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University of Bielefeld, Bielefeld D-33615, Germany

Abstract

In this paper, a stochastic linear theta (SLT) method is introduced and analyzed for
neutral stochastic differential delay equations (NSDDEs). We give some conditions on
neutral item, drift and diffusion coefficients, which admit that the diffusion coefficient
can be highly nonlinear and does not necessarily satisfy a linear growth or global
Lipschitz condition. It is proved that, for all positive stepsizes, the SLT method with
θ ∈ [12 , 1] is asymptotically mean stable and so is θ ∈ [0, 1

2) under a stronger assumption.
Furthermore, we consider the split-step theta (SST) method and obtain a similar but
better result. That is, the SST method with θ ∈ [12 , 1] is exponentially mean stable
and so is θ ∈ [0, 1

2). Finally, two numerical examples are given to show the efficiency of
the obtained results.

Key Words: Neutral stochastic differential delay equation; mean square stability; expo-
nential stability; stochastic linear theta method; split-step theta method.

1 Introduction

As is well known, there has appeared a large number of works on neutral stochastic
differential delay equations (NSDDEs) (see [1–5]) since they have been widely applied to
many fields such as economics, finance, physics, biology, medicine, and other science. The
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CHN/1163390), the National Natural Science Foundation of China (61374080), the Priority Academic Pro-
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stability issue of NSDDEs is one of the most important problems in their research field.
Recently, various stability theorems of stochastic differential systems, for example, moment
stability (M-stability, see [6, 7]) and almost sure stability (or the trajectory stability (T-
stability), see [8]), have been reputed in the literature. Some of the stability criteria related
neutral stochastic functional differential equations (NSFDEs) were considered in [2, 4, 5, 9–
12] and the references therein. On the other hand, many NSDDEs may not have explicit
solutions. Therefore, it seems to be interesting and necessary to study the numerical solutions
of NSDDEs (see [13–18]). However, there has been very few works to consider the theta
methods on NSDDEs, despite its practical importance and more extensive.

Luckily, there have appeared some results on the numerical solutions about theta methods
of stochastic ordinary differential equations (SODEs). Stochastic linear theta (SLT) method
is the simplest method, and it has been widely used in the literature. For example, the
mean square stability of the SLT method was investigated in [8,19–22] for linear SODEs and
in [23] for nonlinear SODEs. For stochastic differential delay equations (SDDEs), Huang [24]
investigated the exponential mean square stability of SLT method and so was Mao in [31].
Zong et al. in [32] proved that the SLT method can inherit the exponential mean square
stability of the exact solution for SODEs and SDDEs. Besides, Huang also introduced
another theta method called the split-step theta (SST) method in [33]. For the special
case of θ = 0, this approximation is EM approximation, and for the case of θ = 1, this
approximation is equivalent to the split-step backward Euler (SSBE) method. Both for
SLT and SST methods, Huang in [32] revealed that the linear growth condition on the drift
coefficient is necessary with θ ∈ [0, 1

2
) to be mean square stable, but for θ ∈ [1

2
, 1], two

methods can reproduce the exponential mean square stability without the linear growth
condition. Also, Liu et al. [34] studied the mean-square stability of the stochastic theta
method for linear scalar model equations. Baker and Buckwar [35] analyzed the exponential
stability in p-th moment of the stochastic theta method by using the Halanay inequality.
Wang and Gan [36] investigated the mean-square exponential stability of a split-step Euler
method. However, all of the above results are derived from SDDEs in which the diffusion
coefficient need to satisfy a linear growth or global Lipschitz condition. Moreover, these
results ignored the effect of the neutral term, which often yields much difficulty.

Motivated by the above discussion, in this paper, we study the stability of numerical
methods for NSDDEs under some conditions on the drift coefficient, diffusion coefficient and
neutral term. These conditions admit that the diffusion coefficient is highly nonlinear, and
it does not necessarily satisfy the linear growth or global Lipschitz condition. To the best of
our knowledge, there is only one paper [37] studying the stability of SST and SLT methods
for NSDDES. However, in this paper we propose some weaker assumptions on the drift and
diffusion coefficients than those in [37]. Indeed, we do not require the condition that f
and g need to satisfy the global Lipschitz condition. Moreover, the SLT and SST methods
presented in this paper generalize and improve those given in [37]. In the paper, we prove
that, for all positive stepsizes, the SLT method with θ ∈ [1

2
, 1] is asymptotically mean square

stable and so is θ ∈ [0, 1
2
) under a stronger assumption. Furthermore, we also establish the

SST method method with θ ∈ [1
2
, 1] is exponentially mean stable and so is θ ∈ [0, 1

2
). Hence,
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we can see that the SST method has a better exponential stability property than the SLT
method.

