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a b s t r a c t

In this article, we study the valuation of a European vulnerable power exchange option
in an intensity based framework. We assume that the default by the counter-party is the
time of the first jump of a doubly stochastic Poisson process whose intensity is modeled
by a jump–diffusion process. The dynamics of the two assets are assumed to be driven by
correlated jump–diffusion processes. All the three processes are assumed to be correlated
in continuous part as well as in the jump part. In the proposed framework, employing
the measure-change technique, we obtain the explicit formula for the price of the power
exchange option with counter-party risk. Furthermore, sensitivity analysis is given to
illustrate the effects of counterparty risk on the price of the option and effect of various
parameters on the option prices.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Over the counter (OTC)markets forma significant proportion of the financialmarkets. AlthoughOTCmarkets operatewith
hardly any rules and are less transparent unlike the organized exchanges, which allows better transaction enforcement and
stricter security, these markets still have experienced tremendous growth in recent years. Derivatives products are traded
actively in over-the-counter (OTC) markets by many financial institutions. Unlike the transactions on organized exchanges,
the transactions on OTC have a counterparty risk that the other party may not honor its contractual obligations and hence
these markets do not guaranty the promised payments between the two parties. Specifically, since the financial crisis, the
counterparty credit risk of derivative products has become one of the major concern of the investors.

For modeling the credit default risk, two categories of models exist in the literature namely firm value models (structural
models) and reduced form models (intensity-based models). Firm value models consider Merton (1976) [1] as the base
model, which gives a mechanism of default in terms of the relationship between the assets and the liabilities at maturity
time T . This basic model has further been extended by incorporating other factors like stochastic interest rates, default at
any time, etc. [2]. On the other hand, reduced-form models do not specify the actual mechanism of default but model the
default as a non-negative random variable with distribution depending on the economic co-variables. A detailed description
of well known reduced form models can be found in [3–5].

For pricing of vulnerable options, the pioneering work is by Johnson and Stulz (1987) [6]. They assumed that the option
is the only liability of the counterparty and also considered the correlation between the underlying asset and the assets of
the counterparty. Later, Jarrow and Turnbull [3] followed the reduced form approach of credit risk for pricing of vulnerable
options under the assumption that the underlying asset and the default intensity of the counterparty are independent. Since
then, the pricing problem of vulnerable options has been studied by many researchers [7–10]. More recently, Yoon and Kim
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(2015) [11] studied the pricing of vulnerable European options using doubleMellin transformswith the assumption that the
interest rates are stochastic. Jeon et al. (2016) [12] investigated the closed formula of the pricing of vulnerable geometric
Asian options. Jeon et al. (2017) [13] studied vulnerable path-dependent options using doubleMelling transforms.Wang et al.
(2017) [14] used stochastic volatility model to price vulnerable options. Wang et al. (2017) [15] considered the valuation of
the vulnerable American put options assuming that a jump–diffusion model governs the dynamics of the assets.

Power exchange options are the generalization of exchange options [16,17] and power options [18].Margrabe (1978) [17]
investigates the exchange options and their valuation. The exchange options are derivative products that allow the holder
of the option to exchange an asset for another on the maturity of the option. Fischer (1978) [16] also studies the valuation of
exchange options considering the scenario when the exercise price is the same as the price of an un-traded asset. Tompkins
(2000) [18] discusses power options and their applications to hedge nonlinear risks. Power options and exchange options
have many practical and useful applications.

Blenman and Clark (2005) [19], first time explored power exchange options as a generalization of exchange options and
power options. They obtained a closed form expression for the value of power exchange options assuming that geometric
Brownian motion governs the asset price dynamics. Wang (2016) [20] extended the work of Blenman and Clark (2005) [19]
and considered a model with correlated jump risk in order to price the power exchange options. He proposed a jump–
diffusion process with jump risk being divided into systematic and idiosyncratic components. He considered the correlation
between the assets using a common jump process and correlated Brownian motion. He obtained a closed form solution
for power exchange options. Li et al. (2018) [21] obtained the pricing formulas of exchange option using the change of
numeraire method. Wang et al. (2017) [22] studied the pricing of power exchange options with counter-party risk in a
structural framework of credit risk. They modeled the assets of counter-party risk as a jump–diffusion process and defined
default when the value of counter-party’s asset falls below a threshold.

