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1. Introduction

Proper orthogonal decomposition (POD) is a method to find an optimal low order basis to approximate a given set of
data. The basis elements are called POD modes, and they are often used to create low order models of high-dimensional
systems of ordinary differential equations or partial differential equations (PDEs) that can be simulated easily and even
used for real-time applications. For more about the applications of POD in engineering and applied sciences and POD
model order reduction, see, e.g., [1-16].

There is a close relationship between the singular value decomposition (SVD) of a set of data and the POD eigenvalues
and modes of the data. Due to applications involving functional data and PDEs, many researchers discuss this relationship
in weighted inner product spaces and general Hilbert spaces [ 17-20]. For the POD calculation, it is important to determine
an inner product that is appropriate for the application [6,21-24].

Since the size of data sets continues to increase in applications, many researchers have proposed and developed more
efficient algorithms for POD computations, the SVD, and other related methods [25-35]. These algorithms have been
recently applied in conjunction with techniques such as POD model order reduction and the dynamic mode decomposition,
which often consider simulation data from a PDE [24,36-44].

In our earlier work [45], we proposed an incremental SVD algorithm for computing POD eigenvalues and modes in
a weighted inner product space. Specifically, we considered Galerkin-type PDE simulation data, initialized the SVD on
a small amount of the data, and then used an incremental approach to approximately update the SVD with respect
to a weighted inner product as new data arrives. Our incremental approach to update the SVD is an extension of
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Brand’s incremental matrix SVD algorithm [25] to treat the weighted inner product without computing any matrix
decompositions. The algorithm involves minimal data storage; the PDE simulation data does not need to be stored. The
algorithm also involves truncation, and therefore produces approximate POD eigenvalues and modes. We proved the SVD
update is exact without truncation.

In this paper, we study the effectiveness of the truncations and deduce error bounds for the SVD approximation. To
handle the computational challenge raised by large data sets, we bound the error incrementally. Specifically, we extend
the incremental SVD algorithm for a weighted inner product in [45] to compute an error bound incrementally without
storing the data set; see Section 2, Algorithm 1. We also perform an error analysis in Section 3 that clarifies the effect
of truncation at each step, and provides more insight into the accuracy of the algorithm with truncation and the choices
of the two tolerances. We prove the algorithm produces the exact SVD of an approximate data set, and the operator
norm error between the exact and approximate data set is bounded above by the incrementally computed error bound.
This yields error bounds for the approximate POD eigenvalues and modes. To illustrate the analysis, we present numerical
results in Section 4 for a set of PDE simulation data using various choices of the tolerances. Finally, we present conclusions
in Section 5.

As far as the authors are aware, the error analysis approach in this work is new and the incremental SVD algorithm
for a weighted inner product presented here is the only existing approach with incrementally computed rigorous error
bounds.

2. Background and algorithm

We begin by setting notation, recalling background material, and discussing the algorithm.

For a matrix A € R™", let Ay.qrs) denote the submatrix of A consisting of the entries of A from rows p, ..., q and
columns r, ..., s. Also, if p and g are omitted, then the submatrix should consist of the entries from all rows. A similar
convention applies for the columns if r and s are omitted.

Let M € R™™ be symmetric positive definite, and let Ry, denote the Hilbert space R™ with weighted inner product
(x, ¥)v = y"Mx and corresponding norm ||x||y; = (x" Mx)!/2. For a matrix P € R™", we can consider P as a linear operator
P : R" — Ry;. In this case, the operator norm of P is

1P cgan gy = Sup [IPx]lu-
lixll=1

We note that R" without a subscript should be understood to have the standard inner product (x, y) = y"x and Euclidean
norm ||x|| = (x"x)"/2. The Hilbert adjoint operator of the matrix P : R* — Ry is the matrix P* : Ry; — R" given by
P* = PTM. We have (Px, y)y = (x, P*y) forallx e R" and y € Ry

In our earlier work [45], we discussed how the proper orthogonal decomposition of a set of PDE simulation data can
be reformulated as the SVD of a matrix with respect to a weighted inner product. We do not give the details of the
reformulation here, but we do briefly recall the SVD with respect to a weighted inner product since we use this concept
throughout this work.

Definition 2.1. A core SVD of a matrix P : R" — R is a decomposition P = VXWT, where V € R™*, ¥ ¢ R and
W e Rk satisfy

ViIMy =1, W'w =1, X =diag(oy,...,ox),

where o1 > 03 > - -+ > o > 0. The values {o;} are called the (positive) singular values of P and the columns of V and W
are called the corresponding singular vectors of P.

Since POD applications do not typically require the zero singular values, we do not consider the full SVD of P : R" — R};
in this work. We do note that the SVD of P : R" — Ry is closely related to the eigenvalue decompositions of P*P and
PP*. See [45, Section 2.1] for more details.

