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Abstract

The NSCD method has shown its e2ciency in the simulation of granular media. Since the number of par-
ticles and contact increases, the shape of the discrete elements becomes more complicated and the simulated
problems becomes more complex, the numerical tools need to be improved in order to preserve reasonable
elapsed CPU time. In this paper we present a parallelization approach of the NSCD algorithm and we in-
vestigate its in8uence on the numerical behaviour of the method. We illustrate the e2ciency on an example
made of hard disks: a free surface compaction.
c© 2003 Published by Elsevier B.V.
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1. Introduction

The present work deals with the simulation of granular media which concern a wide range of
practical engineering applications. One can And many examples as concrete, monuments, geomaterials
(blocky rocks), powders (composites, grains, etc.), etc. All these materials are composed of particles
between which local mechanical interactions deAne the behaviour of the medium at a macroscopic
scale.

The development and the improvement of numerical methods devoted to the simulation of multi-
body contact problem is of great interest and the NSCD method has shown its e2ciency in this area
[9,10].
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This implicit time stepping method relates to a nonlinear Gauss–Seidel like algorithm, and
diHers from the widely used smoothed time-stepping approach [5] and from the event driven
ones [6].

Because the number of particles (np) increases (up to 40 000) and therefore the number of contacts
increases (nc ˙ 2 ∗ np in 2D and nc ˙ 3 ∗ np in 3D), or the shapes of discrete elements may be
more complicated (polygons or polyhedrons), or the simulated processes more complex, the tools
need to be improved in order to preserve reasonable elapsed CPU time.

An extreme example is the railway ballast fatigue simulation. To be realistic it needs up to
30 000 polyhedrons and about 1 million of loading cycles. Each loading cycle needs 1000 time steps
which takes about 2 h of CPU time. Nevertheless in this work, we will present results on examples
involving a moderate number of discrete elements.

In this way, parallel computation is one possibility. Various experiences have been made for the
simulation of granular material, but all are based on domain decomposition methods. For example
Jean et al. [3] used a static geometrical domain decomposition method (using the NSCD algorithm)
or Owen et al. [8] used a topological dynamic domain decomposition method based on a smooth
discrete element method approach (DEM). All these works have shown that a correct load balancing
is di2cult to perform.

As a matter of fact it is important to keep in mind that, in simulation of granular media, all com-
putational eHorts come from the interaction computation (contact detection and contact behaviour),
which have an erratic nature even in quasistatic simulations. This is quite diHerent from problems
involving deformable bodies [1] where the computational eHort comes from volumic behaviour com-
putations which stay globally constant.

Therefore our approach will be quite diHerent, and is encouraged by the availability of shared mem-
ory computers. It consists in parallelizing the NSCD algorithm itself, independently of any geometric
or topologic information. Technically this is performed using OpenMP (http://www.openmp.org [7])
directives. It presents major advantages: its use is transparent, and its implementation allows to keep
the same source code for parallel or scalar use.

2. CPU time analysis

The Arst part of this work consists in identifying the main CPU time consuming portions of the
code (as contact detection, contact solver). But this identiAcation strongly depends on geometry and
intrinsic property of the sample, and we show a relationship between the CPU time consuming
rates of the diHerent parts of the code and the mechanical properties of the sample. The granular
media can be considered as a gaz (mixing), as a liquid (avalanche, rotative drum, granular 8ows)
or a solid (quasi-static evolution, compaction, shear test) according to the process. Three diHerent
examples have been chosen to illustrate the principal Aelds of application, such as, a mixing, a free
surface compaction and a rotative drum. Each simulation takes into account 1000 “poly-disperse”
disks, with elastic shocks for mixing and an inelastic shocks for the other simulations [4]. Fig. 1
shows the contact network in each case. This network does not exist in the mixing case, because
of the permanent agitation of the material: each particle move in ballistic 8ight between two im-
pacts. Nevertheless, it is more important in the two other cases which involve dense material. The
percentage of elapsed time given in the Table 1 conArms this argument: the solver of the nonlinear

http://www.openmp.org
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Fig. 1. Three characteristic examples (with contact network).

Table 1
Repartition of elapsed time taken by subroutine (%)

Problem Solver (%) Convergence (%) Detection (%)

Mixing 18.6 2.9 47.44
Compaction 84.68 2.43 5.82
Drum 85.68 2.52 1.89

contact equations consumes the major part of the CPU time for the two last examples, although the
detection of the pairs is the more expansive for the mixing case.