In this article, we study the pricing of European power exchange options with counter-party risk following the idea of Su
and Wang (2012) [10] in an intensity based framework. We model the default of the counter-party as the time of the first
jump of a doubly stochastic Poisson process whose intensity process is modeled as a jump–diffusion process since many
unexpected and rare event may severely affect the intensity of default. The prices of the two assets are assumed to be driven
by correlated jump–diffusion processes. Also, we assume the recovery rate to be a constant, i.e., a pre-specified fraction of
the payoff will be paid at maturity if the counterparty defaults. Using the measure change technique, we obtain an explicit
formula for the price of the vulnerable European power exchange option. Moreover, the sensitivity analysis is also presented
to study the effect of various parameters in the proposed model on option prices.

Counter-party risk (credit risk) is the risk of the lender that may arise from a borrower not being able to meet its debt
obligations. One modeling challenge for pricing vulnerable options is the additional credit risk process, which complicates
the mathematical tractability of the models. Most of the models in the literature on the pricing of vulnerable options have
focussed on structural models of credit risk. However, due to the analytical tractability and ease of implementation and
calibration, the reduced form models are more popular among the practitioners. The main contribution of this article is the
reduced formmodeling of credit risk to obtain the price of power exchange options. To the best of our knowledge, this is the
first time that the reduced formmodel has been used tomodel the default in the context of the valuation of power exchange
options. Moreover, jumps have been considered in all the stochastic processes governing the dynamics of the assets as well
as the intensity of the default process.

The remainder of this paper is organized as follows. Section 2 presents the basic model setup. In Section 3, we give
the explicit pricing formula of vulnerable power exchange options. Section 4 gives the sensitivity analysis with respect to
different parameters in the proposed model. Section 5 concludes the paper.

2. Model setup

We begin with a finite time horizon T > 0. Assume that the filtered probability space (Ω,F,Q ,Ft∈[0,T ]) models the
uncertainty in the economy and E denotes the expectation with respect to the risk neutral measure Q .

Under the risk neutral measure Q , suppose the asset price dynamics for asset i, i = 1, 2 are given as

Si,t = Si,0 exp

⎧⎨⎩(r −
1
2
σ 2
i − k∗

i )t + σiWit + δi

Nt∑
k=1

Zk +

Ni,t∑
k=1

Zi,k

⎫⎬⎭ (1)

where r is the risk free interest rate, σi, i = 1, 2 are the volatilities of the underlying assets. W1t ,W2t are two correlated
Brownian motions with correlation coefficient ρ12. Let S1,0 > 0, S2,0 > 0 are initial asset prices. The common process
{Nt , t ≥ 0} that reflects the jumps growing out of systematic events such as financial crisis, which affects all the entities in
the financial system and is assumed to be a Poisson process with arrival rate ν. When the common jump arrives, the jump
size is controlled by Zk, k = 1, 2, . . ., which is normally distributed with mean µ and variance γ 2. We also assume that
{Zk, k = 1, 2, . . .} are independently and identically distributed. To capture the differences in the effects of common jump
components on asset price and default intensity, we use δi, i = 1, 2. When idiosyncratic jumps happen, the corresponding
jump size is assumed to be controlled by Zi,k, i = 1, 2 which is normally distributed with mean µi, i = 1, 2 and variance
γ 2
i , i = 1, 2 and with pdf fi(x), i = 1, 2. It is further assumed that B1t , B2t , Zk, Z1,k and Z2,k are mutually independent and

independent of all Poisson jumps.
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The term k∗ in the dynamics of the assets is the compensator such that the discounted asset price is a martingale under
Q , and is given by

k∗
= ν(eδ1µ+

1
2 δ21γ 2

− 1) + ν1(eµ1+
1
2 γ 2

1 − 1).

