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On a nonlinear nonautonomous predator–prey model
with diffusion and distributed delay
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Abstract

In this paper, a nonlinear nonautonomous predator–prey model with diffusion and continuous distributed delay
is studied, where all the parameters are time-dependent. The system, which is composed of two patches, has two
species: the prey can diffuse between two patches, but the predator is confined to one patch. We first discuss the
uniform persistence and global asymptotic stability of the model; after that, by constructing a suitable Lyapunov
functional, some sufficient conditions for the existence of a unique almost periodic solution of the system are
obtained. An example shows the feasibility of our main results.
© 2004 Elsevier B.V. All rights reserved.

MSC:34C25; 92D25; 34D20; 34D40

Keywords:Nonlinear; Nonautonomous; Predator–prey; Continuous distributed delay; Almost periodic solution; Diffusion;
Globally asymptotic stability

1. Introduction

For predator–prey models without time delay and without diffusion between patches, concerning their
qualitative properties, especially the properties with sound ecological meanings, such as boundedness,
stability, permanence and existence of periodic solutions, many good results have already been obtained
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and collected in some monographs (e.g.,[12,14]), while further scientific researches suggest that time
delay effect or diffusion between patches exists in many ecological systems. Time delay effect refers
to the dynamics of a predator being related to the predation in the past. Moreover, due to the spatial
heterogeneity and unbalanced food resources, the migration phenomena of biological species can often
occur between heterogeneous spatial environments and patches. Because these new topics have great
ecological significance (see[5,9,16,18,20,22]), in recent years, scientists have paid considerable attention
to them.
Song and Chen[21] proposed a predator–prey model which includes not only the dispersal processes

but also some of the past states of the system, that is, the system

ẋ1 = x1(a1(t)− b1(t)x1 − c(t)y)+D1(t)(x2 − x1),
ẋ2 = x2(a2(t)− b2(t)x2)+D2(t)(x1 − x2),
ẏ = y(−d(t)+ e(t)x1 − q(t)y − �(t)

∫ 0

−�
K(s)y(t + s)ds), (1.1)

wherex1(t) andy(t) represent the population density of prey speciesx and predator speciesy in patch 1,
andx2(t) is the density of prey speciesx in patch 2. Predator speciesy is confined to patch 1, while the
prey speciesx can diffuse between two patches.Di(t) (i=1,2) are strictly positive functions and denote
the dispersal rate of speciesx in the ith patch(i = 1,2), K(s)�0 on [−�,0] is a piecewise continuous
and normalized function such that

∫ 0
−� K(s)ds=1. In [21], the authors proved that system (1.1) with the

initial condition� ∈ C([−�,0]; R3+),�(0)>0 is uniformly persistent under some appropriate conditions
and obtained some sufficient conditions for the global stability of the system. Recently, by using the
coincidence degree theory, Zhang andWang[26] and Chen et al.[9] had investigated the condition which
ensured the existence of a positive periodic solution of system (1.1). However, all of above three papers
have not dealt with the almost periodic case.As we know, the predator–prey interactions in the real world
are affected by many factors and undergo all kinds of perturbation, among which many are periodic ones
(for example, those due to seasonal effects of weather, food supply, mating habits, hunting or harvesting
seasons, etc.).When the periods of the periodic perturbations are rationally dependent, the system sustains
periodic perturbations while if the periods are rationally independent, the effect on the system caused by
the periodic perturbations is not periodic but quasi periodic or generally almost periodic. In this sense,
when we study the interactions between the predator–prey model, it is more appropriate to assume that
the parameters in the model system are almost periodic in the timet. It then naturally leads one to ask:
What is the condition to ensure that the almost periodic system (1.1) admits a unique almost periodic
solution?
On the other hand, in 1973, Ayala et al.[2] conducted experiments on fruit fly dynamics to test the

validity of ten models of competitions. One of the models accounting best for the experimental results is
given by

ẋ1 = r1x1
(
1−

(
x1

K1

)�1

− �12
x2

K2

)
,

ẋ2 = r2x2
(
1−

(
x2

K2

)�2

− �21
x1

K1

)
. (1.2)
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In order to fit data in their experiments and to yield significantly more accurate results, Gilpin and
Ayala [16,17] claimed that a slightly more complicated model was needed and proposed the following
competition model:

