, we consider the optimization problem (7). The non-uniqueness of the optimal decomposition is proven.
Related results can also be found in [6]. We start with introducing some notations and a basic theorem deriving a particular
solution to (7), which can be found e.g. in [3].
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For a given probability level p ∈ [0, 1], we denote the quantile of the random variable X by F−1
X (p). As usual, it is defined

by

F−1
X (p) = inf {x ∈ R | FX (x) ≥ p} , p ∈ [0, 1] ,

with inf∅ = +∞ by convention. Hereafter wewill also need the α-mixed inverse distribution function which is introduced
in [3]. Therefore, we first define the inverse distribution function F−1+

X (p) of a random variable X by

F−1+
X (p) = sup {x ∈ R | FX (x) ≤ p} , p ∈ [0, 1] ,

with sup∅ = −∞. The α-mixed inverse distribution function F−1(α)
X of X is defined as the following convex combination:

F−1(α)
X (p) = αF−1

X (p) + (1 − α)F−1+
X (p), p ∈ (0, 1) , α ∈ [0, 1] . (11)

From this definition, one immediately finds that for any random variable X and for all xwith 0 < FX (x) < 1, there exists an
αx ∈ [0, 1] such that

F−1(αx)
X (FX (x)) = x. (12)

A random vector X = (X1, . . . , Xn) is said to be comonotonic if

X d
= (F−1

X1
(U), . . . , F−1

Xn (U)), (13)

where U is a uniform (0, 1) r.v. and ‘ d= ’ stands for ‘equality in distribution’.
For a general random vector X = (X1, . . . , Xn), we call


F−1
X1 (U) , . . . , F−1

Xn (U)

the comonotonic modification of X ,

corresponding to the uniform r.v. U . Furthermore, for a given set of non-negative weights which are chosen up-front, the
weighted sum of the components of the comonotonic modification is denoted by Sc :

Sc = w1F−1
X1 (U) + w2F−1

X2 (U) + · · · + wnF−1
Xn (U) . (14)

For an overview of the theory of comonotonicity and its applications in actuarial science and finance, we refer to Dhaene
et al. [3]. Financial and actuarial applications are described in [12]. An updated overview of applications of comonotonicity
can be found in [13].

Theorem 1. Assume that K ∈ R and consider the minimization problem

min
K

n
i=1

wiE

(Xi − Ki)+


, such that

n
i=1

wiKi = K , (15)

where K = (K1, . . . , Kn).

1. If F−1+
Sc (0) < K < F−1

Sc (1), a solution K = (K1, . . . , Kn) to the minimization problem (15) is given by

Ki = F−1(α)
Xi

(FSc (K)), i = 1, . . . , n, (16)

while α ∈ [0, 1] follows from

F−1(α)

Sc (FSc (K)) = K . (17)

2. If K ≤ F−1+
Sc (0), a solution K = (K1, . . . , Kn) to the minimization problem (15) is given by

Ki = F−1+
Xi (0) − ei, (18)

with all ei ≥ 0 and such that
n

i=1 wiei = F−1+
Sc (0) − K .

3. If K ≥ F−1
Sc (1), a solution K = (K1, . . . , Kn) to the minimization problem (15) is given by

Ki = F−1
Xi (1) + fi, (19)

with all fi ≥ 0 and such that
n

i=1 wifi = K − F−1
Sc (1).

The optimization problem (15) and its solution were considered in [3]. Dhaene et al. [14] study this problem in the
particular case that the distribution functions FXi , i = 1, . . . , n, are strictly increasing. In this case α = 1 and the solution
(16) is obviously unique. A proof of Theorem 1 using Lagrange optimization techniques is given in [10]. In the context of
pricing Asian options in a Black–Scholes model, Nielsen and Sandman [15] derived a similar upper bound by means of
Lagrange optimization. Hobson et al. [4] used a Lagrange optimization technique to develop static-arbitrage upper bounds
for basket options.
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If F−1+
Sc (0) < K < F−1

Sc (1), we have that the minimal value of the minimization problem (15) is given by

E


Sc − K

+


=

n
i=1

wiE


Xi − F−1(α)
Xi

(FSc (K))


+


, (20)

see e.g. Theorem 7 in [3]. In case K ≤ F−1+
Sc (0), the optimal super-replicating strategy consists of buying for each stock i, a

vanilla option with strike Ki ≤ F−1+
Xi (0). In practice, these options are not traded, but we can replicate its pay-off; see [5].

Furthermore, we have in this particular case that
n

i=1

wiXi − K


+

=

n
i=1

wi (Xi − Ki)+ ,

which shows that the corresponding strategy replicates the pay-off of the exotic call option. Similarly, we can derive a repli-
cating strategy for the exotic call option with strike K ≥ F−1

Sc (1).
The following example illustrates that the solution given by (16) is not always the unique solution to the minimization

problem (15).

Example 1 (Non-Uniqueness of the Optimal Super-Replicating Strategy). Assume that n = 2, K = 1, w1 = w2 = 1 and
Q [Xi = 0] = 1 − Q [Xi = 1] =

1
2 for i = 1, 2. In this case, we have that Sc d

= 2X1. From (20), we find that the minimum of
the constrained minimization problem (15) is given by

E


Sc − 1

+


=

1
2
.

As FSc (1) =
1
2 , we find from (17) that

α =
1
2
.

This leads to the conclusion that the optimal solution (16) is given by

Ki =
1
2
, i = 1, 2,

whereas the constrained minimum of the objective function is given by 1
2 .

Now, for any couple (K1, 1 − K1) with K1 ∈ (0, 1), we find

E

(X1 − K1)+


+ E


(X2 − (1 − K1))+


=

1
2

(1 − K1) +
1
2

(1 − (1 − K1)) =
1
2
.

We can conclude that any couple (K1, 1 − K1) with K1 ∈ (0, 1) is a solution to the optimization problem and hence, the
solution given by (16) is not always the unique solution to the minimization problem (15). ∇

The set of all solutions to the constrained optimization problem (15) is derived in the next theorem.

Theorem 2. For K ∈ R, the set of all solutions K = (K1, . . . , Kn) to the minimization problem (15) is given by

A =


K
 n
i=1

wiKi = K and FXi (Ki) = FSc (K); i = 1, 2, . . . , n


. (21)

Proof. We will give the proof for the bivariate case. A generalization to the n-dimensional case is straightforward. For
i = 1, 2, we introduce the following notation:

K ∗

i =


F−1+
Xi (0) − ei, if K ≤ F−1+

Sc (0)
F−1(α)
Xi

(FSc (K)), if K ∈

F−1+
Sc (0) , F−1

Sc (1)


F−1
Xi (1) + fi, if K ≥ F−1

Sc (1) ,

where the non-negative constants ei and fi are defined respectively as in (18) and (19), and α is chosen as in (17).
It follows from Theorem 1 that


K ∗

1 , K ∗

2


is a solution of the minimization problem (15). Furthermore, we have that

K ∗

1 , K ∗

2


∈ A. Notice that for any K , the stop-loss premium E


(Xi − K)+


can be expressed as

E

(Xi − K)+


=


+∞

K


1 − FXi (x)


dx. (22)
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Fig. 1. FX1 (on the left), FX2 (on the right), K ∈ A and K1 < K ∗

1 .