Also, when we consider the SVD (or core SVD) of a matrix without weighted inner products we refer to this as the
standard SVD (or standard core SVD).

We consider approximately computing the SVD of a data set U incrementally by updating the core SVD when each
new column c of data is added to the data set. This incremental procedure is performed without forming or storing the
original data matrix. Specifically, we focus on the incremental SVD algorithm with a weighted inner product proposed
in Algorithm 4 of [45]. The algorithm is based on the following fundamental identity: if U = VXWT is a core SVD,
then

[Ucl=[VEW'c]
T
X V| |W 0
ol 51 Y
where j = (¢ — VW*c)/p and p = ||c — VW*c||y [45]. The algorithm is a modified version of Brand’s incremental SVD
algorithm [25] to directly treat the weighted inner product. Brand’s incremental SVD algorithm without a weighted
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inner product has been used for POD computations in [41,44], and our implementation strategy follows the algorithm
in [44].

Below, we consider a slight modification of the algorithm from [45]; specifically, we update the algorithm to include
a computable error bound e. We show in this work that the algorithm produces the exact core SVD of a matrix U such
that ||U — U|| cs,RM) < € where U is the true data matrix. This error bound gives information about the approximation

error for the singular values and singular vectors; see Section 3.2 for details.
We take the first step in the incremental SVD algorithm by initializing the SVD and the error bound with a single
column c # 0 as follows:

T=lcly=U"Mc)"?, v=cxl, w=1 e=0.

Here, the error bound e is set to zero since the initial SVD is exact. Also, as mentioned in [45], even though M is positive
definite it is possible for round off errors to cause c'Mc to be very small and negative; we use the absolute value here
and throughout the algorithm to avoid this issue.

Then we incrementally update the SVD and the error bound by applying Algorithm 1 when a new column is added.
Most of the algorithm is taken directly from [45, Algorithm 4]; we refer to that work for a detailed discussion of the
algorithm and details about the implementation.

We note the following:

e The input is an existing SVD V, ¥, and W, a new column c, the weight matrix M, two positive tolerances, and an

error bound e.

Lines 10, 15, 18, 21, and 26 are new, and are simple computations used to update the error bound e.

In the SVD update stage (lines 1-16), e, is the error due to p-truncation in line 3.

In the singular value truncation stage (lines 17-22), e, is the error due to the singular value truncation in line 19.

In the orthogonalization stage (lines 23-25), a modified Gram-Schmidt algorithm with reorthogonalization is used;

see Section 4.2 in [45].

e The output is the updated SVD and error bound.

e The columns of V are the M-orthonormal POD modes, and the squares of the singular values are the POD eigenvalues.

e If only the POD eigenvalues and modes are required, then the computations involving W can be skipped; however,
W is needed if an approximate reconstruction of the entire data set is desired.

e As new columns continue to be added, a user can monitor the computed error bound and lower the tolerances if
desired.

3. Error analysis

In this section, we perform an error analysis of Algorithm 1. We show the algorithm produces the exact SVD of another
matrix U, and bound the error between the matrices.

We assume all computations in the algorithm are performed in exact arithmetic. Therefore, the Gram-Schmidt
orthogonalization stage (in lines 23-25) is not considered here. We note that in [45], we considered a Gram-Schmidt
procedure with reorthogonalization to minimize the effect of round-off errors; see, e.g., [46-49]. We leave an analysis of
round-off errors in Algorithm 1 to be considered elsewhere.

We begin our analysis in Section 3.1 by analyzing the error due to each individual truncation step in the algorithm.
Then we provide error bounds for the algorithm in Section 3.2.

3.1. Individual truncation errors

We begin our analysis of the incremental SVD algorithm by recalling a result from [45]. This result shows that a single
column incremental update to the SVD is exact without truncation when p = ||c — VW*c||y > O.

Theorem 3.1 (Theorem 4.1 in [45]). Let U : R" —> R, and suppose U = VW is an exact core SVD of U, where VTMV = I
for Ve R™* WTW =1 for W € R™* and ¥ € Rk Let c € R and define

- _ | X Vi
h=c WC7 p_”h”M’ Q_[O p )
where V* = VTM. If p > 0 and a standard core SVD of Q € Rk1*k+1 is given by
Q = Vo Zq Wg. (1

then a core SVD of [U c]: R™ — R is given by
[Uc]=V,ZW/!,
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Algorithm 1 Incremental SVD and error bound with weighted inner product
Input: V e R™* ¥ e Rk W e R™k ¢ e R™, M € R™™, tol, tols,, e
% Prepare for SVD update