ẋi = rixi

1−

(
xi

Ki

)�i

−
n∑

j=1,j 
=i
bij
xj

Kj


 , i = 1,2, . . . , n, (1.3)

wherexi is the population density of theith species,ri is the intrinsic exponential growth rate of theith
species,Ki is the environment-carrying capacity of speciesi in the absence of competition,�i provides a
nonlinear measure of intra-specific interference, andbij provides a measure of interspecific interference.
Recently, Fan and Wang[13] argued that the nonautonomous case is more realistic and by using the
coincidence degree theory, they investigated the periodic solution of the nonautonomous system (1.3).
As was pointed out by Berryman[4], the dynamic relationship between predators and their prey has long
been and will continue to be one of the dominant themes in both ecology and mathematical ecology due
to its universal existence and importance. And so, in[19], Li and Lu introduced the following nonlinear
prey-competition model

ẋi =



xi[bi(t)−

m∑
j=1
aij (t)x

�ij
j +

n∑
j=m+1

aij (t)x
�ij
j ], 1�i�m,

xi

[
bi(t)−

n∑
j=1
aij (t)x

�ij
j

]
, m+ 1�i�n,

(1.4)

where thecoefficientsbi(t), aij (t) (i, j=1,2, .., n)areT-periodic continuous functions,xi(1�i�m)are
the density of predator species,xi(m+1�i�n) are the density of prey species,�ij >0 (i, j=1,2, . . . , n)
are positive constants. Using the differential inequality theorem and theV-functionmethod, they obtained
somesufficient conditions for the existence of unique global asymptotic stabilityT-periodic solution of the
system. For more works on nonlinear population dynamics, one could refer to[27,7,11]and the reference
cited therein. However, to this day, no scholar considers the influence of the diffusion on nonlinear
predator–prey system.
Stimulated by the works of[9,21,26,19,27], in this paper, we consider the following nonlinear delay

diffusion predator–prey system

ẋ1 = x1(a1(t)− b1(t)x�1
1 − c(t)y�1)+D1(t)(x2 − x1),

ẋ2 = x2(a2(t)− b2(t)x�2
2 )+D2(t)(x1 − x2),

ẏ = y(−d(t)+ e(t)x�3
1 − q(t)y�2 − p(t)

∫ 0

−�
K(s)y�3(t + s)ds), (1.5)

wherex1 andyare the population density of prey speciesxand predator speciesy in patch 1, respectively,
andx2 is the density of speciesx in patch 2. Speciesy is confined to patch 1 while speciesx can diffuse
between two patches.�i , �i , i = 1,2,3 are all positive constants.Di(t)(i = 1,2) are strictly positive
functionsanddenote thedispersal rateof speciesx in theithpatch(i=1,2),p(t)y(t) ∫ 0−� K(s)y

�3(t+s)ds
represents the influence of the past state of speciesy. For more background and biological adjustment,
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one could refer to[19,21,26]and the reference cited therein. Obviously, system (1.1) is the special case
of system (1.5). To the best of the author’s knowledge, this is the first time such a system is proposed.
The aim of this paper is as follows:

(1) obtaining sufficient condition which guarantees the permanence of system (1.5),
(2) obtaining sufficient condition which guarantees the global asymptotic stability of system (1.5),
(3) for almost periodic case, obtaining sufficient condition which guarantees the existence of the unique

almost periodic solution of system (1.5).

Now we letf l = inf t∈R f (t) andf u = supt∈R f (t) for a continuous and bounded function.
In system (1.5), we always assume

(H1) ai(t), bi(t),Di(t) (i=1,2), c(t), d(t), e(t), q(t) andp(t) are continuous and strictly positive func-
tions, which satisfy

min{ali , bli , cl, el, pl,Dli , dl, ql}>0,
max{aui , bui , cu, eu, pu,Dui , du, qu}<+ ∞.

(H2)K(s)�0 on[−�,0], (0��<∞), andK(s) is a piecewise continuous and normalized function such
that

∫ 0
−� K(s)ds = 1.

We adopt the following notations and concepts throughout this paper. Letx = (x1, x2, y) ∈ R3+ =
{x ∈ R3, xi�0 (i = 1,2), y�0}. Denotex >0 if x ∈ IntR3+. For ecological reasons, we consider
system (1.5) only in IntR3+. Let C+ = C([−�,0]; R3+) denote the Banach space of all nonnegative
continuous functions with

||�|| = sup
s∈[−�,0]

|�(s)| for � ∈ C+.