Fig. 2. FX1 (on the left), FX2 (on the right), K ∉ A, w1K1 + w2K2 = K and FX1 (K1) < FSc (K).

(a) We will first prove that in the case K = (K1, K2) ∈ A, we have that K is a solution to the minimization problem (15).
– In the case K1 = K ∗

1 , we find from w1K1 + w2K2 = K that also K2 = K ∗

2 , so that (K1, K2) is indeed a solution to the
minimization problem.

– Let us now consider the case where K1 < K ∗

1 , which is illustrated graphically in Fig. 1. Because w1K1 + w2K2 =

w1K ∗

1 + w2K ∗

2 , we must have that K2 > K ∗

2 . Using expression (22) for E

(X1 − K1)+


as well as for E


X1 − K ∗

1


+


,

and noting that FX1 (x) = FSc (K) for all x ∈

K1, K ∗

1


, we find that

E

(X1 − K1)+


=

K ∗

1 − K1

(1 − FSc (K)) + E


X1 − K ∗

1


+


.

Similarly, from FX2 (x) = FSc (K) for all x ∈

K ∗

2 , K2

, we find

E

(X2 − K2)+


= E


X2 − K ∗

2


+


−

K2 − K ∗

2


(1 − FSc (K)) .

The requirement w1K1 + w2K2 = K = w1K ∗

1 + w2K ∗

2 implies that w1

K ∗

1 − K1


= w2

K2 − K ∗

2


. Hence,

w1E

(X1 − K1)+


+ w2E


(X2 − K2)+


= w1E


X1 − K ∗

1


+


+ w2E


X2 − K ∗

2


+


.

We can conclude that K = (K1, K2) ∈ A implies that K is a solution to the minimization problem (15).
– In a similarway, one canprove that ifK1 > K ∗

1 , it holds that (K1, K2) ∈ A implies thatK is a solution to theminimization
problem (15).

(b) Next, we will prove that if K = (K1, K2) ∉ A, then K cannot be a solution to the minimization problem (15).
– In the case w1K1 + w2K2 ≠ K , clearly K cannot be a solution to the minimization problem (15).
– For K ∈


F−1+
Sc (0) , F−1

Sc (1)

, it holds that FSc (K) ∈ (0, 1). Assume that FX1 (K1) < FSc (K). This case is illustrated

graphically in Fig. 2.
We immediately find that K1 < K ∗

1 . Taking into account that FX1 (K1) < FSc (K), we arrive at

E

(X1 − K1)+


>

K ∗

1 − K1

(1 − FSc (K)) + E


X1 − K ∗

1


+


.

Becausew1K1+w2K2 = K = w1K ∗

1 +w2K ∗

2 , it should hold thatK2 > K ∗

2 . This leads to FX2 (K2) ≥ FSc (K). Hence,we find

E

(X2 − K2)+


≥ E


X2 − K ∗

2


+


−

K2 − K ∗

2


(1 − FSc (K)) .



X. Chen et al. / Journal of Computational and Applied Mathematics 278 (2015) 213–230 219

From these expressions and w1

K ∗

1 − K1


= w2

K2 − K ∗

2


, we conclude that

w1E

(X1 − K1)+


+ w2E


(X2 − K2)+


> w1E


X1 − K ∗

1


+


+ w2E


X2 − K ∗

2


+


,

implying that K with w1K1 +w2K2 = K and FX1 (K1) < FSc (K) cannot be a solution to the minimization problem (15).
– If K ∈


F−1+
Sc (0) , F−1

Sc (1)

, the cases (w1K1 + w2K2 = K and FX1 (K1) > FSc (K)), (w1K1 + w2K2 = K and FX1(K1)

< FSc (K)), (w1K1 + w2K2 = K and FX2 (K2) < FSc (K)) and (w1K1 + w2K2 = K and FX2 (K2) > FSc (K)) can be proven
in a similar way.

– Assume now that K ≤ F−1+
Sc (0). This implies that FSc (K) = 0. If w1K1 + w2K2 = K , then (K1, K2) ∉ A can only hold if

either FX1 (K1) > 0 or FX2 (K2) > 0. Assume for themoment that FX1 (K1) > 0, so K1 > F−1+
X1 (0). The equalitiesw1K1+

w2K2 = K and w1F−1+
X1 (0) + w2F−1+

X2 (0) = F−1+
Sc (0) imply that K2 < F−1+

X2 (0). Then we find that

w1E

(X1 − K1)+


+ w2E


(X2 − K2)+


= w1E


(X1 − K1)+


+ w2E [X2 − K2]

> w1E [X1 − K1] + w2E [X2 − K2]
= E [w1X1 + w2X2] − K

= w1E


X1 − K ∗

1


+


+ w2E


X2 − K ∗

2


+


,

which proves that (K1, K2) cannot be an optimal solution.
– The situationswhere (K ≤ F−1+

Sc (0) , w1K1+w2K2 = K , FX2 (K2) > 0), (K ≥ F−1
Sc (1) , w1K1+w2K2 = K , FX1 (K1) < 1)

and (K ≥ F−1
Sc (1) , w1K1 + w2K2 = K , FX2 (K2) < 1) can be proven in a similar way. �

In the remainder of this paper, we always silently assume that F−1+
Sc (0) < K < F−1

Sc (1), unless stated otherwise. In this
case, the set A in Theorem 1 can also be expressed as

A =


K
 n
i=1

wiKi = K and Ki = F−1(αi)
Xi (FSc (K)) for some αi ∈ [0, 1] ; i = 1, 2, . . . , n


. (23)

From the expression above we can conclude that the set A reduces to the singleton A =


F−1
X1 (FSc (K)) , F−1

X2 (FSc (K)) ,

. . . , F−1
Xn (FSc (K))


in case all marginal distributions FXi are strictly increasing.

Notice that the solution to the minimization problem (15) is unique in the set B defined by

B =


K
 n
i=1

wiKi = K and Ki = F−1(α)
Xi (FSc (K)) ; i = 1, 2, . . . , n, for some α ∈ [0, 1]


. (24)

We can conclude that the minimization problem (7) does not always have a unique solution. In the super-replicating
context, this means that there is not always a unique optimal super-replicating strategy in the infinite market case (where
European call option prices for all possible strikes are available), except when all risk-neutral marginal distributions FXi are
strictly increasing.

2.2. The finite market case

In practice, only a finite number of strikes are traded for each underlying. Therefore, we assume that for asset i, i =

1, 2, . . . , n, at current time 0, European call options with strikes 0 = Ki,0 < Ki,1 < · · · < Ki,mi < F−1
Xi (1) andmaturity Ti are

available in the market. The prices of these options are denoted by Ci

Ki,j

, i = 1, 2, . . . , n; j = 0, 1, . . . ,mi. Furthermore,

we assume that F−1
Xi (1) is known and finite. We will denote this ‘maximal value’ of Xi by Ki,mi+1.