The rest of the paper is arranged as follows. In Section 2, we introduce some notations,
assumptions and preliminary lemmas. In Section 3, we use the SLT method to discuss the
mean square stability of numerical solutions to NSDDEs. In Section 4, we use the SST
method to investigate the mean square stability of numerical solutions to NSDDEs. After
some numerical examples are provided to illustrate the obtained results in Section 5, we
conclude the paper with some general remarks in Section 6.

2 Notations, assumptions and lemmas

Throughout this paper, we use the following notations. If A is a vector or matrix, its
transpose is denoted by AT . Let |·| denote both the Euclidean norm in Rn and the trace norm
in Rn×d(denoted by |A| =

√
trace(AT A)). Let (Ω,F , {Ft}t≥0, P) be a complete probability

space with a filtration {Ft}t≥0 satisfying the usual conditions, that is, it is right continuous
and increasing while F0 contains all P-null sets. Let {w(t), t ≥ 0} be a d-dimensional
Brownian motion defined on the probability space.

Let D : Rn 7−→ Rn, f : Rn × Rn 7−→ Rn, g : Rn × Rn 7−→ Rn×d be Borel measurable
functions. Let us consider the following neutral stochastic differential delay equation

d[y(t)−D(y(t− τ))] = f(y(t), y(t− τ))dt + g(y(t), y(t− τ))dw(t), t > 0, (2.1)

with initial data y(t) = Φ(t) ∈ C([−τ, 0]; Rn) satisfying

sup
−τ≤t≤0

E[ΦT (t)Φ(t)] < +∞. (2.2)

For the purpose of stability, assume that D(0) = f(0, 0) = 0, g(0, 0) = 0. This implies that
system (2.1) admits a trivial solution.

There exist many numerical schemes for stochastic differential equations in the literature.
If an appropriate interpolation procedure for the delay argument is employed, these schemes
can be adapted to solve NSDDEs. An adaptation of the classic stochastic theta method to
system (2.1) leads to

yn+1 = yn + D(ȳn+1)−D(ȳn)

+ θ∆f(yn+1, ȳn+1) + (1− θ)∆f(yn, ȳn) + g(yn, ȳn)∆wn,
(2.3)

where ∆ > 0 is the time stepsize, yn is an approximation to y(tn), θ ∈ [0, 1] is a fixed
parameter, ∆wn = w(tn+1)−w(tn), and ȳn denotes an approximation to the delay argument
y(tn − τ).

For an arbitrarily fixed time stepsize ∆, there exist a unique positive integer m and a
real number δ ∈ [0, 1) such that τ = (m− δ)∆. This implies that y(tn − τ) = y(tn−m + δ∆).
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Therefore, it is natural to define yn by the linear interpolation

ȳn = δyn−m+1 + (1− δ)yn−m, (2.4)

where ȳn = Φ(tn) for n ≤ 0.

In order to distinguish this method and another method with parameter θ below, we will
refer to (2.3) as the stochastic linear theta (SLT) method following the notation in [33]. An
adaptation of the split-step theta (SST) method in [33] to system (2.1) leads to

Yn = yn −D(ȳn) + D(Ȳn) + θ∆f(Yn, Ȳn), (2.5)

ȳn = yn−m, Ȳn = δYn−m+1 + (1− δ)Yn−m, (2.6)

yn+1 = yn −D(ȳn) + D(ȳn+1) + ∆f(Yn, Ȳn) + g(Yn, Ȳn)∆wn. (2.7)

Here we use the equi-stage linear interpolation technique [25] to approximate the delay
argument. In the case of deterministic delay equations (i.e., g = 0) , it is known that this
interpolation can lead to some desirable linear and nonlinear stability properties (see [25]
and [26]). We naturally hope that it will have a good performance for stochastic equations.

In the special case of θ = 1, this method is equivalent to the split-step backward Euler
method, which was firstly proposed for stochastic ordinary differential equations in [27]. We
also mention that there exist some other types of split methods with the parameter θ in the
literature ( [28], [29], [30]). The reason why we consider scheme (2.5)-(2.7) is that we can
establish some useful stability results for it. In particular, this scheme possesses a better
exponential mean square stability property than the classic SLT method.

Then, let us give some stability concepts for numerical methods.

Definition 2.1. For a given stepsize ∆, a numerical method is said to be exponentially stable
in mean square if there is a pair of positive constants γ and C such that for any initial data
Φ(t), the numerical solution yn produced by the method satisfies

E[yT
n yn] ≤ Ce−γtn · sup

−τ≤t≤0
[ΦT (t)Φ(t)],∀n ≥ 0.