Consequently to this observation the programming eHort is carried out on the solver itself. There-
fore the sample tests considered in the following is only compaction (preferred to drum). The mixing
does not fall into our priority.

3. Non smooth contact dynamics

3.1. Method description

The starting point of the method is the dynamic equations. After linearization it is written as

Mi(q̇i+1 − q̇i) = Rifree + hRi+1; (1)

where i denotes the time step number, Mi is the matrix of the system (mass and inertial components),
q the conAguration parameter, Rifree the residue omitting contact reactions, hRi+1 the mean contact
impulsions and h the time step. Since the mass matrix is easily invertible, we can re-write Eq. (1)
as

q̇i+1 = q̇ifree + (M−1)ihRi+1; where q̇ifree = q̇i + (M−1)iRifree: (2)

According to the deAnition of Rifree, q̇ifree notes the “free velocity”.
The interaction problem is solved at the local level, and our equations need to be written in terms

of local variables: v� the relative velocity, r� the contact impulse (� denotes the contact number).
One obtains after

(v�)i+1 = (v�free)
i + h

nc∑
	=1

w�	(r	)i+1; (3)
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where w�	 = H�∗(qi)(M−1)iH	(qi) and (v�free)
i = H�∗(qi)q̇ifree. The w�	 computation can be made

with standard global condensation, or block standard global condensation, or with a numerical con-
densation (for rigid collection). H denotes a linear mapping from the local frame to the global
one.

The local solution is made through a contact-by-contact like nonlinear Gauss–Seidel method. So
we consider the contact � and suppose that the others are Axed: the index i of time increment is
omitted. The iterative scheme is deAned as follows (iteration k + 1):

(v�)k+1 − hw��(r�)k+1 = (v�free) + h
∑
	¡�

w�	(r	)k+1 + h
∑
	¿�

w�	(r	)k ;

law�[(v�)k+1; (r�)k+1] = true: (4)

The local solution of this problem consists in Anding the couple (v�; r�) satisfying Eq. (4), where
law�[(v�)k+1; (r�)k+1] = true expresses the frictional contact law (Signorini–Coulomb law) at the
local level has to be satisAed. The right-hand side of the Arst equation in (4) is noted b�. In
a bi-dimensional description, it can be solved by looking for an a2ne graph intersection. In a
tri-dimensional description we must use a generalized Newton method as explained by Alart and
Curnier [2]. Scheme of the solver




i = i + 1 (time step)

Evaluating q̇ifree then vi; �free (�= 1; nc)



k = k + 1 (NSCD iteration)


�= �+ 1 (contacts index)

Evaluating b� (right hand side)

Solving the local problem; unknowns (v�; r�) (via (4))




Convergence test

Evaluating q̇i+1 (using (2))

3.2. Multithreading procedure

Since NSCD is a nonlinear Gauss–Seidel method with a sequential structure, it is not a priori
well suited for a parallel treatment. Indeed a blind parallelization of the algorithm modiAes the
course of the operations regarding the contact scanning order and to memory access con8icts. A
preliminary study on the linear Gauss–Seidel method [11] seems to show a weak in8uence of the
contact scanning order on the numerical behaviour of the method.

The parallelization scheme consists in splitting the contact loop between P threads which may
be related to diHerent processors (multithreading procedure). This method which leads to a contact
loop renumbering, can generate a race condition which may be reduced with a weak bandwidth of
the matrix W (assembled from the w�	 block matrix). The following numerical study consists in
evaluating the in8uence of the multithreading on the e2ciency of the NSCD method in terms of the
number of iterations but also in terms of the quality of the solution.
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4. Results

4.1. Sample information

In this part we will discuss the results obtained on diHerent free surface compaction problem.
We put 1016 poly-disperse disks under gravity (for 95% average radius equal to 0:01 m and 5%

equal to 0:02 m) in a box.
For all disks, the mass coe2cient is 580 kg m−3. After the depot, the velocity of the lateral walls

is governed by the following law:

|vx| = 1
60

(
1 − cos

( �t
30

))
:

The process is performed using 10 000 time steps (h = 6 · 10−2 s). The compaction is performed
considering three situations. The Arst one (DAF) uses a friction coe2cient equal to 0.3 (0.5 with
walls). The second (DSF) is a frictionless case. In this two cases, each walls of the box is modelized
with a single rigid body. The last situation (DOSF) involves a zero friction coe2cient and the walls
of the box are described with a large collection of Axed disks.