When option prices Ci [K ] are available for any strike K , we can derive the implied risk-neutral distribution FXi of the
price of underlying i at time Ti as follows

FXi (x) = 1 + erTiC ′

i [x+] , (25)

where C ′

i [x+] denotes the right derivative of Ci in x.
Because we assumed that there are only a finite number of traded strikes for underlying i, the call option curve Ci

is not fully specified and therefore FXi is not completely specified. We circumvent this problem by approximating the
partially known convex call option curve Ci by the piecewise linear convex function C i connecting the observed points
Ki,j, Ci


Ki,j


, j = 0, 1, . . . ,mi + 1. Obviously, any C i[K ] is an upper bound for the corresponding call option price Ci[K ]

and both values are identical if K is a traded strike. We can then find the cdf FXi which corresponds to the option curve C i
from the following relation:

FXi(x) = 1 + erTiC
′

i[x+]. (26)
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The optimal super-replicating strategy for the exotic call option with pay-off (S − K)+ at time T follows from the
minimization problem (15). A possible solution is given in Theorem 1. Taking into account that only partial option data
are available, it is not possible to solve the minimization problem (15). However, we can solve the following minimization
problem:

min
K

n
i=1

wiE


F
−1
Xi (U) − Ki


+


, such that

n
i=1

wiKi = K . (27)

Let S
c
denote the comonotonic sum

n
i=1 wiF

−1
Xi (U), then (27) can be solved using Theorem 1. The above-mentioned

procedure for copingwith the finitemarket casewas firstly proposed in [4]. Simplified proofs for their resultswere presented
in [1]. A more general set-up as well as a detailed algorithm for determining the solution to the minimization problem (27)
numerically, is given in [5]. Let us show the non-uniqueness of the super-replicating strategy in the finite market case
through an example.

Example 2. Suppose the European call option prices for asset A and asset B, as listed in Table 1, can be observed in the
market at time zero. Further, suppose that there is a basket option written on a combination of asset A and B, with weight
factors w1 = w2 = 1/2, strike K = 47.5 and maturity T = 1. The continuously compound yearly interest rate r follows
from erT = 1.04. The pay-off function of the basket call option is given by

1
2
X1 +

1
2
X2 − 47.5


+

.

From expression (26), we find that for any i = 1, 2 and j = 0, 1, . . . , 6, we have

FXi


Ki,j


= 1 + erT
Ci

Ki,j+1


− Ci


Ki,j


Ki,j+1 − Ki,j
.

For any p ∈ (0, 1), we have that F
−1
Xi (p) is given by

F
−1
Xi (p) = Ki,j if FXi(Ki,j−1) < p ≤ FXi(Ki,j), j = 0, 1, . . . , 6.

Let S
c
be equal to w1F

−1
X1 (U) + w2F

−1
X2 (U). As the couple (50, 40) is an element of the support of


F

−1
X1 (U) , F

−1
X2 (U)


, we

find that

FSc (45) = Q

F

−1
X1 (U) ≤ 50, F

−1
X2 (U) ≤ 40


= 0.6422,

see Lemma 5 in [5]. Furthermore, we can verify that

F
−1
X1


FSc (45)


= 50 and F

−1+
X1


FSc (45)


= 55,

F
−1
X2


FSc (45)


= 40 and F

−1+
X2


FSc (45)


= 42.5.

Using these equalities, we can check that there exists a value α ∈ (0, 1) such that

w1F
−1(α)

X1 (FSc (45)) + w2F
−1(α)

X2


FSc (45)


= 47.5.

We find that α = 1/3 and FSc (K) = FSc (45). The optimal strike prices are K1 = 53.3333 and K2 = 41.6667. The precision
for K1 and K2 is to the 4th decimal point. Since we are considering the finite market case, the price of the optimal strategy
at time zero is

w1C1

K ∗

1


+ w2C2


K ∗

2


= w1


αC1


F

−1
X1


FSc (K)


+ (1 − α) C1


F

−1+
X1


FSc (K)


+ w2


αC2


F

−1
X2


FSc (K)


+ (1 − α) C2


F

−1+
X2


FSc (K)


=

1
2


1
3

· 2.09 +
2
3

· 0.37


+
1
2


1
3

· 1.83 +
2
3

· 0.97


= 1.1.

Given FSc (K) = 0.6422, we can also have that F−1(α1)
X1


FSc (K)


∈ [52.5, 55], when α1 ∈


0, 1

2


and F−1(α2)

X2


FSc (K)


=

95 − F−1(α1)
X1


FSc (K)


, when α2 = 1 − 2α1. Hence, from (23) and choosing α1 =

1
6 and α2 =

2
3 , it follows that (K1, K2) =

(54.1667, 40.8333) is a solution to the constrained minimization problem (27) as well. The price of this optimal choice at
time zero equals 1.1. Indeed,

1
2


1
6

· 2.09 +
5
6

· 0.37


+
1
2


2
3

· 1.83 +
1
3

· 0.97


= 1.1.
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Table 1
Observed vanilla call option prices for asset A and asset B.

asset A asset B
K CA[K ] K CB[K ]

0 45.5 0 35.5
40 9.8 35 5.02
45 5.5 37.5 3.05
50 2.09 40 1.83
55 0.37 42.5 0.97
60 0.08 45 0.29
65 0.03 47.5 0.08

In the next section, we consider a generalization of the optimization problem (15) which can be applied to determine
super-replicating strategies in a stochastic interest rate setting.

3. A generalized constrained minimization problem

In [4,1], the discussion above was carried out in a deterministic interest rate setting. The generalization to the stochastic
interest rate world requires the study of the optimization problem (10) under the Q-measure, which we repeat here:

min
K1,...,Kn

n
i=1

wiE

ζi (Xi − Ki)+


, such that

n
i=1

wiKi = K , (28)

where the ζi are non-negative random variables with E[ζi] = 1, i = 1, . . . , n. When all ζi are identical to 1, the problem
reduces to the one in the previous section.

3.1. Derivation of the optimal solution

The optimization problem (28) is considered in [7] where an optimal allocation problem is studied and a particular set
of optimal allocations Ki, i = 1, . . . , n, is derived. Here, we restate the results of that paper, give an alternative proof of the
claim in Lemma 3 and characterize the complete solution set in (38).

The solution to the general optimization problem (28) is expressed in terms of functions F (ζi)
Xi

, which are defined as
follows:

F (ζi)
Xi

(x) = E[ζi I{Xi ≤ x}] = E[ζi | Xi ≤ x]FXi(x), i = 1, . . . , n. (29)

Each function F (ζi)
Xi

defines a proper distribution function and we call this distribution function the ζi-weighted distribution
of Xi. More information can be found in [16,17] and the references therein. The corresponding decumulative distribution
function is given by

1 − F (ζi)
Xi

(x) = E [ζi I{Xi > x}] = E[ζi | Xi > x]

1 − FXi(x)


, i = 1, . . . , n. (30)

A sufficient condition for F (ζi)
Xi

to be continuous is that FXi is continuous. A sufficient condition for F (ζi)
Xi

to be strictly increasing
is that FXi is strictly increasing and Q [ζi > 0] = 1.

The following lemma will play an important role to derive the set of solutions to (28). Here we give an alternative proof
based on a change of measures, a method which is well-known in finance and also used in a dynamic setting when the
Radon–Nikodym derivative is strictly positive; see e.g. [18].