In this article, we are considering the reduced-form modeling approach of credit risk to model the default risk of the
counterparty. In line with the reduced form approach, here the default time of the writer of the option is modeled as a first
jump time of a doubly stochastic Poisson process (also known as Cox process) Mt with the intensity process λt . The default
time of the option writer is then given by

τ = inf{t ≥ 0 : Mt > 0}. (2)

We assume that the intensity process λt of Mt is modeled as a jump–diffusion process which is a combination of Brownian
motion and a jump process in the following form

dλt = k(θ − λt )dt + σ3dW3,t + δ3ZtdNt + Z3,udN3,t , (3)

where k, θ, σ3 are positive constants and δ3 capture the effects of common jump component on default intensity. W3t is
a standard Brownian motion. Let Z3,k are i.i.d and are normally distributed with mean µ3 and variance γ 2

3 and with pdf
f3(x). Hence, all the stochastic processes are exposed to common jump risk and affected by the common jump component.
Moreover, suppose that Nt , Zt are independent of B1t , B2t , B3t . Finally, let the covariance matrix of (W1t ,W2t ,W3t ) be given
by

cov(W1t ,W2t ,W3t ) =

( 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1

)
t.

3. Valuation of vulnerable power exchange options

In this section, we derive a closed form expression for the price of European power exchange option with credit risk. A
power exchange option is a European option to exchange the power value γ1S

β1
1 of one asset to the power value γ2S

β2
2 of

another asset.We assume γ1 = γ2 = 1.We assume that a constant fractionw (the recovery rate) of the payoff (of default-free
power exchange option) is paid at maturity if the writer of the option defaults. Let Fi,t = σ {Si,s : 0 ≤ s ≤ T }, i = 1, 2 and
Gt = σ {λs : 0 ≤ s ≤ T } and Ht = σ {I{τ≤s} : s ≤ t}. Let Ft = F1,t

⋃
F2,t

⋃
Gt
⋃

Ht and At = F1,T
⋃

F2,T
⋃

GT
⋃

Ht .
Further, let GT = {NT = n,N1T = n1,N2,T = n2}. Let C∗(0, T ) denote price of the vulnerable European power exchange
option at time 0 with maturity T . Therefore, by the risk neutral pricing theorem, C∗(0, T ) is given by

C∗(0, T ) = e−rTE[w(Sβ1
1,T − Sβ2

2,T )
+I{τ≤T } + (Sβ1

1,T − Sβ2
2,T )

+I{τ>T } | F0] (4)

= we−rTE[(Sβ1
1,T − Sβ2

2,T )
+

| F0] + (1 − w)e−rTE[(Sβ1
1,T − Sβ2

2,T )
+I{τ>T } | F0]

= we−rTE[(Sβ1
1,T − Sβ2

2,T )
+

| F0] + (1 − w)e−rTE[E[(Sβ1
1,T − Sβ2

2,T )
+I{τ>T } | A0] | F0]

= we−rTE[(Sβ1
1,T − Sβ2

2,T )
+

| F0] + (1 − w)e−rTE[(Sβ1
1,T − Sβ2

2,T )
+E[I{τ>T } | A0] | F0]

= we−rTE[(Sβ1
1,T − Sβ2

2,T )
+

| F0] + (1 − w)e−rT I{τ>0}E[e−
∫ T
0 λsds(Sβ1

1,T − Sβ2
2,T )

+
| F0]

= I1 + I2, (5)

where I1 and I2 are given by

I1 = we−rTE[(Sβ1
1,T − Sβ2

2,T )
+

| F0], (6)

I2 = (1 − w)e−rT I{τ>0}E[e−
∫ T
0 λsds(Sβ1

1,T − Sβ2
2,T )

+
| F0]. (7)

Now, we calculate I1 and I2 in the following propositions.

Proposition 3.1.