4.2. Performance analysis

Time simulations are given in Table 2. Table 2 shows that the NSCD solver is slightly perturbed
by the parallelization. Indeed, the number of extra iterations does not exceed 12% of the sequential
iterations number. In some cases the iterations number may decrease, specially when friction occurs.
When we use a collection of disks to modelize the wall of the box, the iterations number is more
stable. It may be related to the smaller bandwidth of the matrix W in this case, although the contacts
number is bigger.

To appreciate the e2ciency of the parallel software, we have to evaluate, in addition to the
iterations number, the computer performance related to the parallel architecture (here shared memory)
and the OpenMP directives. The Code runs on a SUNFIRE 880 with six UltraSparc III (750 MHz)
processors. We use a relative speed-up for P processors, SP, as follows:

SP =
Tseq
Itseq

ItP
TP
; (5)

Table 2
Performance analysis for diHerent simulations with 1,2,4 and 6 processors

Processors problem 1 2 4 6

TS 〈it:〉 TS � TS � TS �

DAF 21531 335 10535 −6 5425 −3 3874 −9
DSF 28722 382 14174 +15 7782 +48 5780 +54
DOSF 37000 441 18064 +1 9483 −3 6945 +5

TS gives the CPU time elapsed in the solver, 〈it:〉 represents the average iteration number of the sequential computing,
whereas, � is the gain or loss of average iteration number of the parallel computing with respect to 〈it:〉.
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Fig. 2. Speed-up for diHerent simulations on the same computer (left) and for a simulation on two diHerent computers
(right).
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Fig. 3. Contacts number evolution for DAF (up), DSF (down-left) and DOSF (down-right).

where TP and ItP represent, respectively, the computing time and the iterations number with P
processors (Tseq = T1). If SP = P, the parallelization is e2cient. Fig. 2 shows the evolution of
SP versus P for the test problems. We can see some values greater than one. This phenomenon,
called superlinear behaviour, could be due to the activity of the computer during the computing
times, to memory eHect or to optimized compilation. The main result of Fig. 3 is the decrease of
the performance when the number of processor increases. But this decrease is not too strong and
similarly on diHerent computer (SUNFIRE 880 and SGI origin 3800—CINES France). We can then
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think that the method stays still e2cient with more processors for simulation with a larger number
of particles.

4.3. In<uence on the solution

It is interesting to see how do the solutions diHer. The solutions obtained with diHerent number
of processors are not always identical in terms of the distribution of the big grains and of the local
contact network. The evolution of granular medium is an erratic process with multiple possible paths;
at each time step the distribution of the contact forces does not have a unique solution. The way
the contact loop is performed determines one solution among several admissible ones. However, we
can compare the solutions at the macroscopic level of the whole granular medium by considering
the evolution of the total contacts number and the distribution of normal contact orientations (fabric
tensor). Even if the contacts number in the diHerent computations is not the same, its evolution
is similar in each case. We can observe that the 8uctuation of contacts number increases with the
velocity (Fig. 3) that is to say in the middle of the computation where the velocity is maximal. On
the other hand in a quasi-static evolution, these perturbations should be reduced.

In frictionless simulations, more stable than frictional ones, the normal contact orientations for se-
quential and parallel computing keep the same characteristics (cf. Figs. 4 and 5) where the directions
0◦, 60◦ and 120◦ are preponderant; this texture is related to the way we prepare the sample before
the process. We can note the same property with frictional simulations, but it is less pronounced
(cf. Fig. 6).
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Fig. 4. Normal contact orientations for DSF simulations (1, 2 and 6 processors).
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5. Conclusion

In the case of evolution of dense granular media, the parallelization method seems to give con-
cordant macroscopic results with sequential one and gives reasonable elapsed times. In general, the
principal problem is to And macroscopic comparison criterions (less di2cult in quasi-static evolution
than in granular 8ow), so we look for benchmarks in order to validate the method.

A parallel development of other portions of the code is in progress, but are intrinsically parallel
as the contacts detection. Larger tests should be performed to show if the conclusions obtained from
this preliminary results are in8uenced by the size of the samples.

We hope to use other implementation of the method and other algorithms, more e2cient and less
sensitive to parallelization than Gauss–Seidel method, in order to increase the size of our samples.
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