Lemma 3. Let U be a random variable which is uniformly distributed on the unit interval (0, 1) of some probability space, then
it holds that

E

ζi (Xi − Ki)+


= EPr


F (ζi)
Xi

−1
(U) − Ki


+


, i = 1, . . . , n, (31)

where the super index Pr is the probability measure in that probability space.

Proof. This lemma follows by the theorem of Radon–Nikodym. E[·] is calculated based on the probability space (Ω, F , Q).
One can interpret ζi as a Radon–Nikodym derivative since Q [ζi > 0] = 1 and E[ζi] = 1. Let us denote Qi such that

Qi [A] = E[ζi IA] i = 1, . . . , n, (32)

for all A ∈ F . Then,

E

ζi (Xi − Ki)+


= EQi


(Xi − Ki)+


, i = 1, . . . , n, (33)

where we now need to find the law of Xi under Qi.
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Denoting Xi ∼ FXi under Q, according to (29) and (32), we find that

Qi [Xi ≤ x] = E[ζi I{Xi ≤ x}] = F (ζi)
Xi

(x), i = 1, . . . , n. (34)

Since with U a uniformly distributed random variable under Pr , we have that

F (ζi)
Xi

(x) = Pr

U ≤ F (ζi)

Xi
(x)


= Pr


F (ζi)
Xi

−1
(U) ≤ x


, i = 1, . . . , n, (35)

from which we conclude that Xi has the same law under Qi as

F (ζi)
Xi

−1
(U) under Pr . Therefore, it holds that

EQi


(Xi − Ki)+


= EPr


F (ζi)
Xi

−1
(U) − Ki


+


, i = 1, . . . , n. (36)

Combining this result with (33) we arrive at the stated result. �

Note that when U exists on the probability space (Ω, F , Q), Pr equals Q and the superscript can be omitted in Eq. (31).
We should emphasize that it is possible that U does not exist on (Ω, F , Q), see [19].

For notational simplicity, we assume that U exists on (Ω, F , Q) from here on.
A solution to the generalized optimization problem (28) is derived in the following theorem.

Theorem 4. Let Sc be the comonotonic sum defined by

S
c
=

n
i=1

wi


F (ζi)
Xi

−1
(U) ,

where the random variable U is uniformly distributed on the unit interval (0, 1). In the case F−1+
Sc

(0) < K < F−1
Sc

(1), the
optimization problem (28) has the following solution:

Ki =


F (ζi)
Xi

−1(α)

(FSc (K)), i = 1, . . . , n, (37)

where α ∈ [0, 1] follows from

F−1(α)

Sc
(FSc (K)) = K .

Proof. From Lemma 3, we find that the optimization problem (28) can be rewritten as

min
K1,...,Kn

n
i=1

wiE


F (ζi)
Xi

−1
(U) − Ki


+


, such that

n
i=1

wiKi = K .

The stated result follows then by applying Theorem 1. �

Note that it is straightforward to extend Theorem 4 to include the case where K ∉


F−1+
Sc

(0), F−1
Sc

(1)

. It should also be

noted that the non-uniqueness of the optimal solution holds in this general setting as well. According to Theorem 2, the set
of all solutions K = (K1, . . . , Kn) to the minimization problem (28) is given by

A =


K
 n
i=1

wiKi = K and F (ζi)
Xi

(Ki) = FSc (K); i = 1, 2, . . . , n


, (38)

or, equivalently,

A =


K
 n
i=1

wiKi = K and Ki =


F (ζi)
Xi

−1(αi)
(FSc (K)) for some αi ∈ [0, 1] ; i = 1, 2, . . . , n


.

If Q [ζi > 0] = 1, i = 1, . . . , n, and the distributions F (ζi)
Xi

are strictly increasing, the optimal allocations (37) reduce to

Ki =


F (ζi)
Xi

−1
(FSc (K)), i = 1, . . . , n.

3.2. Application to a stochastic interest rate setting

In this section we generalize the problem of finding static super-replicating strategies for a class of exotic options from
the deterministic interest rate setting to the stochastic interest rateworld.We recall that expectations are takenwith respect
to the pricing measure Q, unless explicitly stated otherwise.
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3.2.1. Interest rate process and zero-coupon bond
Consider an adapted interest rate process {R (t) | t ≥ 0} defined on a filtered probability space


Ω, F , {Ft}0≤t≤T , P


. The

corresponding discount process {D (t) | t ≥ 0} is given by

D(t) = e−
 t
0 R(u)du.

Obviously D(0) = 1. Assume that there are no arbitrage opportunities and that the market prices of all derivatives involved
are given by expectations of discounted pay-offs under the pricing measure Q. Further, consider a zero-coupon bond that
pays 1 unit of currency at maturity T . The value of this bond at time t ∈ [0, T ] is denoted by P(t, T ) and can be expressed as

P(t, T ) =
1

D(t)
E[D(T ) | Ft ]. (39)

In particular P(T , T ) = 1 and P(0, T ) = E[D(T )]. The current time zero prices of the European vanilla call options available
in the market are given by

Ci [K ] = E

D(Ti) (Xi − K)+


, i = 1, . . . , n. (40)

In the following sections, we will first study two classical examples of exotic options, namely basket and Asian options,
in the stochastic interest rate environment. Afterwards, we will derive the optimal strategy in the framework (1) and apply
similar techniques to some other exotic products with more complex pay-offs.

3.2.2. Basket option case
For a basket option, S stands for

n
i=1 wiXi =

n
i=1 wiSi(T ), where Si (T ) denotes the price level of stock i at time T .

Inequality (1) provides
n

i=1

wiSi(T ) − K


+

≤

n
i=1

wi(Si(T ) − Ki)+ (41)

when
n

i=1 wiKi ≤ K and Ki ≥ 0, i = 1, . . . , n.
The right-hand side of inequality (41) can be interpreted as the pay-off at time T of a strategy consisting of buying at time

zero a number of wi European options with pay-off (Si (T ) − Ki)+ at time T , i = 1, . . . , n, holding these options until they
expire at time T and exercising the ones with positive pay-offs. Since the pay-off of such a strategy dominates the pay-off
of the exotic option according to inequality (41), it is a super-replicating strategy. The price of this strategy at time zero is
given by

n
i=1 wiCi [Ki]. From (40), we have that

n
i=1

wiCi [Ki] =

n
i=1

wiE[D(T )(Si(T ) − Ki)+]. (42)

By taking for each i, i = 1, . . . , n, ζ = ζi =
D(T )

P(0,T )
, we can write (42) as

n
i=1

wiE [D(T )(Si(T ) − Ki)+] = P (0, T )

n
i=1

wiE

ζ (Si(T ) − Ki)+


.

Then the optimal strikes, Ki, i = 1, . . . , n corresponding to the cheapest super-replicating strategy follow from the
corresponding optimization problem (28) under the Q-measure.