1: d = VTMc, p = sqrt(|(c — Vd)"M(c — Vd)|)
2: if (p < tol) then

> d
3 Q=19 o
4: else

> d
el
6: end if

7: [VQ, EQ, WQ] = SVd(Q)
% SVD update
8: if (p < tol) or (k > m) then

W 0
9 V= WQ(];k,];k}’ X = EQ(l:k,l:k)‘ W= |:0 ]j| WQ(:,I:k)
10: e =p
11: else

122 j=(c—Vd)/p
13: V= [V_]]VQ, X = EQ, W = [W O:I WQ

0 1
14: k=k+1
15: e =0
16: end if

% Neglect small singular values: truncation

17: if (E(r,r) > tolyy) and (E(H—LH—]) < toly,) then
181 esy = X(r+1,r41)
19: Y= Z‘(lzr,l:r)- V= V(:,l:r)- W= W(:,l:r)
20: else
21: e, =0
22: end if

% Orthogonalize if necessary

23: if ( |V ¢ngyMV(..1)|> min(tol, tol x m)) then
24: V= modifiedGSweighted(V, M)

25: end if

26: e =e+4e, +eg

27: return V, X, W, e

where

. . w 0
Vi=I[VjlVo, j=h/p, W,= 0 1WQ.

Next, we analyze the incremental SVD update in the case when the added column c satisfies p = |c — VW*c|y
=0.

Lemma 3.2. Let U = VXWT, ¢, h, p, and Q be given as in Theorem 3.1, and assume p = ||c — VW*c|y = 0. If the full
standard SVD of Q € Rk is given by Q = Vo Zo W/, where Vy, Zo, Wy € R1¥K1 then

VQ(1;/<,1;/<) 0 EQ(lsz:k) 0
VQ:|: 0 1 . X = 0 0 ’ ZQ(I:k.I:k)>O’

and a standard core SVD of R = Quk 1k+1) = [ X V*c] € ROk s given by

T
R= VQ(]:k,l:k) Z‘Q(l:k,l:k)(WO.(:,l:k)) ‘
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Proof. Let og, > 0q, > -+ > oq,,,; > 0 be the singular values of Q so that ¥¢ = diag(oq,, ..., o). Also, let {vg} and
{ij} be the corresponding orthonormal singular vectors in R¥*!, so that

VQ =[UQ1,...,UQ(k+1)], WQ =[le,...,wQ(kH)],

with ViVo =T and WiW, = 1.
First, we show Q has exactly one zero singular value. Since we know

QTij = ogWq;, (2)
QU_)QJ = GijQj’ (3)
forj = 1,...,k + 1, the number of zero singular values of Q is precisely equal to the dimension of the nullspace of
QT. Suppose v = [vq,..., vl € R satisfies QTv = 0. Recall ¥ = diag(oy, 02,...,0%) > 0,and let d = V*c =

[dy,...,d]". Then QTv = 0 implies

o1Vq 0

(o)X %) 0

O Vg 0

divi + davy + - - -+ drvg 0
Since oy > --- > o > 0, we have v; = O for j = 1,..., k. This implies the nullspace of QT is exactly the span of
err1 = [0,...,0,1]7 € R¥1, Therefore, the nullspace is one dimensional and Q has exactly one zero singular value,

ie, oq., =0and o, > 0g, >--- > 0g, > 0.
Next, Qij = ajvg, forj=1,...,kgives

01wy, + diwg., 0jvg 4
02wy, + dawg, 0jvg;,
= : =
OkWq; + dkaj.k+1 OjVQ; i
0 OjVQ; k1
The last equation gives VQj 41 = 0 since o; > 0 forj =1, ..., k. Therefore, forj=1,...,k,

UQj = [UQj,l’ ijY27 B ij_kv O]Tv

and
Vg, =10,0,...,0,1]".

This implies

Vo 1. 0
Vo = |: Q(16{,1,k) 1:|’

and so the SVD decomposition of Q is given by

V of| X 0
— Q(:,: Q(:k,:k T
Q—[ o 1” o O]Wq.

This gives R = Q. 1x41) = Vo ZoW(, where Vo = Vo 10 20 = Zouu1s a0d Wo = W1 14- It can be checked
that V]Vo = I and W[Wq = I since V]V, = I and W W, = I. Therefore, a standard core SVD of R € R****1 is given by
R=VoZW). O

The following result is nearly identical to Proposition 2.3 in [45]; the proof is also almost identical and is omitted.