I2 = (1 − w)e−rT I{τ>0}X(0, T )Eλ(Sβ2
2T )

∞∑
n=0

∞∑
n1=0

∞∑
n2=0

Q̂ (GT )
[
eR1+

1
2 V1Φ(

R1 + V1
√
V1

) − Φ(
R1

√
V1

)
]

. (8)

where X(0, T ) is given in Eq. (11) and Eλ(Sβ2
2T ) is given in Eq. (18). Φ(·) is the CDF of a standard normal random variable.

R1 = ln(Sβ1
1,0) + β1Λ̃1,T − ln(Sβ2

2,0) − β2Λ̃2,T +

n∑
k=1

(β1δ1 − βδ2)µ̃ +

n1∑
k=1

β1µ̃1 −

n2∑
k=1

β2µ̃2

V1 = σ 2
1 β2

1T + σ 2
2 β2

2T − 2ρ12β1β2σ1σ2T + n(β1δ1 − β2δ2)2γ 2
+ n1β

2
1γ

2
1 + n2β

2
2γ

2
2 .
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Proof. To find I2, we need to calculate E[e−
∫ T
0 λsds(Sβ1

1,T − Sβ2
2,T )

+
| F0]. For this, we introduce a newmeasure Q λ equivalent to

Q by the Radon–Nikodým derivative

dQ λ

dQ
=

e−
∫ T
0 λsds

E[e−
∫ T
0 λsds]

. (9)

Using Fubini’s theorem in Eq. (3), we have

−

∫ T

0
λsds = −θT −

(λ0 − θ )
κ

[1 − e−κT
] −

∫ T

0

σ3

κ
[1 − e−κ(T−u)

]dW3u

−

∫ T

0

δ3Zu
κ

[1 − e−κ(T−u)
]dNu −

∫ T

0

Z3,u
κ

[1 − e−κ(T−u)
]dN3u. (10)

Let A(u, T , k) = [1 − e−k(T−u)
] and X(0, T ) = E[e−

∫ T
0 λsds | F0], then we have

X(0, T ) = exp{−θT −
(λ0 − θ )

κ
A(0, T , κ) +

1
2

∫ T

0

σ 2
3

κ2 A
2(u, T , κ)du +

+ ν

∫ T

0

∫
∞

−∞

[e−
δ3A(u,T ,κ)

κ x
− 1]f (x)dxdu + ν3

∫ T

0

∫
∞

−∞

[e−
x
κ A(u,T ,κ)

− 1]f3(x)dxdu} (11)

Hence, using Eqs. (10) and (11) in Eq. (9), we have

dQ (λ)

dQ
= exp{−

∫ T

0

σ3

κ
A(u, T , κ)dW3u −

∫ T

0

δ3A(u, T , κ)
κ

ZudNu −

∫ T

0

A(u, T , κ)
κ

Z3,udN3u

−
1
2

∫ T

0

σ 2
3

κ2 A
2(u, T , κ)du − ν

∫ T

0

∫
∞

−∞

[e−
δ3A(u,T ,κ)

κ x
− 1]f (x)dxdu

−ν3

∫ T

0

∫
∞

−∞

[e−
x
κ A(u,T ,κ)

− 1]f3(x)dxdu}

Under the probability measure defined in Eq. (9), we have the following results.

(i) By Girsanav’s theorem, we have that Ŵ1t , Ŵ2t and Ŵ3t are standard Brownian motions under Q λ such that

Ŵ1t = W1t + ρ13

∫ t

0

σ3

k
A(u, T , k)du,

Ŵ2t = W2t + ρ23

∫ t

0

σ3

k
A(u, T , k)du,

Ŵ3t = W3t +

∫ t

0

σ3

k
A(u, T , k)du.