Definition 2.2. For a given stepsize ∆, a numerical method is said to be asymptotically
stable in mean square if for any initial data Φ(t), the numerical solution yn produced by the
method satisfies

lim
n→∞

E[yT
n yn] = 0.

To discuss the stability of numerical methods, we need to impose the following necessary
assumptions on system (2.1).
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Assumption 1. There exists a symmetric and positive definite n × n matrix Q such
that

D(v)T QD(v) ≤ γ̃vT Qv, (2.8)

where γ̃ ∈ (0, 1).

Assumption 2. There exist a symmetric, positive definite n × n matrix Q and two
positive constants K1 and K2 such that

fT (u, v)Qf(u, v) ≤ K1u
T Qu + K2v

T Qv, (u, v) ∈ Rd × Rd. (2.9)

The following two lemmas will play an important role in this paper.

Lemma 2.3. ( [3]) Assume that there exist a symmetric, positive definite n × n matrix Q
and two constants α̃ and two β̃ such that for all (u, v) ∈ Rd × Rd,

(u−D(v))T Qf(u, v) +
1

2
trace[gT (u, v)Qg(u, v)] ≤ α̃uT Qu + β̃vT Qv, (2.10)

with α̃ + β̃ < 0, then the trivial solution of system (2.1) is exponentially mean square stable.

Lemma 2.4. ( [3]) Condition (2.10) implies β̃ ≥ 0.

In the following sections, we will employ these lemmas and assumptions to establish the
mean square stability theorem for SLT approximation and SST approximation, respectively.

3 Stability analysis of the SLT approximation

Let us firstly investigate the stability of SLT approximation {yn}n≥0.

Theorem 3.1. Assume that system (2.1) satisfies (2.10) with α̃ + β̃ < 0.

(1) Then the SLT method (2.3)-(2.4) with θ ∈ [1
2
, 1] is asymptotically mean square stable

for all ∆ > 0.

(2) If system (2.1) satisfies (2.9), then for any θ ∈ [0, 1
2
), there exists a constant ∆t0

depending on θ such that the SLT method is asymptotically mean square stable for ∆ ∈
(0, ∆t0).

Proof. It follows from (2.3) and a direct computation that

(zn+1 − θ∆f(yn+1, ȳn+1))
T Q(zn+1 − θ∆f(yn+1, ȳn+1))

= (zn + (1− θ)∆f(yn, ȳn) + g(yn, ȳn)∆wn)T Q(zn + (1− θ)∆f(yn, ȳn) + g(yn, ȳn)∆wn)

= (zn − θ∆f(yn, ȳn))T Q(zn − θ∆f(yn, ȳn)) + (1− 2θ)∆2fT (yn, ȳn)Qf(yn, ȳn)

+ 2∆zT
n Qf(yn, ȳn) + ∆wT

n gT (yn, ȳn)Qg(yn, ȳn)∆wn

+ 2∆wT
n gT (yn, ȳn)Q(zn + (1− θ)∆f(yn, ȳn)),

(3.1)
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where zn = yn −D(ȳn).

Since w(t) is a standard d-dimensional Brownian motion, we have

∆wn = w(n + 1)− w(n) ∼ N(0, ∆Id),

where Id is the identity matrix. Noting that gT (yn, ȳn)Qg(yn, ȳn) is independent of ∆wn, we
obtain

E[∆wT
n gT (yn, ȳn)Qg(yn, ȳn)∆wn] = ∆E[trace(gT (yn, ȳn)Qg(yn, ȳn))].

Taking expectation on both sides of (3.1), we get

ũn+1 : = E[(zn+1 − θ∆f(yn+1, ȳn+1))
T Q(zn+1 − θ∆f(yn+1, ȳn+1))]

= ũn + (1− 2θ)∆2EfT (yn, ȳn)Qf(yn, ȳn)

+ 2∆E[zT
n Qf(yn, ȳn) +

1

2
trace(gT (yn, ȳn)Qg(yn, ȳn))].

Using (2.10), we have

ũn+1 ≤ ũn + (1− 2θ)∆2E[fT (yn, ȳn)Qf(yn, ȳn)]

+ 2∆E[α̃yT
n Qyn + β̃ȳT

n Qȳn]

≤ ũ0 + (1− 2θ)∆2

n∑

j=0

E[fT (yj, ȳj)Qf(yj, ȳj)]

+ 2∆
n∑

j=0

E[α̃yT
j Qyj + β̃ȳT

j Qȳj].