Lemma 3.3 (Proposition 2.3 in [45]). Suppose V, € R™ K has M-orthonormal columns and W, € R™! has orthonormal
columns. If R € R¥*! has standard core SVD R = VRERWRT and P : R" — Ry} is defined by P = VRWT, then

P = VUEUWZ-! V=W, Xy=2Xk W,=WW, (4)

is a core SVD of P.
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Next, we complete the analysis of the p = 0 case:

Proposition 3.4. Let U = VIXWT, ¢, h, p, and Q be given as in Theorem 3.1, and assume p = ||c — W*c|jy = 0. If
the full standard SVD of Q € R¥*+1is given by Q = Vo ZoW[, where Vo, Zo. W € R¥¥*1, then a core SVD of
[U c]:R"™ — RY is given by

[Uc]l= VuEuW,L
where

W 0
Vu= WQ(]:k,l:k)’ 2y = EQ(lzk,lzk)’ Wy = |:0 1] WQ(:.]:k)'

Proof. Since p = 0, we have ¢ = VV*c and therefore
T

* «1lW 0

[U c]=[vEwl w*]=V[Z V c][o 1]

The result follows from Lemmas 3.2 and 3.3 by takingP = [U c]and R=[X V*c]. O

Truncation part 1. Next, we analyze the incremental SVD update in the case when the added column c satisfies
p = llc — VW*c|ly < tol. In this case, Algorithm 1 does not compute the SVD of [U c]. Instead, Algorithm 1 sets p = 0
and returns the exact SVD of U = [U VV*c ]. The approximation error in the operator norm is given in the next result.

Proposition 3.5. Let U : R" — Ry}, and suppose U = VEXWT is a core SVD of U. If c € R, p = ||c — VWW*c||y, and

U=[UW-*],
then
LU ¢ 1= Ul gggnst gy = p-
Proof. For x = [x1, ..., X411 € R™!, we have
LU €1 = Ul pansr ) = sup [t (c —w* )],
X||=
= sup [[c = W¥clly [xn41
lIx[I=1
= [lc — W*cl|m,
where the sup is clearly attained by x = [0, ...,0,1]T e R™!. O

Truncation part 2. In Algorithm 1, after the SVD update due to an added column the algorithm truncates any singular
values that are smaller than a given tolerance, tols,. For the matrix case with unweighted inner products, the operator
norm error caused by this truncation is well-known to equal the first neglected singular value. This result is also true
for a compact linear operator mapping between two Hilbert spaces; see, e.g., [50, Chapters VI-VIII], [51, Chapter 30], and
[52, Sections V1.5-VL.6] for more information about the SVD for compact operators. This gives the following result:

Proposition 3.6. Let U : R" — R}, and suppose U = VEXWT is a core SVD of U. For a given r > 0, let U be the rank r
truncated SVD of U, i.e.,

E’ = V(:,1:r)2(1:r,1:r)(W(:,1:r))T~
Then
IU = Ullgwnrmy = Zir+1.041)-

3.2. Error bounds

Next, we fully explain the computed error bound in Algorithm 1. In a typical application of the algorithm, many new
columns of data are added and the POD is updated many times. In the following result, we assume we are at the kth step
of this procedure and we have an existing error bound. We prove that Algorithm 1 produces a correct update of the error
bound.

More specifically, let k € N, let Uy, Uy : R¥ — Ry, and assume

U = Vi Z W/, Uy = ‘Zcik‘;\/,z
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are core SVDs of U and U. Let cx € Ry and define Upyq == [Uy i : Rk Ry;. Furthermore, let flk+1 s Rk Ry, be
the result of one step of the incremental SVD update applied to Uy so that

> (7 'S T
Uk+l = Vk+12k+1Wk+1~

Therefore, we consider the sequence {U,} to be the exact data matrices, and the sequence {Uk} to be the result produced
(in exact arithmetic) by Algorithm 1.

In exact arithmetic, there are two stages to Algorithm 1. The first stage is the SVD update in lines 1-16. This stage of
the algorithm takes Uk and the added column ¢ and produces the update Uk+1 There are two p0551b1e results for U,<+1
depending on the value of p in line 1. The second stage is the singular value truncation applied to Uk+1 (lines 17-22),
which produces the final update Uy1. Again, there are two possible results for Ui, depending on the singular values of
Uk+1. We analyze the error bound for each possible outcome of the algorithm in the result below.

Let the positive tolerances tol and toly, be fixed. Below, we let p; denote the value p in line 1 of Algorithm 1. We say
that p truncation is applied if py < tol. We say the singular value truncation is applied if any of the singular values of
U1 are less than tolg,. In this case, we find a value r so that the first r largest singular values of Uy, are greater than
tolgy, while the remaining singular values are less than or equal to tolg,. We let 6,1 denote the largest singular value of
Uk+1 such that 6,1 < toly,.

Theorem 3.7. If
Uk = Unll e zmy < €k Pre = llee = ViV cillm,
then

U1 — Ul g, R < kil
( )

where
€k, if no truncation is applied,
s = e + ek, 1:f only p truﬁcation is applied, o .
ex + Or+1, if only the singular value truncation is applied,

ex + Pk + 641, if both truncations are applied.