Also, the covariance matrix of (Ŵ1t , Ŵ2t , Ŵ3t ) is same as that of (W1t ,W2t ,W3t )
(ii) Using Theorem T10 (page 241) in [23], we observe that {Nt , t ≥ 0} and {N3t , t ≥ 0} are Poisson processes with

respective intensities

ν̂t = νte−
δ3A(u,T ,κ)

κ µ+
1
2 (

δ3A(u,T ,κ)
κ )2γ 2

ν̂3,t = ν3,te
−A(t,T ,κ)

κ µ3+
A2(t,T ,κ)

2κ2
γ 2
3

where νt = ν and ν3,t = ν3.

(iii) Using Theorem T10 (page 241) in [23], we observe that Zt and Z3,t are normal random variables, i.e.,

Zt ∼ N(µ̂t , γ
2)

Z3,t ∼ N(µ̂3t , γ
2
3 )

where µ̂t = µ −
δ3A(u,T ,κ)

κ
γ 2 and µ̂3t = µ3 −

A(t,T ,κ)
κ

γ 2
3 .

(iv) Z1,t , Z2,t ,N1,t and N2,t maintain the same distributions under Q (λ) and Q .
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Now, I2 can be calculated under Q λ.

I2 = (1 − w)e−rT I{τ>0}E[e−
∫ T
0 λsds | F0]E[

e−
∫ T
0 λsds

E[e−
∫ T
0 λsds]

(Sβ1
1,T − Sβ2

2,T )
+
|F0]

= (1 − w)e−rT I{τ>0}X(0, T )Eλ
[(Sβ1

1,T − Sβ2
2,T )

+
|F0], (12)

where Eλ
[.] is the expectation under Q λ.

Now, we have to find Eλ
[(Sβ1

1,T − Sβ2
2,T )

+
|F0]. The asset price dynamics Si,t , i = 1, 2 can be obtained under Q λ by replacing

Wit by Ŵit and considering the jump processes with new intensities as follows

Si,T = Si,0 exp

⎧⎨⎩(r −
1
2
σ 2
i )T − k̂∗

i + σi(ŴiT − ρi3

∫ T

0

σ3

k
A(u, T , k)du) + δi

NT∑
k=1

Zk +

Ni,T∑
k=1

Zi,k

⎫⎬⎭
= Si0 exp

⎧⎨⎩Λi,T + σiŴiT + δi

NT∑
k=1

Zk +

Ni,T∑
k=1

Zi,k

⎫⎬⎭ , (13)

where for i = 1, 2, we define

ΛiT = (r −
1
2
σ 2
i )T − k̂∗

−

∫ T

0
ρi3σi

σ3

k
A(u, T , k)du (14)

k̂∗

i =

∫ T

0
ν̂(eδiµ̂+

1
2 δ2i γ 2

− 1) +

∫ T

0
ν̂i(eµ̂i+

1
2 γ 2

i − 1) (15)

We will calculate Eλ
[(Sβ1

1,T − Sβ2
2,T )

+
| F0] by introducing a new measure as follows:

Eλ
[(Sβ1

1,T − Sβ2
2,T )

+
|F0] = Eλ

[Sβ2
2T ]Eλ

[
Sβ2
2T

Eλ[Sβ2
2T ]

(
Sβ1
1T

Sβ2
2T

− 1

)+

|F0

]

= Eλ
[Sβ2

2T ]̂E

[(
Sβ1
1T

Sβ2
2T

− 1

)+

|F0

]
, (16)

where Ê is expectation with respect to the new measure Q̂ equivalent to measure Q λ given by

dQ̂
dQ λ

=
Sβ2
2T

Eλ[Sβ2
2T ]

. (17)

From Eq. (13), we have

Eλ
[Sβ2

2,T ] = Sβ2
2,0 exp{β2Λ2,T +

1
2
σ 2
2 β2

2T +

∫ T

0
ν̂u[eδ2β2µ̂u+

1
2 δ22β2

2γ 2
− 1]du

+

∫ T

0
ν2[eβ2µ2+

1
2 β2

2γ 2
2 − 1]du} (18)

Therefore, we have

dQ̂
dQ λ

= exp{β2σ2Ŵ2,T + β2δ2

NT∑
k=1

Zk +

N2,T∑
k=1

Z2,k −
1
2
σ 2
2 β2

2T

−

∫ T

0
ν̂u[eδ2β2µ̂u+

1
2 δ22β2

2γ 2
− 1]du −

∫ T

0
ν2[eβ2µ2+

1
2 β2

2γ 2
2 − 1]du}

Under the probability measure defined in Eq. (17), we have the following results.