(3.2)

Then, it follows from (2.4) that

ȳj
T Qȳj ≤ δyT

j−m+1Qyj−m+1 + (1− δ)yT
j−mQyj−m,

which gives

n∑

j=0

ȳj
T Qȳj ≤

n−m+1∑

j=−m+1

yT
j Qyj + (1− δ)yT

−mQy−m. (3.3)
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Besides, due to n−m + 1 ≤ n and δ ∈ [0, 1), we have

n−m+1∑

j=−m+1

yT
j Qyj + (1− δ)yT

−mQy−m

=
−1∑

j=−m+1

yT
j Qyj +

n−m+1∑

j=0

yT
j Qyj + (1− δ)yT

−mQy−m

≤
−1∑

j=−m+1

yT
j Qyj +

n∑

j=0

yT
j Qyj + (1− δ) max

−m≤j≤−1
yT

j Qyj

≤
n∑

j=0

yT
j Qyj + (m− δ) max

−m≤j≤−1
yT

j Qyj.

Since (2.10) implies β̃ ≥ 0, substituting (3.3) into (3.2) yields

2∆
n∑

j=0

E[α̃yT
j Qyj + β̃ȳT

j Qȳj]

= 2∆α̃
n∑

j=0

E[yT
j Qyj] + 2∆β̃

n∑

j=0

E[ȳT
j Qȳj]

≤ 2∆α̃

n∑

j=0

E[yT
j Qyj] + 2∆β̃E[

n−m+1∑

j=−m+1

yT
j Qyj + (1− δ)yT

−mQy−m]

≤ 2∆(α̃ + β̃)
n∑

j=0

E(yT
j Qyj) + 2∆β̃(m− δ) max

−m≤j≤−1
E(yT

j Qyj)

= 2∆(α̃ + β̃)
n∑

j=0

E(yT
j Qyj) + 2β̃τ max

−m≤j≤−1
E(yT

j Qyj),

where the last equality follows from the fact (m− δ)∆ = τ . Therefore,

ũn+1 ≤ ũ0 + (1− 2θ)∆2

n∑

j=0

E[fT (yj, ȳj)Qf(yj, ȳj)] + 2∆(α̃ + β̃)
n∑

j=0

E(yT
j Qyj)

+ 2β̃τ max
−m≤j≤−1

E(yT
j Qyj).

(3.4)

We now prove part (1). Noting that θ ∈ [1
2
, 1] and α̃ + β̃ < 0, it follows from (3.4) that

n∑

j=0

E(yT
j Qyj) ≤

ũ0

−2∆(α̃ + β̃)
+

β̃τ max
−m≤j≤−1

E(yT
j Qyj)

−∆(α̃ + β̃)
. (3.5)
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By (3.5), we see that
∞∑

j=0

E(yT
j Qyj) < ∞. So we have lim

n→∞
E[yT

n Qyn] = 0, which implies that

the scheme is asymptotically mean square stable for all ∆ > 0.

Next, we will prove part (2). In fact, it follows condition (2.9) and θ ∈ [0, 1
2
) that

n∑

j=0

E[fT (yj, ȳj)Qf(yj, ȳj)]

≤ K1

n∑

j=0

E[yT
j Qyj] + K2

n∑

j=0

E[ȳT
j Qȳj]

≤ K1

n∑

j=0

E[yT
j Qyj] + K2(

n−m+1∑

j=−m+1

yT
j Qyj + (1− δ)yT

−mQy−m)

≤ (K1 + K2)
n∑

j=0

E[yT
j Qyj] + K2(m− δ) max

−m≤j≤−1
E(yT

j Qyj),

which together with (3.4) gives

ũn+1 ≤ ũ0 + (1− 2θ)∆2Σn
j=0E[(K1 + K2)

n∑

j=0

E[yT
j Qyj] + K2(m− δ) max

−m≤j≤−1
E(yT

j Qyj)]

+ 2∆(α̃ + β̃)
n∑

j=0

E(yT
j Qyj) + 2β̃τ max

−m≤j≤−1
E(yT

j Qyj)

≤ ũ0 + ∆[(1− 2θ)(K1 + K2)∆ + 2(α̃ + β̃)]
n∑

j=0

E(yT
j Qyj)

+ [2β̃τ + (1− 2θ)∆2K2(m− δ) max
−m≤j≤−1

E(yT
j Qyj)].

Setting ∆t0 = −2(α̃+β̃)
(1−2θ)(K1+K2)

, we have that ∆[(1 − 2θ)(K1 + K2)∆ + 2(α̃ + β̃)] < 0 for any

∆ ∈ (0, ∆t0). Similar to the proof of (3.5) in part (1), we obtain

n∑

j=0

E(yT
j Qyj) ≤

ũ0

−∆[(1− 2θ)(K1 + K2)∆ + 2(α̃ + β̃)]

+
2β̃τ + (1− 2θ)∆2K2(m− δ) max−m≤j≤−1 E(yT

j Qyj)

−∆[(1− 2θ)(K1 + K2)∆ + 2(α̃ + β̃)]
.