3.2.3. Asian option case
Now we take

n
i=1 wiXi =

n
i=1 wiS(Ti), where S(Ti) denotes the price level of a stock or index at time Ti. Similarly to

the basket option case, we have that
n

i=1

wiS(Ti) − K


+

≤

n
i=1

wi(S(Ti) − Ki)+ (43)

holds when
n

i=1 wiKi ≤ K and Ki ≥ 0, i = 1, . . . , n.
The right-hand side of inequality (43) can be interpreted as the pay-off at time T of a strategy of buying at time zero

wi exchange options with pay-off (S(Ti)P (Ti, T ) − KiP (Ti, T ))+ at time Ti, holding these options until they expire at time
Ti, i = 1, . . . , n, exercising the oneswith positive pay-offs and investing the pay-offs for the period [Ti, T ]bybuying S(Ti)−Ki
zero-coupon bonds at a price P(Ti, T ). We introduce CS(Ti)P(Ti,T ) [KiP (Ti, T )] to denote the price at time zero of an exchange
option with maturity Ti and pay-off (S(Ti)P(Ti, T ) − KiP(Ti, T ))+ at time Ti.

As the pay-off of the exchange option indicates, the buyer of the option has the right to obtain at time Ti the difference
between ‘the value of the stock times a zero-coupon bondwithmaturity T ’ and ‘the strike Ki times a zero-coupon bondwith
maturity T ’. Also, since the pay-off of the strategy dominates the pay-off of the exotic option according to inequality (43),
we have found a super-replicating strategy. The price of this strategy is

n
i=1 wiCS(Ti)P(Ti,T ) [KiP (Ti, T )].
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The time-0 price of the derivative which pays (S(Ti) − Ki)+ at time T is equal to E

D(T ) (S(Ti) − Ki)+


. Such a contract

can be hedged by investing at time t = 0 in a derivative which pays (S(Ti)P (Ti, T ) − KiP (Ti, T ))+ at time Ti, and
investing the eventual pay-off at time Ti in zero-coupon bonds until time T . The price of this hedging strategy is given
by CS(Ti)P(Ti,T ) [KiP (Ti, T )] andmust be equal to the price of the derivative, which is E


D(T ) (S(Ti) − Ki)+


. We then find that

n
i=1

wiCS(Ti)P(Ti,T ) [KiP (Ti, T )] =

n
i=1

wiE

D(T ) (S(Ti) − Ki)+


. (44)

Similarly as for the basket option case, we take for each i, i = 1, . . . , n, ζ = ζi =
D(T )

P(0,T )
and we write (44) as

n
i=1

wiE [D(T )(S(Ti) − Ki)+] = P (0, T )

n
i=1

wiE

ζ (S(Ti) − Ki)+


.

Then the optimal strikes, Ki, i = 1, . . . , n, follow from the corresponding optimization problem (28) under the Q-measure.
In a deterministic interest rate setting, the bond price P (Ti, T ) is known at time 0 and as a result we can buy the

optimal super-hedging portfolio for an Asian option with payoff
n

i=1 wiS(Ti) − K

+

by investing in vanilla call options
with expiration dates Ti, i = 1, 2, . . . , n. When interest rates behave in a stochastic way, P (Ti, T ) is not known at time
0 and the optimal portfolio consists of exchange options with prices CS(Ti)P(Ti,T ) [KiP (Ti, T )] , i = 1, 2, . . . , n. In [1], it is
assumed that we can only invest in a deterministic number of vanilla calls which expire at Ti, i = 1, 2, . . . , n in order to
construct a super-hedging portfolio. Constructing the optimal, model-free, static super-replicating portfolio in a stochastic
interest rate setting, however, requires a market where derivatives with payoff (S(Ti)P (Ti, T ) − KiP (Ti, T ))+ at time Ti are
traded. This means that in a stochastic interest rate setting, the minimal price may not be attainable in the class of all super-
replicating strategies which consist of only vanilla call options.

3.2.4. Floating strike Asian option
The optimization method described above can also be applied to other derivatives with more complex pay-offs. A first

option that we consider is a floating strike Asian option.
The pay-off of the floating strike Asian option, as discussed in [20], is given by

n
i=1

wiS(T − i + 1) − βS(T )


+

= S(T )


n

i=1

wi
S(T − i + 1)

S(T )
− β


+

with S (T ) > 0 and β a positive percentage and wi =
1
n , i = 1, . . . , n. Further we have that

n
i=1

wiS(T − i + 1) − βS(T )


+

≤

n
i=1

wi(S(T − i + 1) − S(T )Ki)+

=

n
i=1

wiKi


S(T − i + 1)

Ki
− S(T )


+

(45)

with
n

i=1 wiKi ≤ β and Ki ≥ 0, i = 1, . . . , n. The right-hand side of inequality (45) can be interpreted as the pay-off at

time T of a strategy consisting of buying at time zerowiKi forward start put options with pay-off


S(T−i+1)
Ki

− S(T )


+

at time

T , i = 1, . . . , n, holding these options until they expire at time T and exercising the ones with positive pay-offs.
A forward start put option with pay-off


S(T−i+1)

Ki
− S (T )


+

is a vanilla put option, but with a variable strike given by a

percentage of S(T − i + 1) which is only known from T − i + 1 on. For more information about forward start options we
refer to Weber and Wystup [21].

Since the pay-offs of these strategies dominate the pay-off of the exotic option according to the inequality (45), they are
super-replicating strategies. The prices of these strategies are

n
i=1

wiE[D(T )(S(T − i + 1) − S(T )Ki)+] =

n
i=1

wiE

D(T )S(T )


S(T − i + 1)

S(T )
− Ki


+


.

Because {D(t)S(t), t ≥ 0} is a martingale under Q, it suffices to take ζi =
D(T )S(T )

S(0) for all i = 1, . . . , n. The optimal
Ki, i = 1, . . . , n, satisfying

n
i=1 wiKi ≤ β , which lead to the least price among these strategies can then be determined via

the procedure explained in Section 3.1.

3.2.5. Option struck in foreign currency
As another example of more complex derivatives, we consider options struck in foreign currency (see e.g. [22, p. 176]),

with the underlying Sf either a weighted average of different asset prices or a weighted average of asset prices at different
dates and the strike K f also expressed in the foreign currency. Denote the exchange rate process by {Q (t) , t ≥ 0}. Hereafter,
we will only consider the case where Sf is a weighted average of different asset prices.
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Denote Sf for
n

i=1 wiS
f
i (T ) with S fi (T ) the equity price of asset i in the foreign currency and wi, i = 1, . . . , n, the

positive weight factors. The pay-off at time T in the domestic currency of a foreign basket call struck in foreign currency
equals Q (T ) (Sf

− K f )+.
Further we have that

Sf
− K f 

+
=


n

i=1

wiS
f
i (T ) − K f


+

≤

n
i=1

wi


S fi (T ) − K f

i


+

with
n

i=1 wiK
f
i ≤ K f and K f

i ≥ 0, i = 1, . . . , n, and since Q (T ) > 0,

Q (T )

Sf

− K f 
+

≤

n
i=1

wiQ (T )

S fi (T ) − K f

i


+

. (46)

The right-hand side of inequality (46) can be interpreted as the pay-off at time T of a strategy consisting of buying in the
domestic currency at time zero wi foreign call options struck in foreign currency with pay-off (S fi (T ) − K f

i )+ at time T ,
i = 1, . . . , n, holding these options until they expire at time T and exercising the oneswith positive pay-offs. These strategies
super-replicate the foreign basket call struck in foreign currency and exchanged into the domestic currency. Their prices
under the domestic martingale measure are given by

n
i=1

wiE

D(T )Q (T )


S fi (T ) − K f

i


+


.