(i) By Girsanav’s theorem, we have that W̃1,t , W̃2,t are standard Brownian motions under Q̂ such that

W̃1,t = Ŵ1,t − ρ12σ2β2t,
W̃2,t = Ŵ2,t − σ2β2t.

Also, the correlation coefficient between (W̃1,t , W̃2,t ) is ρ12.
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(ii) Using Theorem T10 (page 241) in [23], we observe that {Nt , t ≥ 0} and {N2t , t ≥ 0} are Poisson processes with
respective intensities

ν̃t = ν̂teδ2β2µ̂t+
1
2 δ22β2

2γ 2

ν̃2,t = ν2eβ2µ2+
β22
2 γ 2

2 .

(iii) Using Theorem T10 (page 241) in [23], we observe that Zt and Z2,t are normal random variables, i.e.,

Zt ∼ N(µ̃t , γ
2)

Z2,t ∼ N(µ̃2t , γ
2
2 )

where µ̃t = µ̂t + β2δ2γ
2, µ̃2t = µ2 + β2γ

2
2

(iv) Z1,t ,N1,t maintain the same distributions under Q̂ and Q (λ).

The asset price dynamics Si,t , i = 1, 2 can be obtained under Q̂ as follows

Si,T = Si,0 exp

⎧⎨⎩Λ̃i,T + σiW̃iT + δi

NT∑
k=1

Zk +

Ni,T∑
k=1

Zi,k

⎫⎬⎭ (19)

where for i = 1, 2, we define

Λ̃1T = (r −
1
2
σ 2
1 )T − k̃1 −

∫ T

0
ρ13σ1

σ3

k
A(u, T , k)du + ρ12σ1σ2β2T (20)

Λ̃2T = (r −
1
2
σ 2
2 )T − k̃2 −

∫ T

0
ρ13σ2

σ3

k
A(u, T , k)du + σ 2

2 β2T (21)

k̃1 =

∫ T

0
ν1(eµ1+

1
2 γ 2

1 − 1)du +

∫ T

0
ν̃u(eδ1µ̃+

1
2 δ21γ 2

− 1)du

k̃2 =

∫ T

0
ν̃2u(eµ̃2u+

1
2 γ 2

2 − 1)du +

∫ T

0
ν̃u(eδ2µ̃+

1
2 δ22γ 2

− 1)du

To obtain a pricing formula, we find it by conditioning over the exact number of Poisson jumps, i.e., GT . The probability that
it takes these values is given by

Q̂ (GT ) =
(
∫ T
0 ν̃udu)n(

∫ T
0 ν̃1udu)n1 (

∫ T
0 ν̃2udu)n2

n!n1!n2!
e−

∫ T
0 (ν̃u+ν̃1u+ν̃3u)du

From Eq. (19), we have

ln(
Sβ1
1T

Sβ2
2T

) = ln(Sβ1
1,0) − ln(Sβ2

2,0) + β1Λ̃1,T − β2Λ̃2,T

+ β1σ1W̃1T − β2σ2W̃2T + (β1δ1 − β2δ2)
n∑

k=1

Zk +

n1∑
k=1

β1Z1,k −

n2∑
k=1

β2Z2,k}

Define the following variables

R1 = ln(Sβ1
1,0) + β1Λ̃1,T − ln(Sβ2

2,0) − β2Λ̃2,T +

n∑
k=1

(β1δ1 − βδ2)µ̃ +

n1∑
k=1

β1µ̃1 −

n2∑
k=1

β2µ̃2

V1 = σ 2
1 β2

1T + σ 2
2 β2

2T − 2ρ12β1β2σ1σ2T + n(β1δ1 − β2δ2)2γ 2
+ n1β

2
1γ

2
1 + n2β

2
2γ

2
2

The above expressions show that ln( S
β1
1T

S
β2
2T

) is a normal random variable with mean R1 and variance V1. Therefore, we have

Ê

[(
Sβ1
1T

Sβ2
2T

− 1

)+]
= eR1+

1
2 V1N(

R1 + V1
√
V1

) − N(
R1

√
V1

) (22)