(3.6)

By (3.6), we see that
∞∑

j=0

E(yT
j Qyj) < ∞. So we have lim

n→∞
E[yT

n Qyn] = 0, which implies that

the scheme is asymptotically mean square stable for any ∆ ∈ (0, ∆t0). This completes the
proof of Theorem 3.1.
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Remark 3.2. In Theorem 3.1, we introduce a symmetric and positive definite n× n matrix
Q to discuss the SLT method of n-dimensional NSDDEs. Letting Q = I, then our result can
be reduced to the case of one-dimensional NSDDEs, which was studied in [37]. Therefore,
Theorem 3.1 generalizes and improves that given in [37].

Remark 3.3. It is clear that (2.3) and (2.4) can be reduced to (2.9) in [37] when δ = 0.
Hence, our SLT method is more general than that given in [37].

Remark 3.4. Indeed, the SLT method includes the EM method (θ = 0), the trapezoidal
method (θ = 1

2
) and the BEM method (θ = 1).

4 Stability analysis of the SST approximation

In this section, we will study the stability of SST approximation {yn}n≥0.

Theorem 4.1. Assume that system (2.1) satisfies (2.10) with α̃ + β̃ < 0.

(1) Then the SST method (2.5)-(2.7) with θ ∈ [1
2
, 1] is exponentially mean square stable

for all ∆ > 0.

(2) If system (2.1) satisfies (2.9), then for any θ ∈ (0, 1
2
], there exists a constant ∆t0

depending on θ such that the SST method is exponentially mean square stable for ∆ ∈
(0, ∆t0).

Proof. By (2.7), we have

zT
n+1Qzn+1 = (zn + ∆f(Yn, Ȳn) + g(Yn, Ȳn)∆wn)T Q(zn + ∆f(Yn, Ȳn) + g(Yn, Ȳn)∆wn)

= zT
n Qzn + ∆2fT (Yn, Ȳn)Qf(Yn, Ȳn) + ∆wT

n gT (Yn, Ȳn)Qg(Yn, Ȳn)∆wn

+ 2∆zT
n Qf(Yn, Ȳn) + 2zT

n Qg(Yn, Ȳn)∆wn + 2∆fT (Yn, Ȳn)g(Yn, Ȳn)∆wn,

where zn = yn − D(ȳn). Taking expectation on both sides of the above equality, it follows
from (2.5) that

E(zT
n+1Qzn+1) = E(zT

n Qzn) + (1− 2θ)∆2E(fT (Yn, Ȳn)Qf(Yn, Ȳn))+

+ 2∆E(cT
nQf(Yn, Ȳn)) + ∆E(trace(gT (Yn, Ȳn)Qg(Yn, Ȳn)),

where cn = zn + θf(Yn, Ȳn)∆ = Yn −D(Ȳn). Using (2.10), we obtain

E(zT
n+1Qzn+1) ≤ E(zT

n Qzn) + 2∆E(α̃Y T
n QYn + β̃Ȳ T

n Qβ̃Ȳn)

+ (1− 2θ)∆2E(fT (Yn, Ȳn)Qf(Yn, Ȳn)).
(4.1)

We first prove part (1). Noting that θ ∈ [1
2
, 1],

E(zT
n+1Qzn+1) ≤ E(zT

n Qzn) + 2∆E(α̃Y T
n QYn + β̃Ȳ T

n Qβ̃Ȳn).
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By (2.6), we get

Ȳj
T
QȲj ≤ δY T

j−m+1QYj−m+1 + (1− δ)Y T
j−mQYj−m,

which gives

n∑

j=0

Ȳj
T
QȲj ≤

n−m+1∑

j=−m+1

Y T
j QYj + (1− δ)Y T

−mQY−m.

Besides, due to n−m + 1 ≤ n and δ ∈ [0, 1), we have

n−m+1∑

j=−m+1

Y T
j QYj + (1− δ)Y T

−mQY−m

=
−1∑

j=−m+1

Y T
j QYj +

n−m+1∑

j=0

Y T
j QYj + (1− δ)Y T

−mQY−m

≤
−1∑

j=−m+1

Y T
j QYj +

n∑

j=0

Y T
j QYj + (1− δ) max

−m≤j≤−1
Y T

j QYj

≤
n∑

j=0

Y T
j QYj + (m− δ) max

−m≤j≤−1
Y T

j QYj.