Then, if we choose the initial function space of system (1.5) to beC+, it is easy to see that, for any
� = (�1,�2,�3) ∈ C+ and�(0)>0, there exists� ∈ (0,+∞) and a unique solutionx(t,�) of system
(1.5) on[−�, �), which remains positive for allt ∈ [0, �); such solutions of system (1.5) are called positive
solutions. Hence, in the rest of this paper, we always assume that

� ∈ C+, �(0)>0. (1.6)

This paper is organized as follows. In Section 2, we examine the dynamics of the general case of (1.5) and
establish sufficient criteria for boundedness, permanence and globally asymptotic stability. In Section 3,
we will explore the existence and uniqueness of positive almost periodic solution of (1.5) when the
parameters in (1.5) are continuous, almost periodic functions. An example illustrates the feasibility of
main results. For more recent works on periodic solution and stability of the population dynamic system,
one could refer to[8,6,7,10,23,24]. For more work concerned with the influence of time delay (due to
stage structure or gestation) and diffusion on population dynamics, one could refer to[23,24,1,15].

2. General nonautonomous case

In this section, we shall explore the dynamics of system (1.5) and present some results including the
boundedness, uniform persistent and the globally asymptotic stability of the system.
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Definition 2.1. System (1.5) is said to be uniformly persistent if there exists a compact regionD ⊆ IntR3+
such that every solutionx(t)= (x1(t), x2(t), y(t))T of system (1.5) with initial condition (1.6) eventually
enters and remains in regionD.

Lemma 2.1. If a >0, b >0 and ẋ�(�)b − ax, whent�0 andx(0)>0,we have

x(t)�(�)
b

a

[
1+

(
ax(0)

b
− 1

)
e−at

]
.

Proof. From ẋ�b − ax, it follows
d(xeat )

dt
�beat .

By integrating the above inequality from 0 tot, it follows

x(t)eat − x(0)� b
a
(eat − 1)

or

x(t)�x(0)e−at + b
a
(1− e−at ).

That is

x(t)�
b

a

[
1+

(
ax(0)

b
− 1

)
e−at

]
.

Similar to the above analysis, one could prove the caseẋ�b − ax. �

Lemma 2.2. If a >0, b >0 and ẋ�(�)x(b − ax�), where� is a positive constant, when t�0 and
x(0)>0,we have

x(t)�(�)
(
b

a

)1/�[
1+

(
bx−�(0)

a
− 1

)
e−b�t

]−1/�
.

Proof. From ẋ�x(b − ax�), it follows

−d(x
−�)

dt
�(bx−� − a)�

or

d(x−�)

dt
� − b�x−� + a�.

From Lemma 2.1 and the above inequality, it follows

x−�(t)�
a

b

[
1+

(
bx−�(0)

a
− 1

)
e−b�t

]
, t�0,
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and so,

x(t)�
(
b

a

)1/�[
1+

(
bx−�(0)

a
− 1

)
e−b�t

]−1/�
.

Similarly, we can prove the caseẋ�x(b − ax�). �

Lemma 2.3. Let x(t) = (x1(t), x2(t), y(t))T be any solution of system(1.5) with the initial condi-
tions(1.6).Then there exists aT >0 such that

xi(t)�M�
1, (i = 1,2), y(t)�M�

2 f or t�T , (2.1)

where

M�
1>M

∗
1, M�

2>M
∗
2,

M∗
1 =max



(
au1

bl1

)1/�1
,

(
au2

bl2

)1/�2
 , M∗

2 =
(
eu(M∗

1)
�3

ql

)1/�2
.

(2.2)

Proof. We define

V (t)=max{x1(t), x2(t)}.
Calculating the upper right derivative ofV along the positive solution of system (1.5), we have the
following possibilities:

(P1) If x1(t)> x2(t) or x1(t)= x2(t) andẋ1(t)� ẋ2(t),
D+V (t)= ẋ1 = x1(a1(t)− b1(t)x�1

1 − c(t)y�1)+D1(t)(x2 − x1)
�x1(au1 − bl1x�1

1 ).

Then by Lemma 2.2, for arbitrary small positive constant�, there existsT ′
1>0 such that

V (t)�
(
au1

bl1

)1/�1
+ � for t�T ′

1.