Proof. Stage 1 of Algorithm 1 (lines 1-16) takes Uy and produces lflkH. If pr > tol, then Theorem 3.1 gives that the core
SVD is updated exactly, i.e.,

Uepr = [Uk e if pe > tol.
Otherwise, if p; < tol, then Proposition 3.5 implies

Usr =[O VV* 1 if pi < tol,
and the error is given by

LUk ¢ — Upsn | cerict1 mmy = Pk

Stage 2 of Algorithm 1 (lines 17-22) takes Uk-H and produces L~]k+1. If all of the singular values of lflk+1 are greater

than toly,, then l}k+1 = [leﬂ and there is no error in this stage. Otherwise, let 6,1 denote the largest singular value of

lAJkH such that 6,,1 < tolg. In this case, Ukﬂ is simply the rth order truncated SVD of lAJkH, and the error is given by
Proposition 3.6:

IUkt1 = Ukes [l st gy = G-

Below, for ease of notation, let || - || denote the £(R**1, RY;) operator norm. The error between Uy and l],<+1 in the
operator norm can be bounded as follows:

Ukt — Ui ll < IU0ki1 — [0k a1l 4 100k 61 = Uk ll + 1001 — Ui |-

As noted above, the second error term is either zero if p truncation is not applied or p, otherwise. Also, the third error
term is either zero if the singular values truncation is not applied or &,,; otherwise. For the first term, we have

IUes1 — [0k e 1l = [ Uk ck1— [0k ci 1l

= |(Uc — Uy 0
= sup | [(Ux — Ty) 01|,
[Ixll=1

IA

Uk — Uk”zj(mk,mﬂ) =< €.

This completes the proof. O
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The result above explains the update of the error bound in one step of Algorithm 1. Now we assume the SVD is
initialized exactly when k = 1, and then the algorithm is applied for a sequence of added columns {c,} C Rj;, for
k=2,...,s

Corollary 3.8. Let tol and tolSV be fixed posztlve constants, and let {c,} C RY, for k = 1,...,s, be the columns of a matrix
U. For k = 1, assume the SVD U; = V; 21W and error bound e; = 0 are initialized exactly as described in Section 2. For
k=1, —1, let Uk+1 = Vk+12k+1Wk+1 and ey, be the output of Algorithm 1 applied to the input Uk = VkEkW, and

ex. If Tp represents the total number of times p truncation is applied and T, represents the total number of times the singular
value truncation is applied, then

U — VSESWSHE(RS,RA"}') = TptOI + Ty tolgy.

Proof. The proof follows immediately from the previous result, using p; < tol and 6,1 < tolg,. O

The error bound in the result above is not as precise as the error bound computed using Algorithm 1 since the
tolerances are only upper bounds on the errors in each step. However, this result does provide some insight into the
choice of the tolerances for the algorithm. Specifically, in general there is no reason to expect one of T, or Ty, to be
significantly larger than the other; therefore, it seems reasonable to choose equal values for the tolerances. Furthermore,
for a very large number of added columns, it is possible that T, and T, can be large; therefore, small tolerances should
be chosen to preserve accuracy.

Algorithm 1 computes an upper_bound on the operator norm error between the exact data matrix U and the
approximate truncated SVD U = VEWT of the data matrix. (The above corollary also provides another upper bound
on the error.) This error bound allows us to bound the error in the incrementally computed singular values and singular
vectors. Let {oy, vk, Wik=1 and {0y, Uk, Wi}k>1 denote the ordered singular values and corresponding orthonormal singular
vectors of U,U : R® — R}; in the result below. The following result follows directly from general results about error
bounds for singular values and singular vectors of compact linear operators in Appendix.

Theorem 3.9. Let k > 1, and let ¢ > 0 such that |U — U||£(R5,Rg;) < ¢&. Then
log —a¢|l <e foralt>1.

Also, forj=1, ...,k define

i1 (oj — 22 — o?

&j =je+2 Z (8,‘ + O‘,’Eil/z) , Ej =2|1- %

i=1 9 ~ %11

If the first k+ 1 singular values of U are distinct and positive, the singular vector pairs {v;, ﬂ)j}]’-‘:l are suitably normalized, and

o — o
j 41 .
§ < ———— forj=1,...,k

- 2
then

1/2

o — Bl < E72. llwy — wyll < 2 +20,7"ej, forj=1,....k (5)

This result indicates we should expect accurate approximate singular values and also accurate approximate singular
vectors if ¢ is small and there is not a small gap in the singular values. We note that POD singular values often decay to
zero quickly, and therefore we expect to see lower accuracy in the computed POD modes for smaller singular values due
to the small gap. The examples in our first work [45] and the new examples below show both of these expected behaviors
for the errors in the approximate singular vectors.