Therefore,

E(zT
n+1Qzn+1) ≤ E(zT

n Qzn) + 2∆α̃E(Y T
n QYn) + 2∆β̃E(Ȳ T

n QȲn)

≤ E(zT
0 Qz0) + 2∆α̃

n∑

j=0

E[Y T
j QYj] + 2∆β̃E[

n−m+1∑

j=−m+1

Y T
j QYj + (1− δ)Y T

−mQY−m]

≤ E(zT
0 Qz0) + 2∆(α̃ + β̃)

n∑

j=0

E(Y T
j QYj) + 2∆β̃(m− δ) max

−m≤j≤−1
E(Y T

j QYj)

= E(zT
0 Qz0) + 2∆(α̃ + β̃)

n∑

j=0

E(Y T
j QYj) + 2β̃τ · max

−m≤j≤−1
E(Y T

j QYj).

Noting that α̃ + β̃ < 0, we have E(zT
n+1Qzn+1) ≤ C(Φ), where C(Φ) is a function of initial

value. Since zi = yi −D(ȳi), then it follows from the condition (2.8) and the definition of ȳi

that for any ϵ > 0 and 0 ≤ i ≤ k,

E(yT
i Qyi) = E(zi + D(ȳi))

T Q(zi + D(ȳi))

≤ (1 + ϵ)E(zT
i Qzi) + (1 +

1

ϵ
)E[D(ȳi)

T QD(ȳi)]

≤ (1 + ϵ)C(Φ) + (1 +
1

ϵ
)γ̃E(ȳT

i−mQȳi−m)

≤ (1 + ϵ)C(Φ) + (1 +
1

ϵ
)γ̃ sup

−m≤j≤k
E(yT

j Qyj).
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Obviously, this inequality also holds for all −m ≤ i ≤ 0. Thus, we have,

sup
−m≤j≤k

E(yT
j Qyj) ≤ (1 + ϵ)C(Φ) + (1 +

1

ϵ
)γ̃ sup

−m≤j≤k
E(yT

j Qyj),

and so

sup
−m≤j≤k

E(yT
j Qyj) ≤

1 + ϵ

1− (1 + 1
ϵ
)γ̄

C(Φ),

when we choose ϵ > γ̄
1−γ̄

, which means E(yT
k Qyk) ≤ 1+ϵ

1−(1+ 1
ϵ
)γ̄

C(Φ). We immediately know

that the scheme is exponentially mean square stable for all ∆ > 0.

Next, we will prove part (2). Noting that θ ∈ [0, 1
2
), it follows from (2.9) and (4.1) that

E(zT
n+1Qzn+1) ≤ E(zT

n Qzn) + 2∆E(α̃Y T
n QYn + β̃Ȳ T

n Qβ̃Ȳn)

+ (1− 2θ)∆2E(K1Y
T
n QYn + K2Ȳ

T
n QȲn)

= E(zT
n Qzn) + ∆[(1− 2θ)∆K1 + 2α̃]E(Y T

n QYn)

+ ∆[(1− 2θ)∆K2 + 2β̃]E(Ȳ T
n QȲn).

By (2.5), (2.8) and (2.9), we get

zT
n Qzn = (cn − θ∆f(Yn, Ȳn))T Q(cn − θ∆f(Yn, Ȳn))

= cT
nQcn − 2cT

nQ∆f(Yn, Ȳn) + (θ∆)2fT (Yn, Ȳn)Qf(Yn, Ȳn)

≤ (1 + θ∆)cT
nQcn + θ∆(1 + θ∆)fT (Yn, Ȳn)Qf(Yn, Ȳn)

≤ (1 + θ∆)cT
nQcn + θ∆(1 + θ∆)(K1Y

T
n QYn + K2ȲnQȲn)

≤ (1 + θ∆)(2 + K1θ∆)Y T
n QYn + (1 + θ∆)(2γ̃ + θ∆K2)ȲnQȲn.

Thus, we have
zT

n Qzn ≤ L1Y
T
n QYn + L2ȲnQȲn,

where L1 = (1 + θ∆)(2 + K1θ∆), L2 = (1 + θ∆)(2γ̃ + θ∆K2). Let

∆t0 =

{
+∞, θ = 1

2
,

−2(α̃+β̃)
(1−2θ)(K1+K2)

, θ ∈ [0, 1
2
).

Then for any fixed ∆ ∈ (0, ∆t0), we get

2(α̃ + β̃) + (1− 2θ)(K1 + K2) < 0,

and there exists a small positive number ε such that

2(α̃ + β̃) + (1− 2θ)(K1 + K2) +
L1 + L2

∆
ε < 0.