If we take ζi =
D(T )Q (T )

E[D(T )Q (T )]
, i = 1, . . . , n, the optimal K f

i , i = 1, . . . , n, leading to the least price among these strategies can
be determined via the optimization procedure explained in Section 3.1.
We note that the stochastic factors ζi = ζ , i = 1, . . . , n, define a change of measure as in the proof of Lemma 3. For the
example of the basket option and the Asian option ζ defines the T -forwardmeasurewhile for the floating strike Asian option
it defines the martingale measure associated with the numeraire S.

4. Is the optimal solution consistent with no-arbitrage?

The price of the optimal static super-replicating strategy in [4,1] is an upper bound for the exotic option price. It is
reached when the underlying random variables are comonotonic. Hereafter, we assume the existence of an equivalent
martingale measure, which is ‘essentially’ equal to the no-arbitrage condition, and we investigate the question whether
the comonotonicity property can co-exist with the existence of this equivalent martingale measure. If yes, the price of the
strategy is a reachable upper bound of the exotic option. If not, it is an unreachable upper bound. Two situations have to be
investigated. Firstly, different assets are comonotonic. Secondly, prices of one asset at different time points are comonotonic.
These two situations correspond to the basket option case and the Asian option case respectively.

4.1. Several underlying assets

In [11] the following reasoning is made to show that the comonotonicity property cannot co-exist with the martingale
property in certain situations.

Let S1(t) and S2(t) denote the prices of two underlying assets at time t, t = 0, 1, 2, . . . , T . For simplicity, the risk-free
interest rate r is assumed to be zero. Further, consider an increasing function f : (0, +∞) → (0, +∞). When S2(t) =

f (S1(t)), the random variables S1(t) and S2(t) are comonotonic for each time point t . For time t1 < t2, according to the
martingale property, we have that

E [Sl(t2) | Sl(t1)] = Sl(t1), l = 1, 2.
Now suppose f is a strictly convex function. If the conditional distribution of S1(t2), given S1(t1) is not degenerate,

according to the strict convexity of f and Jensen’s inequality, we can get
f (S1(t1)) = E[f (S1(t2)) | S1(t1)] > f (E [S1(t2) | S1(t1)]) = f (S1(t1)),

and thus
f (S1(t1)) > f (S1(t1)).

This is a contradiction. Therefore, the comonotonicity property cannot co-existwith themartingale property in this situation.
Notice that if f is linear, the comonotonicity property and the martingale property might co-exist.

4.2. A single underlying asset

4.2.1. Some definitions
In order to investigate the co-existence of the comonotonicity property and the martingale property for one underlying

asset case, we extend some definitions from [3] to the notion of strict comonotonicity.
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Fig. 3. Comonotonic support (left panel) for a couple (X1, X2) and a strict comonotonic support (right panel) for a couple (X1, X2).

Definition 5. A subset A ⊆ Rn is called a support of an n-dimensional random vector X = (X1, . . . , Xn) if P

X ∈ A


= 1

holds true.

An n-vector (x1, x2, . . . , xn) will be denoted by x. For two n-vectors x and y, the notation x ≤ y will be used for the
componentwise order which is defined by xi ≤ yi for all i = 1, 2, . . . , n and the notation x < y will be used for the
componentwise order which is defined by xi < yi for all i = 1, 2, . . . , n.

Definition 6. The set A ⊆ Rn is said to be comonotonic if for any x and y in A, either x ≤ y or y ≤ x holds. The set A is said to
be strictly comonotonic if for any x and y (different from x) in A, either x < y or y < x holds.

Definition 7. A random vector X = (X1, . . . , Xn) is said to be comonotonic if it has a comonotonic support. It is said to be
strictly comonotonic if it has a strictly comonotonic support.

Combining the definitions above, it holds that a random vector X is comonotonic if there exists a comonotonic set A ⊆ Rn

such that P

X ∈ A


= 1. A strictly comonotonic X means that there exists a strictly comonotonic set A ⊆ Rn such that

P

X ∈ A


= 1. Definition 7 is illustrated in Fig. 3. In this figure, we show the support of a comonotonic and a strict

comonotonic random couple. A possible comonotonic situation which is not strictly comonotonic is illustrated in the left
panel of Fig. 3. An example of a strictly comonotonic support is shown in the right panel of the same figure. Obviously
horizontal and vertical line segments are not allowed for strict comonotonicity.

In the following lemma, we show that comonotonicity and strict comonotonicity of a random vector X are equivalent
when the marginals are continuous.

Lemma 8. Consider a random vector X = (X1, . . . , Xn) with continuous marginal cdf’s FXi , i = 1, 2, . . . , n. Then we have that

X is comonotonic ⇔ X is strictly comonotonic.

Proof. The proof of the ‘converse’ part is trivial.
In order to prove the ‘direct’ part, assume that X is comonotonic. A support for the random vector X is given by

support

X


=


F−1
X1 (p) , F−1

X2 (p) , . . . , F−1
Xn (p)


| 0 < p < 1


.

We can take any x, y ∈ support

X

. Then there exist values p1, p2 ∈ (0, 1) such that x =


F−1
X1 (p1) , F−1

X2 (p1) , . . . , F−1
Xn (p1)


and y =


F−1
X1 (p2) , F−1

X2 (p2) , . . . , F−1
Xn (p2)


. If p1 = p2, we obviously have that x = y. Let us now consider the situation

where p1 < p2. We will show that this implies that x < ymust hold. As F−1
Xi

is non-decreasing, we have that x ≤ y. Because
FXi is continuous on (0, 1), we have that F−1

Xi
is strictly increasing on (0, 1) which implies that F−1

Xi (p1) = F−1
Xi (p2) can only

be satisfied when p1 = p2. We conclude that x < ymust hold.
Similarly, starting from p1 > p2 it follows that x > y, from which we conclude that X is strictly comonotonic. �
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The assumption that the marginal cdf’s must be continuous is not too restrictive. In case the dynamics of the stock
price process {S (t) | 0 ≤ t ≤ T } are described by the Black–Scholes model (or Variance Gamma, Heston, . . . ), the cdf FS(t)
of the price S (t) , t > 0, is continuous. In the following section we investigate the martingale property and the (strict)
comonotonicity property of the random vector X .

4.2.2. (Strict) comonotonicity and martingale property

Theorem 9. For prices S(ti) of a given asset at times ti, i = 1, 2, . . . , n with t1 < t2 < · · · < tn, denote S = (S(t1), . . . , S (tn)).
If S is a strictly comonotonic vector and the martingale property holds, then for i < j, we have that S(ti) and S


tj

are related

through the linear relationship S

tj


= S(ti)er(tj−ti) almost surely.

Proof. If S is strictly comonotonic, we have that

S(ti), S


tj


is strictly comonotonic for any i < j. Since

S(ti), S


tj


is a
strictly comonotonic vector,


S(ti), S


tj


has a strictly comonotonic support.
Similar to X1 and X2 in the right panel of Fig. 3, S(ti) and S


tj

are paired in such a way that, if S (ti) is given, there exists

a corresponding S

tj

or in another form

E[S(tj) | S(ti)] = S(tj) almost surely.

Also, according to the martingale property, we have

E[S(tj) | S(ti)] = S(ti)er(tj−ti).