4. Numerical results

We consider a nerve impulse transmission model, the 1D FitzHugh-Nagumo system

du(t, x 32v(t, x 1 1 c

Mo 20 L+ S 0<x<,
ot x2 " " m

dw(t, x)

o = bv(t,x) — yw(t,x)+c, 0<x<1,
where f(v) = v(v—0.1)(1—v), u = 0.015,b = 0.5, ¥y = 2, ¢ = 0.05, the boundary conditions are v,(t, 0) = —50000t3e~ ¢,
vy(t, 1) = 0, and the initial conditions are zero. This example problem was considered in [53], and we used the interpolated
coefficient finite element method from that work to discretize the problem in space. For the finite element method we
used continuous piecewise linear basis functions with equally spaced nodes, and we used Matlab’s ode23s to approximate
the solution of the resulting nonlinear ODE system on different time intervals.
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Table 1

Example 1 - error between true and incremental SVD.
tol tolgy Rank Exact error Incr. error bound
108 108 36 3.6924e—07 2.8029¢—06
108 10710 66 3.1932¢—07 1.1826e—06
1078 1012 61 8.5938e—07 9.0495¢—07
10-10 10-8 30 3.9090e—08 1.4908e—06
10-10 10710 44 4.4893e—10 2.7417e—08
10-10 1072 71 3.9349e—10 8.9680e—09
1012 1078 30 3.9090e—08 1.4908e—06
10712 10-1° 41 4.5256e—10 1.5511e—08
1012 1012 55 4.4334e—12 2.8596e—10

Table 2

Example 2 - error between true and incremental SVD.
tol tolsy Rank Exact error Incr. error bound
1078 1078 35 3.0859e—07 3.6931e—06
1078 10710 66 1.3881e—07 1.1429e—06
10-8 1012 64 3.4657e—07 1.5321e—06
1010 1078 31 4.1497e—08 1.7368e—06
10710 10710 45 5.3142e—10 3.6491e—08
10710 1012 74 7.7348e—10 1.1523e—08
10~12 10-8 30 4.1497e—08 1.7368e—06
1012 10710 41 4.6086e—10 1.8671e—08
1012 10712 59 4.8658e—12 3.4880e—10

We emphasize that the proposed incremental POD algorithm can be applied to simulation data arising from many
types of PDE approximation schemes; see [45] for more discussion of this point. For our numerical tests, we chose the
interpolated coefficient finite element method from [53] since it is simple to implement, computationally efficient, and
second order accurate in space. We chose Matlab’s second order accurate time stepping method ode23s so that we
could consider variable time steps and also accurately and efficiently approximate the solution over longer time intervals.
It would be interesting to compare the output of the incremental POD algorithm on simulation data sets arising from
different discretizations of the same PDE; we leave this to be explored elsewhere.

For the POD computations, we consider the data z(t, x) = [v(t, x), w(t, x)] in the Hilbert space L?(0, 1) x L%(0, 1) with
standard inner product. Now we follow the procedure in our first work [45] to arrive at the weighted SVD problem. At
each time step, we rescale the approximate solution data by the square root of the time step; see [45, Section 5.1]. We
expand the approximate solution in the finite element basis to obtain the weight matrix M as in [45, Section 5.2]. To
compute the POD of the approximate solution data, we compute the SVD of the finite element solution coefficient matrix
U : R®* — Ry}, where s is the number of time steps (snapshots) and m is two times the number of finite element nodes.

To illustrate our analysis of the incremental SVD algorithm, we consider three examples:

Example 1 5000 finite element nodes and s = 491 snapshots in the time interval [0, 10]
Example 2 10000 finite element nodes and s = 710 snapshots in the time interval [0, 15]
Example 3 50000 finite element nodes and s = 1275 snapshots in the time interval [0, 28]

We consider relatively small values of m = 2 x nodes and s in order to test the incremental algorithm against exact SVD
computations. _ o

Let U denote the finite element solution coefficient matrix, and let U = VX WT denote the incrementally computed
approximate SVD of U : R® — R} produced by Algorithm 1. For each example, we choose various tolerances and compute:

Rank = rank(f]), Exact error = ||U — E’HL(RS,W)-
Incr. error bound = e computed by Algorithm 1 at the final snapshot.

The exact SVD of U : R® — Ry; and the exact error are both computed using a Cholesky factorization of the weight matrix
M following Algorithm 1 in [45]. The exact computations are for testing only since they require storing all of the data.