Hence, the value of the integral I2 is given by Eq. (23). □

In order to calculate I1, we follow the same steps as in Proposition 3.1 by changing measure from Q to Q̂ without going
to Q λ. We have the following result.
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Table 1
Values of the parameters in the base case.
Parameters Values Parameters Values

S1(0) 100 S2(0) 100
σ1 0.2 σ2 0.2
σ3 0.25 w 0.4
ρ12 0.4 ρ13 0.6
ρ23 0.6 θ 0.02
k 0.2 λ0 0.5
ν 0.5 r 0.02
β1 1.2 β2 1.2
µ1 0.02 µ2 0.02
µ3 0.02 γ 2 0.1
γ 2
1 0.1 γ 2

2 0.1
γ 2
3 0.02 δ1 0.8

δ2 0.8 δ3 0.6

Proposition 3.2.

I1 = we−rTE(Sβ2
2T )

∞∑
n=0

∞∑
n1=0

∞∑
n2=0

Q̂ (GT )
[
eR2+

1
2 V2N(

R2 + V2
√
V2

) − N(
R2

√
V2

)
]

. (23)

where

R2 = ln(Sβ1
1,0) + β1Γ1,T − ln(Sβ2

2,0) − β2Γ2,T +

n∑
k=1

(β1δ1 − βδ2)(µ + β2δ2γ
2)

+

n1∑
k=1

β1(µ1) −

n2∑
k=1

β2(µ2 + β2γ
2)

V2 = σ 2
1 β2

1T + σ 2
2 β2

2T − 2ρ12β1β2σ1σ2T + n(β1δ1 − β2δ2)2γ 2
+ n1β

2
1γ

2
1 + n2β

2
2γ

2
2 .

E[Sβ2
2,T ] = Sβ2

2,0 exp{β2Γ2,T +
1
2
σ 2
2 β2

2T + ν(eδ2β2µ+
1
2 δ22β2

2γ 2
− 1)T

+ ν2(eβ2µ2+
1
2 β2

2γ 2
2 − 1)T } (24)

Γ1T = (r −
1
2
σ 2
1 − K1)T + ρ12σ1σ2β2T (25)

Γ2T = (r −
1
2
σ 2
2 − K2)T + σ 2

2 β2T (26)

K1 = ν1(eµ1+
1
2 γ 2

1 − 1) + ν̌(eδ1(µ+β2δ2γ 2)+ 1
2 δ21γ 2

− 1) (27)

K2 = ν̌2(e(µ2+β2γ 2
2 )+ 1

2 γ 2
2 − 1) + ν̌(eδ2(µ+β2δ2γ 2)+ 1

2 δ22γ 2
− 1) (28)

ν̌ = ν exp (δ2β2µ +
1
2
δ22β

2
2γ

2) (29)

ν̌2 = ν2 exp (β2µ2 +
1
2
β2
2γ

2
2 ) (30)

Q̌ (GT ) =
(
∫ T
0 ν̌udu)n(

∫ T
0 ν1du)n1 (

∫ T
0 ν̌2udu)n2

n!n1!n2!
e−

∫ T
0 (ν̌u+ν1+ν̌3u)du (31)

Combining the above propositions, the price of the vulnerable European power exchange option at time 0 is C∗(0, T ) =

I1 + I2 where I1 and I2 are given the previous propositions.