We conclude that

S(tj) = S(ti)er(tj−ti), a.s. � (47)

Note that under the assumptions of Theorem 9 the stock price process evolves as a risk free asset.
A natural question is what happens when the assumption of strict comonotonicity is relaxed to comonotonicity? In

Remark 10, we show by an example thatwhen S is a comonotonic, but not a strictly comonotonic vector, the comonotonicity
property and the martingale property can co-exist without the linear relationship (47).

Remark 10 (A Counter Example). Let us assume that r = 0without loss of generality,whichmeans er(tj−ti) = 1. Furthermore,
suppose that the possible outcomes of S are (1, 0.5), (1, 1.5), (3, 2.5) and (3, 3.5) with probability 0.25 for each outcome under
the equivalent martingale measure. The martingale property

E[S

tj


| S(ti)] = S (ti) er(tj−ti) = S (ti)

holds in this case. Indeed, we find that

E[S

tj


| S(ti) = 1] = 1,

and

E[S

tj


| S(ti) = 3] = 3.

In addition, it is easy to see that S has a comonotonic but not strictly comonotonic support, so S is a comonotonic vector. As
a result, the comonotonicity property and the martingale property can co-exist without the linear relationship (47).

4.2.3. The Black–Scholes model and option price curve
We can take a further look at the situation where the stock price process {S (t) | 0 ≤ t ≤ T } is described by a stochastic

process with continuous cdf’s FS(t) for all t > 0. Let us concentrate on the Black–Scholes model. Suppose that the prices S(ti)
and S(tj) at time ti and tj with 0 < ti < tj ≤ T are comonotonic. Since FS(t) is continuous, by Lemma 8 we have that S(ti) and
S(tj) are strictly comonotonic. Therefore the vector


S(ti), S


tj


has a strictly comonotonic support A with

A =


F−1
S(ti)

(p) , F−1
S(tj)

(p)


| 0 < p < 1


.

This means that knowing S(ti) implies knowing S(tj) and vice versa. However in the Black–Scholes model, one price is
not fully determined by the other due to independent log increments. We can conclude that comonotonicity cannot hold
in this particular stock price model: there is an inconsistency between the Black–Scholes model and the comonotonicity
assumption of S (ti) and S


tj

.

Let us continue with the assumptions above that

S(ti), S


tj


is comonotonic and FS(t) is continuous for all t > 0.
In addition we assume that the martingale property holds. Then from Lemma 8 and Theorem 9 we conclude that
comonotonicity of the vector


S(ti), S


tj


can only co-existwith themartingale property if the linear relationship (47) holds.
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Clearly, in the Black–Scholes model the martingale property holds but (47) is not valid, implying that the vector
S(ti), S


tj


cannot be strictly comonotonic. The conflict between comonotonicity and the Black–Scholes model is then
due to the continuity of the cdf’s FS(t).

From here on, we relax the condition that the cdf’s FS(t) are continuous and only assume that the vector

S(ti), S


tj


is
strictly comonotonic and that the martingale property holds.

By applying Theorem 9, we derive a relation similar to the relationship (47) but now between the cdf’s of S(ti) and S

tj

:

FS(ti) (s) = FS(tj)

ser(tj−ti)


.

Using expression (12), this relation can be rewritten as

F
−1(αi,j)
S(tj)


FS(ti) (s)


= ser(tj−ti), (48)

for some αi,j ∈ [0, 1].
In the next theorem, we prove that under the assumptions of Theorem 9, namely strict comonotonicity of


S

t1

, . . . ,

S

tn


and themartingale property, optionswithmaturity tj can be determinedusing the option curvewithmaturity ti, i ≠ j.
The price of a European call option on the stock S, with strike K and maturity T is denoted by C [K , T ].

Theorem 11. Let us denote S = (S(t1), . . . , S (tn)) with S (ti) being the price of the underlying asset at time ti, i = 1, 2, . . . , n
with t1 < t2 < · · · < tn. If S is a strictly comonotonic vector and the martingale property holds, then

C

K , tj


= C


e−r(tj−ti)K , ti


, i, j = 1, 2, . . . , n. (49)

Proof. If S is a strictly comonotonic vector, then we find that for any i ≠ j,

S(ti), S


tj


is also strictly comonotonic.
Take any i ∈ {1, 2, . . . , n}. Then by the martingale property we can invoke relation (47) of Theorem 9 leading to the

following equalities for any i ≠ j and any K :

C[K , tj] = e−rtjE


S(tj) − K

+


(47)
= e−rtjE


S(ti)er(tj−ti) − K


+


= e−rtiE


S(ti) − e−r(tj−ti)K


+


= C[e−r(tj−ti)K , ti],

which proves the result. �

Relation (49) puts a restriction on the option price surface, which for given pricesmay not be satisfied in practice. In these
situations, we have to conclude that S cannot be a comonotonic vector.

In case the vector S is strictly comonotonic and the martingale property holds, we can use (47) of Theorem 9 to write the
price of an Asian option with maturity T and strike K as follows, and for any i ∈ {1, 2, . . . , n}:

e−rTE


1
n

n
k=1

S(tk) − K


+


=

e−rT

n
E


S(ti)

n
k=1

er(tk−ti) − nK


+


,

which results in

e−rTE


1
n

n
k=1

S(tk) − K


+


=

e−rT

n
ciE


S(ti) −
nK
ci


+


,

where ci =
n

k=1 e
r(tk−ti). So we find that the price of an Asian option in an arbitrage-free market can be calculated in this

strictly comonotonic setting by using only the price of a European call option which expires at ti. The behavior of the asset
S at time ti determines the behavior of the asset S at the other time points j ≠ i.

Note that in [23] it is already shown that in case the vector S = (S(t1), . . . , S (tn)) has continuous marginals, comono-
tonicity of S together with the martingale property implies that (48) must hold with αi,j = 1. In Theorem 9 we derived a
linear relationship which has to hold and this is stronger than the conclusion regarding cdf’s. Additionally Theorem 9 only
requires that


S(ti), S


tj


is strictly comonotonic and hence compared to the conclusion in [23], no continuity of FS(t) is re-
quired.We further notice that Albrecher et al. [23] derived relation (49) in anotherway for the situationwhere themarginals
S(ti) have continuous cdf’s.
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4.3. Discussion

For basket options, the pay-off is determined by the weighted sum of several underlying assets prices at maturity time
T . As it is shown in Section 4.1, for the case with several underlying assets, there is a contradiction between the martingale
property and the comonotonicity property at each time point t = 0, 1, 2, . . . , T . However, when we study the comono-
tonicity property for the underlying assets of basket options, we do not require that S2(t) = f (S1(t)) for an increasing and
strictly convex function f . Instead, only comonotonicity of (S1(t), S2(t)) is assumed. So we cannot conclude from Section 4.1
that there is a contradiction between the comonotonicity property and the martingale property for the basket options case
and a further study is needed.

For Asian options, the pay-off is determinedby theweighted sumof the underlying price over somepre-set period of time.
According to Section 4.2,when there is only one underlying asset, we know that the co-existence of the strict comonotonicity
property and themartingale property implies the linear relationship (47) of Theorem9and the restriction (49) of Theorem11
on the European call option price surface. However, it is also possible that there is a contradiction between them, as e.g. in
the Black–Scholes model. When the comonotonicity property contradicts themartingale property, comonotonic underlying
random variables are impossible in the market. In this case, the price of the optimal static super-replicating strategies as an
upper bound may not be reached by the Asian option price, since it can only be reached by the Asian option price when the
underlying random variables are comonotonic.