11



Hence, we obtain

E(zT
n+1Qzn+1) ≤ (1− ε)E(zT

n Qzn) + ∆[(1− 2θ)∆K1 + 2α̃ +
L1

∆
ε]E(Y T

n QYn)

+ ∆[(1− 2θ)∆K2 + 2β̃ +
L2

∆
ε]E(Ȳ T

n Qβ̃Ȳn)

≤ k̃n+1E(zT
0 Qz0) + ∆[(1− 2θ)∆K1 + 2α̃ +

L1

∆
ε]

n∑

j=0

k̃n−jE(Y T
j QYj)

+ ∆[(1− 2θ)∆K2 + 2β̃ +
L2

∆
ε]

n∑

j=0

k̃n−jE(Ȳ T
j Qβ̃Ȳj)

≤ k̃n+1E(zT
0 Qz0) + ∆[(1− 2θ)∆K1 + 2α̃ +

L1

∆
ε]

n∑

j=0

k̃n−jE(Y T
j QYj)

+ ∆[(1− 2θ)∆K2 + 2β̃ +
L2

∆
ε][k̃−m

n−m+1∑

j=0

k̃n−jE(Ȳ T
j QȲj)

+ (m− δ)k̃n−m+1 max
−m≤j≤−1

E(Y T
j QYj)]

≤ k̃n+1[E(zT
0 Qz0) + τ((1− 2θ)∆K2 + 2β̃ +

L2

∆
ε)k̃−m max

−m≤j≤−1
E(Y T

j QYj)]

+ ∆[(1− 2θ)∆K1 + 2α̃ +
L1

∆
ε + ((1− 2θ)∆K2

+ 2β̃ +
L2

∆
ε)k̃−m]

n−m+1∑

j=0

k̃n−jE(Ȳ T
j QȲj),

where k̃ = max

{
1− ε, (

(1−2θ)∆K2+2β̃+
L2
∆

ε

−((1−2θ)∆K1+2α̃+
L1
∆

ε)
)

1
m

}
. It is easy to prove 0 < k̃ < 1. Therefore,

we have

E(zT
n+1Qzn+1) ≤ k̃n+1[E(zT

0 Qz0) + L̃k̃−m max
−m≤j≤−1

E(Y T
j QYj)].

where L̃ = τ((1 − 2θ)∆K2 + 2β̃ + L2

∆
ε). Then, we have that E(zT

n+1Qzn+1) ≤ C
′
(Φ), where

C
′
(Φ) is a function of initial value. Hence, similar to the proof of part (1), we see that the

SST method is exponentially mean square for ∆ ∈ (0, ∆t0).

Remark 4.2. For the special case θ = 0, this approximation is actually the EM approxi-
mation, and for the case θ = 1, this approximation is the split-step backward Euler method,
which can be treated as an extension of the split-step backward Euler method for SODEs or
SDDEs in [23,36].

Remark 4.3. It is known that the exponential mean square stability implies the asymptotic
mean square stability and almost sure stability. Hence, under the condition of Theorem 4.1,
the SST method is also asymptotically mean square stable and almost sure stable. However,
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we can not prove that the SLT method is also exponentially mean square stable. Hence, the
SST method is better than the SLT method.

Remark 4.4. For Theorems 3.1 and 4.1, when D(y(t − τ)) = 0, NSDDEs can be reduced
to SDDEs. Besides, the mean square stability of theta methods was studied in [20, 21, 23]
without delays. Hence, Theorems 3.1 and 4.1 can be regarded as an extension of those results
in [20,21,23].

Remark 4.5. Let us consider the following general form of linear scalar equation

d[y(t)− a0y(t− τ)] = [a1y(t) + a2y(t− τ)]dt + [a3y(t) + a4y(t− τ)]dw(t), (4.2)

where ai ∈ R. Obviously, this equation satisfies condition (2.10) with

α̃ = a1 −
1

2
a0a1 +

1

2
a2

3 +
1

2
|a2 + a3a4|, β̃ =

1

2
a2

4 −
1

2
a0a1 − a0a2 +

1

2
|a2 + a3a4|. (4.3)

Hence, the equation is exponentially mean-square stable if

α̃ + β̃ = a1 − a0a1 − a0a2 +
1

2
(a2

3 + a2
4) + |a2 + a3a4| < 0. (4.4)

Also, the neutral term and drift coefficient satisfy condition (2.8) and (2.9) with γ̃ = a2
0,

K1 = 2a2
1 and K2 = 2a2

2. Set

∆t0 =

{
+∞, θ ∈ [1

2
, 1],

−(a1−a0a1−a0a2+ 1
2
(a2

3+a2
4)+|a2+a3a4|)

(1−2θ)(a2
1+a2

2)
, θ ∈ [0, 1

2
).

(4.5)

Then for any ∆ ∈ (0, ∆t0), the SLT method (2.3)-(2.4) applied to (4.2) is asymptotically
mean square stable and the SST method (2.5)-(2.7) applied to (4.2) is exponentially mean
square stable. In the case of linear equations, our above results are new. In fact, the tra-
ditional numerical stability analysis based on the model (4.2) usually needs the following
condition:

a1 − a0a1 − a0a2 + |a2|+
1

2
(|a3|+ |a4|)2 < 0. (4.6)

Obviously, this condition is stronger than the condition (4.4).