4. Numerical results

In this section, we give the sensitivity analysis in order to explore the impact of different parameters on option prices,
when the default of the counter-party is modeled in an intensity based framework. The values of the parameters in the base
case are listed in Table 1 and are chosen according to the previous literature. For performing the numerical calculations, the
value of only one parameter is changed at one timewhile the values of the other parameters are kept the same as in the base
case.

Fig. 1(a) plots option prices against time to maturity for three different scenarios namely no default case, vulnerable
with constant default intensity and vulnerable under the proposed framework. From Fig. 1(a), we observe that option prices
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Fig. 1. Price of options against the maturity time R and recovery rate w.

Fig. 2. Price of options against the volatility of asset price and default intensity.

increase with an increase in the time to maturity. This agrees with the fact that option prices are increasing function of
time to maturity. Also, the option prices are higher when there is no risk of default by the counterparty as compared to the
cases with the risk of default. Further, the option prices decrease when we consider the default intensity to be a stochastic
process as compared to the case when it is a constant. The possible reason is that the default intensity of a counterparty is
not necessarily a constant but time-varying since as time passes, one would have new information, beyond mere survival,
that would bear on the credit quality of the counterparty. From Fig. 1(b), we observe that the option prices increase with an
increase in the recovery rate w since the expected payoff at T increases as the recovery rate increases.

Figs. 2(a) and 2(b) show the option prices obtained by the proposed model against the volatility of asset price S1t and
volatility of the default intensity for different maturities, T = 1.5, 2, 2.5, 3. From Fig. 2(a), we observe that option prices
decrease for smaller values of σ1 and then increase with the increase in the value of the volatility σ1 from 0.2 to 0.6. Also,
we observe a U-shaped curve for all maturities. From Fig. 2(b), we observe that option prices are decreasing function of σ3

for all T . The reason for this observation is: as the volatility of default intensity increases, the probability of default increases
and hence option prices decrease.
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Fig. 3. Price of options against the initial intensity of default and rate of Poisson process driving intensity process.

Fig. 4. Price of options against the correlation coefficient ρ12 between asset prices.

Figs. 3(a) and 3(b) show the option prices against the initial intensity of default and the arrival rate of the Poisson process
governing the intensity of default respectively. The option prices decrease with an increase in both λ0 and ν. The higher the
value of initial intensity λ0 or ν, the higher is the probability of default and hence option prices decrease.

Figs. 4(a) and 4(b) show the option prices against the ρ12, i.e., the correlation between the asset prices for T = 1 and
T = 2 respectively and for different values of recovery rates. The option prices are decreasing with respect to the increase in
the value of ρ12 and option price is higher for higher recovery rate and given ρ12. We observe that the option prices decrease
with the increase in the value of the correlation coefficient. This observation is because of the fact that when ρ12 is less than
zero, it is more likely that the values S1 and S2 may move in the opposite directions and hence the distance between S1 and
S2 may increase at the maturity and hence higher the option price. Similarly, if ρ > 0, the prices are more likely to move in
the same direction and hence option value is lesser than the prices when ρ < 0. Figs. 5(a) and 5(b) show the option prices
against the ρ13, i.e. correlation between the diffusion part of asset price S1t and the diffusion part of default intensity for
T = 1 and T = 2 respectively and for different values of recovery rates. For w = 1, the power exchange option is without
credit risk, and hence ρ13 plays no role and hence price is constant. For w ̸= 1, we observe that option prices decrease with
the increase in the value of ρ13.
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Fig. 5. Price of options against the correlation coefficient ρ13 between asset prices.

5. Conclusion

In this article, we studied the pricing of power exchange option with counter-party risk in an intensity based credit risk
model. We assumed the default of the counter-party to be the first jump time of the Cox process whose intensity is modeled
as a jump–diffusion process. Using the change of measure technique, we obtained the explicit formula for the price of power
exchange options. Finally, we studied the sensitivity analysis of the power exchange option prices with various parameters
of the intensity of default, e.g. initial default intensity, recovery rate, correlation coefficients, etc.
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