Tables 1-3 display the computed quantities listed above for the three examples with various choices of the p truncation
tolerance, tol, and the singular value truncation tolerance, tols,. We set each tolerance to 1078, 1071°, or 10~'2, for a total
of nine tests for each example. In all of the tests, the incrementally computed error bound is larger than the exact error
and the error bound is small. Also, the tests indicate that there is no benefit from choosing one tolerance different than
the other.

Fig. 1 shows the exact and incrementally computed POD singular values and also the weighted norm error between
the exact and incrementally computed POD modes with tol and tols, both equal to 1072, The errors for the POD modes
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Table 3

Example 3 - error between true and incremental SVD.
tol tolgy Rank Exact error Incr. error bound
108 108 38 6.5705e—08 4.3271e—06
108 10710 72 6.8271e—07 1.1523e—06
10-8 10~12 67 3.6916e—07 2.3847e—06
10710 108 31 4.7018e—08 2.2388e—06
10710 10-10 49 4.8302e—10 4.3655e—08
10710 1012 78 2.4473e—08 2.6825e—08
1072 1078 31 4.7018e—08 2.2388e—06
1012 10~10 41 4.9660e—10 2.5022e—08
1012 1012 60 6.3200e—12 5.7438e—10

10 T T T 10°
—e— true singular values § Errors of P‘OD modes
o le incremental singular values
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(a) POD singular values (b) POD mode errors

Fig. 1. Example 3 - exact versus incremental POD computations with tol = tols, = 10712,

corresponding to the largest singular values are extremely small (approximately 10~'2). The errors in the POD modes
increase slowly as the corresponding singular values approach zero. There are many accurate POD modes; the first 30
modes are computed to an accuracy level of at least 10~>. The POD singular value and mode errors behaved similarly for
other cases.

5. Conclusion

In our earlier work [45], we proposed computing the SVD with respect to a weighted inner product incrementally
to obtain the POD eigenvalues and modes of a set of PDE simulation data. In this work, we extended the algorithm to
update the SVD and an error bound incrementally when a new column is added. We also performed an error analysis
of this algorithm by analyzing the error due to each individual truncation. We showed that the algorithm produces the
exact SVD of a matrix U such that ||U — U||L(R5’Rm) < e, where U is the true data matrix, M is the weight matrix, and e is
computed error bound. We also proved error bounds for the incrementally computed singular values and singular vectors.
We tested our approach on three example data sets from a 1D FitzHugh-Nagumo PDE system with various choices of the
two truncation tolerances. In all of the tests, the incrementally computed error bound was larger than the exact error and
the error bound was small. Furthermore, the approximate singular values and dominant singular vectors were accurate.
Also, our analysis and the numerical tests suggest that there is no benefit from choosing one algorithm tolerance different
than the other.
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Appendix

Let X and Y be two separable Hilbert spaces, with inner products (-, -)x and (-, -)y and corresponding norms || - ||x and
Il - |ly. Below, we drop the subscripts on the inner products and the norms since the space will be clear from the context.
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Assume H, H, : X — Y are compact linear operators. In this section, we prove bounds on the error between the singular
vectors of H and H, assuming the singular values are distinct. Our results rely on techniques from [54,55].

Let {oy, vk, wik=1 and {0y, vi, wy }k=1 be the ordered singular values and corresponding orthonormal singular vectors
of H and H,. They satisfy

* & & & * & &€
Hv = opwy, H wy = opve, Hevp = o wy, HIw; = oy v, (6)

where the star denotes the Hilbert adjoint operator. Also, if oy > 0, then a,f is the kth ordered eigenvalue of the self-adjoint
nonnegative compact operators HH* and H*H. First, we recall a well-known bound on the singular values; see, e.g., [56,
page 30] and [50, page 99].

Proposition A.1. Let ¢ > 0 such that |H — H, | zx,yy < & Then for all k > 1 we have
lox — o | < e. (7)

In the results below, we require the singular vectors {v}, w;} are suitably normalized. We note that any pair {v, wy}
of singular vectors for a fixed value of k can be rescaled by a constant of unit magnitude and remain a pair of singular
vectors. However, due to the relationship (6), we note that both vectors in the pair must be rescaled by the same
constant.

The proof of the following result is largely contained in [54, Appendix 2], but we include the proof here to be complete.

Lemma A.2. Let & > 0 such that |H — H,|lzx,yy < &. If o1 > 0, > 0, v{ and w] are suitably normalized, and

o1 — 0y

R 8

=2 (8)
then
lor — o5l < By, flwr — will < E; + 207 e, 9)
o1 —2e? — o2
Ei=2|1- % .
01 =0,

Remark A.3. The larger error bound for ||wy — w{|| is due to the way we assume the singular vectors are normalized
in the proof. It is possible to use a different normalization and make the error bound larger for [|v; — v{|| instead. We
comment on the normalization in the proof.