(P2) If x1(t)< x2(t) or x1(t)= x2(t) andẋ1(t)� ẋ2(t),
D+V (t)= ẋ2(t)= x2(a2(t)− b2(t)x�2

2 )+D2(t)(x1 − x2)
�x2(au2 − bl2x�2

2 ).

Then by Lemma 2.2, for above�>0, there existsT ′
2>0 such that

V (t)�
(
au2

bl2

)1/�2
+ � for t�T ′

2.
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Now letT ′ =max{T ′
1, T

′
2} andM∗

1 =max{(au1
bl1
)1/�1, (

au2
bl2
)1/�2}, then one has

V (t)=max{x1(t), x2(t)}�M∗
1 + ��M�

1 for t�T
′.

From the third equation of system (1.5), one has

ẏ�y(eu(M�
1)

�3 − qly�2), t�T ′ (2.3)

From Lemma 2.2, there exists a large enoughT ′′>T ′>0 such that fort�T ′′, every solutiony(t) of
system (1.5) with initial condition (1.6) satisfies

y(t)�
(
eu(M�

1)
�3

ql

)1/�2
+ �.

The above inequality implies that there exists a positive integerN, such that fort�T ′′,

y(t)�
(
eu(M∗

1)
�3

ql

)1/�2
+N��M�

2. (2.4)

If we takeT = T ′′, then the conclusion of Lemma 2.3 follows.�

Theorem 2.1. Suppose that

(H3) al1>c
u(M∗

2)
�1,

(H4) el(m∗
1)

�3>du + pu(M∗
2)

�3.

Then system(1.5) is uniformly persistent, i.e., there existT ∗>T andm∗
i >0, (i = 1,2) such that

m∗
1�xi(t)�M�

1 (i = 1,2), m∗
2�y(t)�M�

2 f or t�T
∗, (2.5)

whereM�
i (i = 1,2) are defined by(2.2)and

m∗
1 = 1

2
min



(
al1 − cu(M∗

2)
�1

bu1

)1/�1
,

(
al2

bu2

)1/�2
 ,

m∗
2 = 1

2

(
el(m∗

1)
�3 − du − �u(M∗

2)
�3

qu

)1/�2
. (2.6)

Proof. We define

V1(t)=min{x1(t), x2(t)}.
Calculating the lower right derivative ofV1 along the positive solution of system (1.5), we have the
following possibilities:

(Q1) If x1(t)< x2(t) or x1(t)= x2(t) andẋ1(t)� ẋ2(t),
D+V1(t)= ẋ1 = x1(a1(t)− b1(t)x�1

1 − c(t)y�1)+D1(t)(x2 − x1)
�x1(al1 − cu(M�

2)
�1 − bu1x�1

1 ) for t�T .
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Then by Lemma 2.2, for above�>0, there existsT3>T >0, such that

V1(t)�
(
au1 − cu(M�

2)
�1

bu1

)1/�1
− � for t�T3.

The above inequality implies that there exists a positive integerN1, such that for

V1(t)�
(
au1 − cu(M∗

2)
�1

bu1

)1/�1
−N1� for t�T3.

Noting that� is an arbitrary small positive number, we could choose� small enough, such that

N1�<
1

2

(
al1 − cu(M∗

2)
�1

bu1

)1/�1
.

And so

V1(t)�
1

2

(
al1 − cu(M∗

2)
�1

bu1

)1/�1
�m∗

1 for t�T3. (2.7)

(Q2) If x1(t)> x2(t) or x1(t)= x2(t) andẋ1(t)� ẋ2(t),
D+V1(t)= ẋ2 = x2(a2(t)− b2(t)x�2

2 )+D2(t)(x1 − x2)
�x2(al2 − bu2x�2

2 ).

Then by Lemma 2.2, for above�>0, there existsT4>0, such that

V1(t)�
(
al2

bu2

)1/�2
− � for t�T4.

Noting that� is an arbitrary small positive number, we could take� small enough, such that

�<
1

2

(
al2

bu2

)1/�2
.

And so

V1(t)�
1

2

(
al2

bu2

)1/�2
�m∗

1 for t�T4. (2.8)

Now letT5 =max{T3, T4}, then
V1(t)=min{x1(t), x2(t)}�m∗

1 for t�T5. (2.9)

From the third equation of system (1.5) and (2.9), one has

ẏ�y(−du + el(m∗
1)

�3 − pu(M�
2)

�3 − quy�2), t�T5 + �. (2.10)
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From Lemma 2.2, there exists a large enoughT6>T5+ �>0 such that fort�T6, every solutiony(t) of
system (1.5) with initial condition (1.6) satisfies

y(t)�
(
el(m∗

1)
�3 − du − pu(M�

2)
�3

ql

)1/�2
− �.