5. Conclusion

In this paper, we investigated an optimization problem related to super-replicating strategies for European-type call
options written on a weighted sum S = w1X1 + · · · + wnXn of asset prices. Firstly, we proved that in general, the optimal
solution is non-unique. This observation is useful since it allows some flexibility to compose the optimal super-replicating
strategies in a real market situation, which often has some constraints in trading. Secondly, a generalized optimization
problem with random weights has been studied. Using these results, we derived optimal static super-replicating strategies
for different kind of options in a stochastic interest rate setting. Thirdly, the co-existence of the comonotonicity property
and the martingale property was studied. We have seen that in the case of a single underlying asset they can co-exist, for
instance as it was shown in Remark 10. However if the price vector of the underlying asset is strictly comonotonic, a linear
relationship of the underlying prices has to hold and therefore the comonotonicity property and themartingale property can
lead to a contradiction. So for Asian options e.g., the price of the optimal static super-replicating strategies may be strictly
larger than the Asian option price.

Acknowledgment

Jan Dhaene and Daniël Linders acknowledge the financial support of the Onderzoeksfonds KU Leuven (GOA/12/002/TBA
and GOA/13/002). Xin-liang Chen acknowledges the financial support of the Onderzoeksfonds KU Leuven (GOA/07) in his
Ph.D. period. Griselda Deelstra acknowledges support of the ARC grant IAPAS ‘‘Interaction between analysis, probability and
actuarial sciences’’, 2012–2017.

References

[1] X. Chen, G. Deelstra, J. Dhaene, M. Vanmaele, Static super-replicating strategies for a class of exotic options, Insurance Math. Econom. 42 (3) (2008)
1067–1085.

[2] S. Simon,M. Goovaerts, J. Dhaene, An easy computable upper bound for the price of an arithmetic Asian option, InsuranceMath. Econom. 26 (2) (2000)
175–183.

[3] J. Dhaene, M. Denuit, M. Goovaerts, R. Kaas, D. Vyncke, The concept of comonotonicity in actuarial science and finance: theory, Insurance Math.
Econom. 31 (1) (2002) 3–33.

[4] D. Hobson, P. Laurence, T. Wang, Static-arbitrage upper bounds for the prices of basket options, Quant. Finance 5 (4) (2005) 329–342.
[5] D. Linders, J. Dhaene, H. Hounnon,M. Vanmaele, Index options: amodel-free approach, Research Report AFI-1265 Feb., KU Leuven—Faculty of Business

and Economics, Leuven, 2012.
[6] K.C. Cheung, J. Dhaene, P. Rong, P.S.C. Yam, Explicit solutions for a general class of optimal allocation problems, Research Report AFI-1378 FEB, KU

Leuven, 2013.
[7] J. Dhaene, A. Tsanakas, E.A. Valdez, S. Vanduffel, Optimal capital allocation principles, J. Risk Insurance 79 (1) (2012) 1–28.
[8] Y. Zaks, E. Frostig, B. Levikson, Optimal pricing of a heterogeneous portfolio for a given risk level, ASTIN Bull. 36 (2006) 161–185.
[9] J. Dhaene, D. Linders, W. Schoutens, D. Vyncke, The herd behavior index: A new measure for the implied degree of co-movement in stock markets,

Insurance Math. Econom. 50 (3) (2012) 357–370.
[10] R.J. Laeven, M.J. Goovaerts, An optimization approach to the dynamic allocation of economic capital, Insurance Math. Econom. 35 (2) (2004) 299–319.
[11] J. Dhaene, A. Kukush, D. Linders, Comonotonic asset prices in arbitrage-free markets, Working Paper, Leuven: KU Leuven—Faculty of Business and

Economics, 2013.
[12] J. Dhaene, M. Denuit, M. Goovaerts, R. Kaas, D. Vyncke, The concept of comonotonicity in actuarial science and finance: applications, Insurance Math.

Econom. 31 (2) (2002) 133–161.
[13] G. Deelstra, J. Dhaene, M. Vanmaele, An overview of comonotonicity and its applications in finance and insurance, in: B. Oksendal, G. Nunno (Eds.),

Advanced Mathematical Methods for Finance, Springer, Berlin, Heidelberg, 2011, pp. 155–179.
[14] J. Dhaene, M. Goovaerts, R. Kaas, Economic capital allocation derived from risk measures, North Am. Actuar. J. 7 (2003) 44–59.
[15] J. Nielsen, K. Sandman, Pricing bounds on Asian options, Insurance Math. Econom. 38 (2) (2003) 51–90.
[16] C. Rao, Statistics and Truth: Putting Chance to Work, World Scientific, 1997.
[17] E. Furman, R. Zitikis, Weighted risk capital allocations, Insurance Math. Econom. 43 (2) (2008) 263–269.

http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref1
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref2
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref3
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref4
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref5
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref6
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref7
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref8
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref9
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref10
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref12
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref13
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref14
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref15
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref16
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref17


230 X. Chen et al. / Journal of Computational and Applied Mathematics 278 (2015) 213–230

[18] H. Geman, N.E. Karoui, J. Rochet, Change of numeraire, changes of probability measures and pricing of options, J. Appl. Probab. 32 (1995) 443–458.
[19] J. Dhaene, A. Kukush, Comonotonic modification of random vector in its own probability space, Research Report AFI-1151, FEB, KU Leuven, 2011.
[20] M. Vanmaele, G. Deelstra, J. Liinev, J. Dhaene, M. Goovaerts, Bounds for the price of discrete arithmetic Asian options, J. Comput. Appl. Math. 185 (1)

(2006) 51–90.
[21] A. Weber, U. Wystup, Pricing formulae for foreign exchange options bibtex, in: Encyclopedia of Quantitative Finance, Wiley, 2009.
[22] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modeling, second ed., Springer-Verlag, Berlin, 2005.
[23] H. Albrecher, P.A. Mayer, W. Schoutens, General lower bounds for arithmetic Asian option prices, Appl. Math. Finance 15 (2) (2008) 123–149.

http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref18
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref19
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref20
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref21
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref22
http://refhub.elsevier.com/S0377-0427(14)00441-5/sbref23

	On an optimization problem related to static super-replicating strategies
	Introduction
	Static super-replicating strategies
	The optimization problem

	(Non-)uniqueness of the optimal solution
	Basic ideas and the infinite market case
	The finite market case

	A generalized constrained minimization problem
	Derivation of the optimal solution
	Application to a stochastic interest rate setting
	Interest rate process and zero-coupon bond
	Basket option case
	Asian option case
	Floating strike Asian option
	Option struck in foreign currency


	Is the optimal solution consistent with no-arbitrage?
	Several underlying assets
	A single underlying asset
	Some definitions
	(Strict) comonotonicity and martingale property
	The Black--Scholes model and option price curve

	Discussion

	Conclusion
	Acknowledgment
	References