Proof. Define V; = span{v;} C X. We have X = V; @ V', and therefore v] = I.v; + X, for some constant r, and x, € X
satisfies (x,, v1) = 0. This gives ||x,||> = 1 — |r.|?> and also |r,| < 1. Then

v = V511> = [lvg — revy — x|
=1 —rllvrl? + [Ixe 17
= 2(1 — Re(ry)). (10)
Note [|ojwi|l = [|Hsv]| implies

o1 = ||Hev + Hv] — Huf||
< [Hv{|l + [IH — He[[[[vf]]
f ”H(rsvl +xs)” +é
= [[reoqw1 + Hx. || + €.
To estimate this norm, we use (Hx., wi) = (¢, H*w1) = o1(x,¢, v1) = 0 and also
2 (H*Hx,, x) (H*Hx, x)

= —— P < sup o
l1x]12

2 2 2
: 1% = o2 Ix. 1%
”Xs ” erlL, x£0

[IHxe |

where we used the variational characterization of the second eigenvalue 022 of the self-adjoint compact nonnegative
operator H*H [51, Chapter 28]. These results give

2 2 2 2

[reo1wt + Hxe || = [re|“o7 + [[HX: ||
2 2 2 2

< |rel oy + 0y [lxe 1l

= (012 — <722)|rg|2 +022.
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Next, the assumption (8) for e gives ¢ < (01 — 02)/2 < 01/2, and therefore o — 2¢ > 0. Also, (7) gives —& < of — o1, Or
of —& > 01— 2¢ > 0. This gives (of — ¢)* > (01 — 2¢)?, and therefore

2>(af—8)2—022 - (o1 —2¢6)* — o}

= 2 2 = 2 2
0y =0, 0y =0,

ITe |

Note that the assumption (8) for & guarantees that we can take a square root of this estimate.

If v{ is normalized so that r, is a nonnegative real number, then (10), 1 — Re(r;) = 1 — |r;|, and the above inequality
give the desired estimate (9) for |lv; — v{||. If . is not a nonnegative real number, then rescale the singular vector pair
{vi, wi} by 7 /|r,| to obtain the proper normalization and the bound (9) for [vq — vi].

For wy and wf, it does not appear that we can use a similar proof strategy since we have already rescaled the singular
vector pair {v], wj}. Specifically, we can obtain wi = s,w; + y,, but it is not clear that s, will be a nonnegative real

number and we are unable to rescale again. Therefore, we use ||H|| = o3, ||[H — H;|| < ¢, and |07 — o] | < ¢ to directly
estimate:
-1 -1
lwi —will = lloy "Hvy — (o7)" Hevill

< ||01_1Hv1 - (rl_lefll + ||c71_1HU‘1E - 01_1H5v§||
+ lloy 'Hev§ — (o7) " Hevf |

< llvi = vill + o7 e +lojo; ' =1

< llvg — il +20'1_18. O

In the result below, note that ¢; = ¢ and E; is defined as in (9) in Lemma A.2.

Theorem A4. Let k > 1, and let ¢ > 0 such that |[H — H;|lzx,y) < &. Forj=1, ...,k define

(07 — 2€j)? — o2

j-1
sj=j8+22<£i+a,-Eil/2>, EE=2|1- 2 AR
i=1 % = %+

If the first k 4+ 1 singular values of H are distinct and positive, the singular vector pairs {vf, wf }J’-‘:1 are suitably normalized,
and

Oj — Oj+1 .
<2 7 forj=1,...,k

& = 5

then

1/2 1/2 — .
Iy =il < B, llwy—wfll < 5 + 207", forj=1,....k (1

Proof. The proof is by induction. First, the result is true for k = 1 by Lemma A.2. Next, assume the result is true for all

j=1,...,k— 1. Define compact linear operators forj = 2, ..., k by
j-1 j-1
H'x = Hx — Z oi(x, vi)w;, Hlx=Hx— Zaf(x, v; wy,
i=1 i=1

for all x € X. Then the ordered singular values and corresponding singular vectors of H' and H! are {03, v, wi}i>j and
{of , Vi, witizj
Note that
k=1
IH* — HEX|| < I(H = Hoxll + ) o (x, vf wf — oi(x, viwi|
i=1
k—1
<elixll + X1 ) _(1of = oil + aillvf — vill + oillwf — wil]).
i=1

Then since the result (11) is true for all j = 1, ..., k — 1, we have ||H* — H§|| < &, where

k—1
e =¢+ Z (8 =+ U,‘El-]/z =+ O'i(Ei1/2 =+ 2(7;18,')>
i=1

k-1

—ke+2)_ (ei+ k).

i=1

Applying Lemma A.2 to H* and H* with ||H* — H¥|| < &, completes the proof. O
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