From this, we know that there exists a positive integerN2, such that fort�T6,

y(t)�
(
el(m∗

1)
�3 − du − pu(M∗

2)
�3

ql

)1/�2
−N2�. (2.11)

Noting that� is an arbitrary small positive number, we could choose� that was small enough, such that

N2�<
1

2

(
el(m∗

1)
�3 − du − pu(M�

2)
�3

ql

)1/�2
.

Then,

y(t)�
1

2

(
el(m∗

1)
�3 − du − pu(M∗

2)
�3

ql

)1/�2
=m∗

2. (2.12)

If we takeT ∗ = T6, then the conclusion of Theorem 2.1 follows.�
Definition 2.2. A bounded positive solutionx(t) = (x1(t), x2(t), y(t))T of (1.5) is said to be globally
asymptotically stable if for any other positive bounded solutionx̂(t)= (x̂1(t), x̂2(t), ŷ(t))T of (1.5), the
following equality holds:

lim
t→+∞


 2∑
j=1

|xj (t)− x̂j (t)| + |y(t)− ŷ(t)|

= 0.

The following lemma is from[3], andwill be employed in establishing the globally asymptotic stability
of (1.5).

Lemma 2.4. Let h be a real number and f be a nonnegative function defined on[h; +∞) such that f is
integrable on[h; +∞) and is uniformly continuous on[h; +∞), thenlim t→+∞ f (t)= 0.

Noting that the method used in[21] to prove the stability property of system (1.1) could not apply
to nonlinear case. Here we will adopt the idea of Zhao and Chen[27] and Chen and Shi[7] to prove
the global attractivity of the positive solution of system (1.5). SupposeX(t) = (x1(t), x2(t), y(t))T is a
positive solution of system (1.5) with coefficients satisfying conditions of Theorem 2.1, then there exist
T >0 such that

m∗
1�xi(t)�M�

1 (i = 1,2), m∗
2�y(t)�M�

2 for t�T .
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Now takec to be any positive constant such that 0<c� min{m∗
1,m

∗
2}. Making the change of variable

ui(t)= xi(t)/c, v(t)= y(t)/c. Then system (1.5) is transformed to
u̇1 = u1(a1(t)− b1(t)c�1u�1

1 − c(t)c�1v�1)+D1(t)(u2 − u1),
u̇2 = u2(a2(t)− b2(t)c�2u�2

2 )+D2(t)(u1 − u2),

v̇ = v(−d(t)+ e(t)c�3u�3
1 − q(t)c�2v�2 − p(t)c�3

∫ 0

−�
K(s)v�3(t + s)ds). (2.13)

Apparently, system (2.13) is equivalent to system (1.5), which implies that (2.13) is permanent under the
conditions of Theorem 2.1.

Theorem 2.2. In addition to(H1)–(H4), assume further that

(H5) �1� max{�3,1}, �2�1, �2� max{�1, �3}.
(H6) There exists positive constants�1, �2, �3 andc (0<c� min{m∗

1,m
∗
2}) such that

min
t∈R {A1(t), A2(t), A3(t)}>0,

where

A1(t)= �1b1(t)c
�1 − �3c

�3e(t)− �2
cD2(t)

m∗
1
,

A2(t)= �2c
�2b2(t)− �1

cD1(t)

m∗
1
,

A3(t)= �3c
�2q(t)− �1c(t)c

�1 − �3c
�3

∫ 0

−�
K(s)p(t − s)ds.

Then system(1.5)with initial condition(1.6) is globally asymptotic stable.