Remark 4.6. Another obvious difference between our result and the existing ones on the
stability of numerical methods is that our result can be applied to some equations in which
the diffusion coefficient is highly nonlinear.

5 Numerical examples

In this section, we present some numerical examples to illustrate our theoretical results.
First, we study the linear scalar equation in Example 5.1.
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Example 5.1. Consider the following linear NSDDE:

d[y(t) +
1

8
y(t− 1)] = [−16y(t)− 8y(t− 1)]dt + [2y(t) + 3y(t− 1)]dw(t), t > 0 (5.1)

with y(t) = 1, t ∈ [−1, 0].

By Remark 4.5, we can obtain a0 = −1
8
, a1 = −16, a2 = −8, a3 = 2, a4 = 3. It is easy

to compute that α̃ = −14, β̃ = 3.5 satisfying α̃ + β̃ = −10.5 < 0 but they do not satisfy
inequality (4.6) with a1 − a0a1 − a0a2 + |a2| + 1

2
(|a3| + |a4|)2 = 1.5 > 0. Hence, we see that

the SLT method with θ ∈ [1
2
, 1] is asymptotically mean stable for all ∆ and so is θ ∈ [0, 1

2
)

for ∆ ∈ (0, ∆t0). To show it more clearly, we give some remarks below.

Remark 5.2. Figures 1-5 are all for Example 5.1. Figure 1 reveals that when θ = 0.1, the
SLT method will tend to zero on ∆ = 0.1, but will not tend to zero on ∆ = 1. While θ = 0.6,
the SLT method will tend to zero not only on θ = 0.1, bue also tend to zero on ∆ = 1 in
Figure 2. The SST method have the same results in Figures 3 and 4.

Remark 5.3. More clearly, even when both of the two methods converge to zero, the SST
method converges to zero more quickly than the SLT method under the same θ and ∆, such
as θ = 0.6 and ∆ = 0.1. We show this fact in Figure 5.

Next, let us discuss an example of nonlinear equations.

Example 5.4. Consider the following nonlinear NSDDE:

d[y(t)− 1

6
sin y(t− 1)] = [−2y(t)− 2y5(t)− 1

3
sin y(t− 1)]dt

+
y2(t)

1 + y2(t− 1)
dw(t), t > 0.

(5.2)

y(t) = 1 when t ∈ [−1, 0].

It is easy to check that for any u, v ∈ R,

(u− 1

6
sin v)T Q(−2u− 2u5 − 1

3
sin v) +

1

2
trace[(

u2

1 + v2
)T Q

u2

1 + v2
]

≤ −2uT Qu− 2uT Qu5 +
1

3
sinT vQu5 +

1

18
sinT vQ sin v +

1

2
uT Qu

≤ −2uT Qu +
1

9
vT Qv +

1

2
uT Qu

= −3

2
uT Qu +

1

9
vT Qv.

Hence, we get α̃ = −3
2

and β̃ = 1
9

satisfying α̃ + β̃ = −25
18

< 0. Thus, we see that the
SLT method with θ ∈ [1

2
, 1] is asymptotically mean stable for all ∆ and so is θ ∈ [0, 1

2
) for

∆ ∈ (0, ∆t0).
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Remark 5.5. In Example 5.4, the figures are similar to those in Example 5.1, and we show
these figures in Figure 6-Figure 9.
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Figure 1: Numerical simulation of SLT method for different stepsizes with θ = 0.1.
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Figure 2: Numerical simulation of SLT method for different stepsizes with θ = 0.6.
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Figure 3: Numerical simulation of SST method for different stepsizes with θ = 0.1.
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Figure 4: Numerical simulation of SST method for different stepsizes with θ = 0.6.
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Figure 5: Compare SLT method with SST method with θ = 0.6 and ∆ = 0.1.
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Figure 6: Numerical simulation of SLT method for different stepsizes with θ = 0.1.
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Figure 7: Numerical simulation of SLT method for different stepsizes with θ = 0.6.
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Figure 8: Numerical simulation of SST method for different stepsizes with θ = 0.1.
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Figure 9: Numerical simulation of SST method for different stepsizes with θ = 0.6.

6 Conclusion

For most NSDDEs, we can not get their explicit solutions. Therefore, it is important to
develop some appropriate numerical schemes such as the Euler scheme even more general
method like theta method to study the properties of NSDDEs. In this paper, both the SLT
and SST methods are discussed. The main aim of this paper is to show that both the SLT
and SST methods are mean square stable under some reasonable conditions. Moreover, our
research reveals that the SST method has a stronger property than the SLT method.
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