Proof. To finish the proof of Theorem 2.2, we only need to prove that system (2.13) is globally asymp-
totically stable.
Let X(t) = (u1(t), u2(t), v(t))T and X̂(t) = (û1(t), û2(t), v̂(t))T be any two positive solutions of

(2.13). It follows from Theorem 2.1 and the relation of systems (1.5), (2.13) that there exists a large
enoughT >0,M�

i andm
∗
i (defined by (2.1) and (2.6), respectively) such that for allt�T ,

0<
m∗
1

c
�ui(t), ûi(t)�

M�
1

c
,0<

m∗
2

c
�v(t), v̂(t)�

M�
2

c
. (2.14)

Consider a Lyapunov functional defined by

V (t)=
2∑
j=1

�j | ln{uj (t)} − ln{ûj (t)}| + �3| ln{v(t)} − ln{v̂(t)}|

+ �3c
�3

∫ 0

−�

∫ t
t+s
K(s)p(� − s)|v�3(�)− v̂�3(�)|d�ds, t�T . (2.15)
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Now we calculate and estimate the upper right derivative ofV (t) along the solutions of system (1.2),

D+V (t)� − �1b1(t)c
�1|u�1

1 − û�1
1 | + �1c(t)c

�1|v�1 − v̂�1|
− �2c

�2b2(t)|u�2
2 − û�2

2 | + �1D1(t)+ �2D2(t)

+ �3c
�3e(t)|u�3

1 − û�3
1 | − �3c

�2q(t)|v�2 − v̂�2|

+ c�3�3p(t)
∫ 0

−�
K(s)|v�3(t + s)− v̂�3(t + s)|ds

+ �3c
�3

∫ 0

−�
K(s)p(t − s)|v�3(t)− v̂�3(t)|ds

− c�3�3p(t)
∫ 0

−�
K(s)|v�3(t + s)− v̂�3(t + s)|ds,

where

D1(t)=


D1(t)

(
u2(t)
u1(t)

− û2(t)
û1(t)

)
, u1(t)� û1(t),

D1(t)
(
û2(t)
û1(t)

− u2(t)
u1(t)

)
, u1(t)< û1(t).

D2(t)=


D2(t)

(
u1(t)
u2(t)

− û1(t)
û2(t)

)
, u2(t)� û2(t),

D2(t)
(
û1(t)
û2(t)

− u1(t)
u2(t)

)
, u2(t)< û2(t).

Similar to the analysis of[6, p. 39], we have

D1(t)�
cD1(t)

m∗
1

|u2(t)− û2(t)|, D2(t)� cD2(t)
m∗
1

|u1(t)− û1(t)|. (2.16)

Fromui(t) = xi(t)/c, we know thatui(t)�1, ûi(t)�1, (i = 1,2). Since whena�1, a�b andx >0,
y = ax − bx is increasing function, for�1� max{�3,1} we get

|u�3
1 − û�3

1 |� |u�1
1 − û�1

1 |,
|u1 − û1|� |u�1

1 − û�1
1 |. (2.17)

And for �2�1, we have

|u2 − û2|� |u�2
2 − û�2

2 |. (2.18)

Also, fromv(t)= y(t)/c�1, �2� max{�1, �3} it follows

|v�1 − v̂�1|� |v�2 − v̂�2|,
|v�3 − v̂�3|� |v�2 − v̂�2|. (2.19)



44 F. Chen / Journal of Computational and Applied Mathematics 180 (2005) 33–49

By applying (2.16)–(2.19), it follows

D+V (t)� −
(

�1b1(t)c
�1 − �3c

�3e(t)− �2
cD2(t)

m∗
1

)
|u�1
1 − û�1

1 |

−
(

�2c
�2b2(t)− �1

cD1(t)

m∗
1

)
|u�2
2 − û�2

2 |

−
(

�3c
�2q(t)− �1c(t)c

�1 − �3c
�3

∫ 0

−�
K(s)p(t − s)ds

)
|v�2 − v̂�2|.

From the conditions (H6) of Theorem 2.2, it follows that there exists a positive constant�>0 and large
enoughT >0 such that

D+V (t)� − �


 2∑
j=1

|u�j
j (t)− û

�j
j (t)| + |v�2(t)− v̂�2(t)|


 , t�T . (2.20)

Integrating both sides of (2.20) fromT to t produces

V (t)+ �

∫ t
T


 2∑
j=1

|u�j
j (s)− û

�j
j (s)| + |v�2(s)− v̂�2(s)|


 ds�V (T )<+ ∞, t�T .

Then ∫ t
T


 2∑
j=1

|u�j
j (s)− û

�j
j (s)| + |v�2(s)− v̂�2(s)|


 ds��−1V (T )<+ ∞, t�T .

Hence,

2∑
j=1

|u�j
j (t)− û

�j
j (t)| + |v�2(t)− v̂�2(t)| ∈ L1([T ,+∞)).

The boundedness ofui(t) andv(t) and the ultimate boundedness ofûi(t) andv̂(t) imply thatui(t), ûi(t),
v(t) andv̂(t) all have bounded derivatives fort�T (from the equations satisfied by them). Then it follows
that

∑2
j=1 |u�j

j (t) − û
�j
j (t)| + |v�2(t) − v̂�2(t)| is uniformly continuous on[T ,+∞). By Lemma 2.4,

we have

lim
t→+∞


 2∑
j=1

|u�j
j (t)− û

�j
j (t)| + |v�2(t)− v̂�2(t)|


= 0.

From this, it easily follows

lim
t→+∞ |uj (t)− ûj (t)| = 0, j = 1,2.

lim
t→+∞ |v(t)− v̂(t)| = 0.

The proof of Theorem 2.2 is complete.�
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3. Almost periodic case

As we point out in the introduction section “it is more appropriate to assume that the parameters in
the model system are almost periodic in the timet”, so this section is devoted to the study of the almost
periodic solution of system (1.5), and we assume

(H7) ai(t), bi(t),Di(t) (i = 1,2); d(t), e(t), q(t) and p(t) are continuous positive almost periodic
functions.

Obviously, condition (H7) holds implying that condition (H1) holds.
Theoretically, one can investigate the existence and uniqueness of almost periodic solutions for

functional differential equations by using Lyapunov functional as follows[25, p. 388]:
Let C = C([−r,0],Rn),H ∈ R+ or H = +∞. DenoteCH = {� : � ∈ C, |�|<H }, |�| =

sup�∈[−r,0] |�(�)|.
Consider the system

ẋ(t)= f (t, xt ), (3.1)

wheref (t,	) is continuous in(t,	) ∈ R×CH and almost periodic int uniformly for	 ∈ CH,CH ⊆ C,
∀�>0, ∃L(�)>0 such that|f (t,�)|�L(�) ast ∈ R,� ∈ C�.
To investigate the almost periodic solution of system (3.1), we introduce the associate product system

of system (3.1)

ẋ(t)= f (t, xt ), ẏ(t)= f (t, yt ). (3.2)

Lemma 3.1. Suppose that fort�0,	,
 ∈ CH , there exists a continuous Lyapunov functionalV (t,	,
)
which has the following properties:

(I) u(|	 − 
|)�V (t,	,
)�v(|	 − 
|), whereu(s) andv(s) are continuous nondecreasing functions,
andu(s)→ 0 ass → 0.

(II) |V (t,	1,
1)− V (t,	2,
2)|�L(|(	1 − 	2)− (
1 − 
2)|), where L is a positive constant.
(III) V̇(3.2)(t,	,
)� − �V (t,	,
), where� is a positive constant.

Moreover, one assumes that(3.1) has a solutionx(t, �,�) such that|xt (�,�)|�H1 for t���0,
H>H1>0.Then system(3.1)has auniquealmost periodic solutionwhich is uniformly asymptotically
stable.

According to Lemma 3.1, we first obtained a sufficient condition which guarantees the existence of a
bounded solution of (1.5), and then constructed an adaptive Lyapunov functional for (1.5).

Lemma3.2. Assume that(H2)–(H7)hold, then there exists a bounded solutionx(t)=(x1(t), x2(t), y(t))T
of initial problem(1.5)–(1.6)with

0<m∗
1�xi(t)�M∗

1, i = 1,2, 0<m∗
2�y(t)�M∗

2, t ∈ R.

The proofs of Lemma 3.2 are standard and similar to that of[22, Lemma 2], we therefore omit
them here.
Here we state the main results of this section.
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Theorem 3.1. If (H2)–(H7) hold, then almost periodic system(1.5)–(1.6)have a unique positive almost
periodic solution which is globally asymptotically stable.

Proof. From Theorem 2.1, (2.13) and Lemma 3.2 we know that the following system:

u̇1 = a1(t)−D1(t)− b1(t)c�1e�1u1 − c(t)c�1e�1u3 +D1(t)eu2−u1,
u̇2 = a2(t)−D2(t)− b2(t)c�2e�2u2 +D2(t)eu1−u2,
v̇ = −d(t)+ e(t)c�3e�3u1 − q(t)c�2e�2v(t) − p(t)c�3

∫ 0

−�
K(s)e�3v(s) ds (3.3)

has a bounded solutionU(t)= (u1(t), u2(t), u3(t))T onR satisfying

ln

{
m∗
1

c

}
�ui(t)� ln

{
M�
1

c

}
, i = 1,2.

ln

{
m∗
2

c

}
�v(t)� ln

{
M�
2

c

}
, (t ∈ R).

Consider the associated product system of (3.3)

u̇1 = a1(t)−D1(t)− b1(t)c�1e�1u1 − c(t)c�1e�1u3 +D1(t)eu2−u1,
u̇2 = a2(t)−D2(t)− b2(t)c�2e�2u2 +D2(t)eu1−u2,
v̇ = −d(t)+ e(t)c�3e�3u1 − q(t)c�2e�2v − p(t)c�3

∫ 0

−�
K(s)e�3v(s) ds,

ẋ1 = a1(t)−D1(t)− b1(t)c�1e�1x1 − c(t)c�1e�1x3 +D1(t)ex2−x1,
ẋ2 = a2(t)−D2(t)− b2(t)c�2e�2x2 +D2(t)ex1−x2,
ẏ = −d(t)+ e(t)c�3e�3x1 − q(t)c�2e�2y − p(t)c�3

∫ 0

−�
K(s)e�3y(s) ds. (3.4)

Construct a Lyapunov functionalV (t)= V (t, xt , yt ) as follows:

V (t)=
2∑
j=1

�j |uj (t)− xj (t)| + �3|v(t)− y(t)|

+ �3c
�3

∫ 0

−�

∫ t
t+s
K(s)p(� − s)|exp{�3v(�)} − exp{�3y(�)}|d�ds, t�0. (3.5)

It is easy to know that conditions (I) and (II) of Lemma 3.1 are satisfied. By direct computation, similar
to that of the analysis of Theorem 2.2, we have

D+V (t)� −
(

�1b1(t)c
�1 − �3c

�3e(t)− �2
cD2(t)

m∗
1

)
|e�1u1 − e�1x1|

−
(

�2c
�2b2(t)− �1

cD1(t)

m∗
1

)
|e�2u2 − e�2x2|

−
(

�3c
�2q(t)− �1c(t)c

�1 − �3c
�3

∫ 0

−�
K(s)p(t − s)ds

)
|e�2v − e�2y |.
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Then similar to the analysis of[27, p. 575], under the assumption of Theorem 3.1, one could deduce that

D+V (t)� − 
1


 2∑
j=1

�j |xj (t)− uj (t)| + �3|v(t)− y(t)|

 ,

where
1 is a positive constant. So, from the definition ofV (t) it immediately follows that there exists a
positive constant� such that

V̇(3.4)� − �V (t), t ∈ R. (3.6)

From Lemma 3.1, there exists a unique positive almost periodic solutionU(t) = (u1(t), u2(t), u3(t))T
of Eq. (3.3) which is uniformly asymptotic stable, which means that there exists a unique positive almost
periodic solutionx(t)= (eu1(t),eu2(t),eu3(t))T of Eq. (1.5). This ends the proof of Theorem 3.1.�
Example 3.1. Consider the following example:

ẋ1 = x1
(
4− 2x1 −

(
11

8
+ sin

√
2t

8

)
y

)
+
(
2+ cos

√
3t

2

)
(x2 − x1),

ẋ2 = x2(5+ sin 2t − 3x2)+
(
3

32
+ sin

√
5t

64

)
(x1 − x2),

ẏ = y
(

−
(
3

16
+ cos

√
7t

16

)
+ 5

4
x1 −

(
2− sin

√
11t

4

)
y

−
(
3

32
+ cos

√
13t

32

)∫ 0

−�
K(s)y(t + s)ds

)
, (3.7)

whereK(s) satisfies condition (H2). In this case,�i = 1, �i = 1, i = 1,2,3, need not make the change
of variableui = xi/c, v = y/c, and so it is easy to examine that the coefficients of system (3.1) satisfy
all assumptions in Theorems 2.1, 2.2 and 3.1. Thus, system (3.1) is permanent; also, system (3.1) has a
unique almost periodic solution which is globally asymptotically stable.

4. Conclusion

In this paper, a nonlinear nonautonomous predator–prey model with dispersion as well as continuous
time delay is considered. Attentions are paid to the topic such as persistence, global attractivity and
the existence of an unique positive almost periodic solution of the system. Some interesting results are
obtained, which can be seen as the generalization of the main results of[21]. Those results have further
application on population dynamics.
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